Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60193Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 翁啟惠(Chi-Huey Wong) | |
| dc.contributor.author | Shih-Huang Chang | en |
| dc.contributor.author | 張世皇 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:13:29Z | - |
| dc.date.available | 2013-08-26 | |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2013-08-20 | |
| dc.identifier.citation | 1. Apweiler, R.; Hermjakob, H.; Sharon, N. Biochimica et biophysica acta 1999, 1473 (1), 4-8.
2. Raman, R.; Raguram, S.; Venkataraman, G.; Paulson, J. C. Nat. Methods 2005, 2, 817. 3. Fukuda, M.; Hindsgaul, O., Molecular and Cellular Glycobiology. 2000. 4. Seeberger, P. H. Nature 2005, 437, 1239. 5. Thorson, J. S.; Vogt, T.; Wong, C. H., Glycosylated Natural Products in Carbohydrate-Based Drug Discovery. 2002; p 685. 6. Weis, W. I. Annu. Rev. Biochem. 1996, 65, 441. 7. Park, S.; Shin, I. Angew. Chem., Int. Ed. 2002, 41, 3180. 8. Shin, I.; Park, S.; Lee, M. Chem.—Eur. J. 2005, 11, 2894. 9. Houseman, B. T.; Mrksich, M. Chem. Biol. 2002, 9, 443. 10. Wang, D.; Liu, S.; Trummer, B. J.; Deng, C.; Wang, A. Nat. Biotechnol. 2002, 20, 275. 11. Fukui, S.; Feizi, T.; Galustian, C.; Lawson, A. M.; Chai, W. Nat. Biotechnol. 2002, 20, 1011. 12. Love, K. R.; Seeberger, P. H. Angew. Chem., Int. Ed. 2002, 41, 3583. 13. Willats, W. G. T.; Rasmussen, S. E.; Kristensen, T.; Mikkelsen, J. D.; Knox, J. P. Proteomics 2002, 2, 1666. 14. Mellet, C. O.; Garcia Fernandez, J. M. ChemBioChem 2002, 2, 819. 15. Paulson, J. C.; Blixt, O.; Collins, B. E. Nat Chem Biol 2006, 2 (5), 238-48. 16. Feizi, T.; Fazio, F.; Chai, W.; Wong, C. H. Curr. Opin. Struct. Biol. 2003, 13, 637. 17. Liang, P. H.; Wu, C. Y.; Greenberg, W. A.; Wong, C. H. Curr. Opin. Chem. Biol. 2008, 12, 86. 18. Wu, C. Y.; Liang, P. H.; Wong, C. H. Org. Biomol. Chem. 2009, 7, 2247. 19. Liang, C. H.; Wu, C. Y. Expert Rev. Proteomics 2009, 6, 631. 20. Liu, Y.; Palma, A. S.; Feizi, T. Biol. Chem. 2009, 390, 647. 21. Oyelaran, O.; Gildersleeve, J. C. Curr. Opin. Chem. Biol. 2009, 13, 406. 22. Bryan, M. C.; Plettenburg, O.; Sears, P., et al. Chemistry & biology 2002, 9 (6), 713-20. 23. T, Feizi; W, Chai. Nat. Rev. Mol. Cell Biol. 2004, 5, 582. 24. El, Shipp; Lc, Hsieh-Wilson. Chem. Biol. 2007, 14, 195. 25. Ks, Ko; Fa, Jaipuri; Nl, Pohl. J. Am. Chem. Soc. 2005, 127, 13162. 26. Y, Guo; H, Feinberg; E, Conroy; Da, Mitchell; R, Alvarez. Nat. Struct. Mol. Biol. 2004, 11, 591. 27. Oe, Galanina; M, Mecklenburg; Ne, Nifantiev; Gv, Pazynina; Nv, Bovin. Lab Chip 2003, 3, 260. 28. K, Godula; Cr, Bertozzi. J. Am. Chem. Soc. 2010, 132, 9963. 29. Y, Chevolot; C, Bouillon; S, Vidal; F, Morvan; A, Meyer. Angew. Chem. Int. Ed. Engl. 2007, 46, 2398. 30. J, Zhang; G, Pourceau; A, Meyer; S, Vidal; Jp, Praly. Chem. Commun. 2009, 2009, 6795. 31. Rillahan, C. D.; Paulson, J. C. Annu Rev Biochem 2011, 80 (1), 797-823. 32. S, Park; I, Shin. Angew Chem. Int. Ed. Engl. 2002, 41, 3180. 33. S, Park; Mr, Lee; Sj, Pyo; I, Shin. J. Am. Chem. Soc. 2004, 126, 4812. 34. Ea, Smith; Wd, Thomas; Ll, Kiessling; Rm, Corn. J. Am. Chem. Soc. 2003, 125, 6140. 35. Lg, Harris; Wce, Schofield; Kj, Doores; Bg, Davis; Jps, Badyal. J. Am. Chem. Soc. 2009, 131, 7755. 36. Bain, C. D.; Biebuyck, H. A.; Whitesides, G. M. Langmuir 1989, 5 (3), 723-727. 37. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem Rev 2005, 105 (4), 1103-69. 38. M, Schwarz; L, Spector; A, Gargir; A, Shtevi; M, Gortler. Glycobiology 2003, 13, 749. 39. Cc, Wang; Yl, Huang; Ct, Ren; Cw, Lin; Jt, Hung. Proc. Natl. Acad. Sci. USA 2008, 105, 11661. 40. Cc, Wang; Jr, Chen; Yc, Tseng; Ch, Hsu; Yf, Hung. Proc. Natl. Acad. Sci. USA 2009, 106, 18137. 41. Song, X.; Xia, B.; Stowell, S. R., et al. Chem. Biol. 2009, 16, 36. 42. Xia, B.; Kawar, Z. S.; Ju, T., et al. Nat. Methods 2005, 2, 845. 43. Mr, Lee; I, Shin. Org. Lett. 2005, 7, 4269. 44. Jl, De Paz; D, Spillmann; Ph, Seeberger. Chem. Commun. 2006, 2006, 3116. 45. Se, Tully; M, Rawat; Lc, Hsieh-Wilson. J. Am. Chem. Soc. 2006, 128, 7740. 46. Ci, Gama; Se, Tully; N, Sotogaku; Pm, Clark; M, Rawat. Nat. Chem. Biol. 2006, 2, 467. 47. F, Fazio; Mc, Bryan; O, Blixt; Jc, Paulson; Ch, Wong. J. Am. Chem. Soc. 2002, 124, 14397. 48. Mc, Bryan; F, Fazio; Hk, Lee; C, Huang; A, Chang. J. Am. Chem. Soc. 2004, 126, 8640. 49. O, Michel; Bj, Ravoo. Langmuir 2008, 24, 12116. 50. C, Wendeln; A, Heile; Hf, Arlinghaus; Bj, Ravoo. Langmuir 2010, 26, 4933. 51. X, Song; B, Xia; Y, Lasanajak; Df, Smith; Rd, Cummings. Glycoconj. J. 2008, 25, 15. 52. X, Song; B, Xia; Sr, Stowell, et al. Chem. Biol. 2009, 16, 36. 53. Ban, L.; Mrksich, M. Angew. Chem., Int. Ed. 2008, 47, 3396. 54. Mrksich, M. ACS Nano 2008, 2 (1), 7-18. 55. Gurard-Levin, Z. A.; Mrksich, M. Annu. Rev. Anal. Chem. 2008, 1, 767. 56. Laurent, N.; Voglmeir, J.; Write, A., et al. ChemBioChem 2008, 9, 883. 57. Laurent, N.; Haddoub, R.; Flitsch, S. L. Trends Biotechnol. 2008, 26, 328. 58. Trevor, J. L.; Lykke, K. R.; Pellin, M. J.; Hanley, L. Langmuir 1998, 14, 1664. 59. Gong, W.; Elitzin, V. I.; Janardhanam, S.; Wilkins, C. L.; Fritxch, I. J. Am. Chem. Soc. 2001, 123, 769. 60. Lee, J. C.; Wu, C. Y.; Apon, J. V.; Siuzdak, G.; Wong, C. H. Angew. Chem., Int. Ed. 2006, 45, 2753. 61. Northen, T. R.; Lee, J. C.; Hoang, L., et al. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 3678. 62. Tseng, S. Y.; Wang, C. C.; Lin, C. W., et al. Chemistry, an Asian journal 2008, 3 (8-9), 1395-405. 63. Pond, Monique A.; Zangmeister, Rebecca A. Talanta 2012, 91, 134-139. 64. Park, S.; Lee, M. R.; Pyo, S. J.; Shin, I. Journal of the American Chemical Society 2004, 126 (15), 4812-4819. 65. Park, Sungjin; Lee, Myung-Ryul; Shin, Injae. Nature Protocols 2007, 2 (11), 2747-2758. 66. Patwa, Tasneem; Li, Chen; Simeone, Diane M.; Lubman, David M. Mass Spectrometry Reviews 2010, 29 (5), 830-844. 67. Kosik, Ondrej; Auburn, Richard P.; Russell, Steven, et al. Glycoconjugate Journal 2010, 27 (1), 79-87. 68. Park, Sungjin; Lee, Myung-Ryul; Shin, Injae. Chemical Communications 2008, (37), 4389-4399. 69. Chu, K. C.; Ren, C. T.; Lu, C. P., et al. Angew Chem Int Edit 2011, 50 (40), 9391-9395. 70. Zhang, Jing; Pourceau, Gwladys; Meyer, Albert, et al. Chemical Communications 2009, (44), 6795-6797. 71. Suvorov, Alexander; Takser, Larissa. Environmental Health Perspectives 2010, 118 (1), 97-102. 72. Li, Bing-Zhi; Cheng, Jing-Sheng; Qiao, Bin; Yuan, Ying-Jin. Journal of Industrial Microbiology & Biotechnology 2010, 37 (1), 43-55. 73. Ratner, Daniel M.; Seeberger, Peter H. Current Pharmaceutical Design 2007, 13 (2), 173-183. 74. Dyukova, V. I.; Shilova, N. V.; Galanina, O. E.; Rubina, A. Y.; Bovin, N. V. Bba-Gen Subjects 2006, 1760 (4), 603-609. 75. Etxebarria, J.; Serna, S.; Beloqui, A.; Martin-Lomas, M.; Reichardt, N. C. Chem-Eur J 2013, 19 (15), 4776-4785. 76. Serna, S.; Hokke, C. H.; Weissenborn, M., et al. Chembiochem 2013, 14 (7), 862-869. 77. N, Laurent; J, Voglmeir; Sl, Flitsch. Chem. Commun. 2008, 2008, 4400. 78. Tantakitti, Faifan; Burk-Rafel, Jesse; Cheng, Fang, et al. Langmuir 2012, 28 (17), 6950-6959. 79. Serna, S.; Etxebarria, J.; Ruiz, N.; Martin-Lomas, M.; Reichardt, N. C. Chem-Eur J 2010, 16 (44), 13163-13175. 80. Serna, S.; Yan, S.; Martin-Lomas, M.; Wilson, I. B. H.; Reichardt, N. C. Journal of the American Chemical Society 2011, 133 (41), 16495-16502. 81. Gao, W.; Dickinson, L.; Grozinger, C.; Morin, G.; Reven, L. Langmuir 1996, 12, 64296. 82. Felhosi, I.; Kalman, E. Corros. Sci. 2005, 47, 695. 83. Gouzman, I.; Dubey, M.; Carolus, M.; Schwartz, J.; Bernasek, S. Surf. Sci. 2006, 600, 773. 84. Eschner, M.; Frenzel, R.; Simon, F., et al. Macromol. Symp. 2004, 210, 77. 85. Wapner, K.; Stratmann, M.; Grundmeier, G. Int. J. Adhes. Adhes. 2007, 28, 59. 86. Maege, I.; Jaehne, E.; Henke, A., et al. Prog. Org. Coat. 1998, 34, 1. 87. Forget, L.; Wilwers, F.; Delhalle, J.; Mekhalif, Z. Appl. Surf. Sci. 2003, 205, 44. 88. Lewington, T.; Alexander, M.; Thomspon, G.; Mcalpine, E. Surf. Eng. 2002, 18, 228. 89. Adolphi, B.; Jahne, E.; Busch, G.; Cai, X. Analytical and bioanalytical chemistry 2004, 379 (4), 646-52. 90. Van Alsten, J. Langmuir 1999, 15, 7605. 91. Douek, D. C.; Roederer, M.; Koup, R. A. Annual review of medicine 2009, 60, 471-84. 92. Gilbert, P. B.; Mckeague, I. W.; Eisen, G., et al. Statistics in medicine 2003, 22 (4), 573-93. 93. Burton, D. R. Proc Natl Acad Sci U S A 1997, 94 (19), 10018-23. 94. Burton, Dennis R.; Moore, John P. Nature Medicine 1998, 4 (5s), 495-498. 95. Barouch, D. H. Nature 2008, 455 (7213), 613-9. 96. Astronomo, R. D.; Burton, D. R. Nat Rev Drug Discov 2010, 9 (4), 308-24. 97. Calarese, D.; Scanlan, C.; Lee, H. K., et al. Acs Sym Ser 2006, 932, 161-185. 98. Pantophlet, R.; Burton, D. R. Annu Rev Immunol 2006, 24, 739-69. 99. Scanlan, C. N.; Offer, J.; Zitzmann, N.; Dwek, R. A. Nature 2007, 446 (7139), 1038-45. 100. Kwong, P. D.; Mascola, J. R.; Nabel, G. J. Cold Spring Harbor perspectives in medicine 2011, 1 (1), a007278. 101. Calarese, D. A.; Scanlan, C. N.; Zwick, M. B., et al. Science 2003, 300 (5628), 2065-71. 102. Joyce, J. G.; Krauss, I. J.; Song, H. C., et al. Proc Natl Acad Sci U S A 2008, 105 (41), 15684-9. 103. Wang, L. X. Acs Sym Ser 2006, 932, 133-160. 104. Walker, L. M.; Huber, M.; Doores, K. J., et al. Nature 2011, 477 (7365), 466-70. 105. Wu, X.; Yang, Z. Y.; Li, Y., et al. Science 2010, 329 (5993), 856-61. 106. Walker, L. M.; Phogat, S. K.; Chan-Hui, P. Y., et al. Science 2009, 326 (5950), 285-9. 107. Mouquet, H.; Scharf, L.; Euler, Z., et al. Proc Natl Acad Sci U S A 2012, 109 (47), E3268-77. 108. Pejchal, R.; Doores, K. J.; Walker, L. M., et al. Science 2011, 334 (6059), 1097-103. 109. Mouquet, H.; Scheid, J. F.; Zoller, M. J., et al. Nature 2010, 467 (7315), 591-5. 110. Zhang, Y. H. P.; Himmel, M. E.; Mielenz, J. R. Biotechnol. Adv. 2006, 24, 452. 111. Nieves, R. A.; Ehrman, C. I.; Adney, W. S.; Elander, R. T.; Himmel, M. E. World J. Microbiol. Biotechnol. 1998, 14, 301. 112. Coleman, D. J.; Studler, M. J.; Naleway, J. J. Anal. Biochem. 2007, 371, 146. 113. Chernoglazov, V. M.; Jafarova, A. N.; Klyosov, A. A. Anal. Biochem. 1989, 179, 186. 114. Deshpande, M. V.; Eriksson, K. E.; Pettersson, L. G. Anal. Biochem. 1984, 138, 481. 115. Grundmeier, G.; Schmidt, W.; Stratmann, M. Electrochim Acta 2000, 45 (15-16), 2515-2533. 116. Mcnatt, J. S.; Morgan, J. M.; Farkas, N., et al. Langmuir 2003, 19, 1148. 117. Mamidyala, S. K.; Ko, K. S.; Jaipuri, F. A.; Park, G.; Pohl, N. L. J. Fluorine Chem. 2006, 127, 571. 118. Jaipuri, F. A.; Collet, B. Y.; Pohl, N. L. Angew. Chem., Int. Ed. 2008, 47, 1707. 119. Chen, G. S.; Pohl, N. L. Org. Lett. 2008, 10, 785. 120. Blixt, O.; Head, S.; Mondala, T., et al. Proc Natl Acad Sci U S A 2004, 101 (49), 17033-8. 121. Boschker, H. T.; Cappenberg, T. E. Applied and environmental microbiology 1994, 60 (10), 3592-6. 122. Hilden, L.; Johannson, G. Biotechnol. Lett. 2004, 26, 1683. 123. Munoz, I.; Ubhayasekera, W.; Henriksson, H., et al. J. Mol. Biol. 2001, 314, 1097. 124. Schubot, F. D.; Kataeva, I. A.; Chang, J., et al. Biochemistry-Us 2004, 43, 1163. 125. Kitago, Y.; Karita, S.; Watanabe, N., et al. J. Biol. Chem. 2007, 282, 35703. 126. Uzcategui, E.; Ruiz, A.; Montesino, R.; Johansson, G.; Pettersson, G. J. Biotechnol. 1991, 19, 271. 127. Okada, G. Agric. Biol. Chem. 1985, 49, 1257. 128. Van Wyk, J. P. H.; Mogale, M. A.; Seseng, T. A. Biotechnol. Lett. 2000, 22, 491. 129. Fadel, M.; Kahil, T. Egypt. J. Biotechnol. 2004, 16, 74. 130. Chao, C. S.; Li, C. W.; Chen, M. C.; Mong, K. K. T. Chem.—Eur. J. 2009, 15, 10972. 131. Huang, C. Y.; Thayer, D. A.; Chang, A. Y., et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15. 132. Liang, P. H.; Wang, S. K.; Wong, C. H. J. Am. Chem. Soc. 2007, 129, 11177. 133. Doores, K. J.; Burton, D. R. Journal of virology 2010, 84 (20), 10510-21. 134. Mclellan, J. S.; Pancera, M.; Carrico, C., et al. Nature 2011, 480 (7377), 336-43. 135. Srinivasan, A.; Viswanathan, K.; Raman, R., et al. Proc Natl Acad Sci U S A 2008, 105 (8), 2800-5. 136. Walker, L. M.; Phogat, S. K.; Chan-Hui, P. Y., et al. Science 2009, 326 (5950), 285-289. 137. Pancera, M.; Mclellan, J. S.; Wu, X., et al. Journal of virology 2010, 84 (16), 8098-110. 138. Varki, A.; Cummings, R. D.; Esko, J. D., et al. Proteomics 2009, 9 (24), 5398-9. 139. Seko, A.; Koketsu, M.; Nishizono, M., et al. Bba-Gen Subjects 1997, 1335 (1-2), 23-32. 140. Liang, C. H.; Wang, S. K.; Lin, C. W., et al. Angew Chem Int Edit 2011, 50 (7), 1608-1612. 141. Chang, S. H.; Han, J. L.; Tseng, S. Y., et al. J Am Chem Soc 2010, 132 (38), 13371-80. 142. Da, Calarese; Hk, Lee; Cy, Huang; Md, Best; Rd, Astronomo. Proc. Natl. Acad. Sci. USA 2005, 102, 13372. 143. Moore, P. L.; Gray, E. S.; Wibmer, C. K., et al. Nat Med 2012, 18 (11), 1688-92. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60193 | - |
| dc.description.abstract | 利用鍍鋁的玻片表面,我們研發出新型的醣晶片平台。在早年的研究中,磷酸分子被證實能夠快速與氧化鋁進行結合反應。利用這個特性,我們將數種不同的帶磷酸特別化合物,快速結合到鍍鋁玻片表面,製造出了兩種不同的醣晶片: 共價結合醣晶片與非共價結合醣晶片。
針對非共價結合醣晶片,我們使用多氟化合物製造出高疏水性但高氟親合性的表面。 接著,將帶氟的醣分子轉移到非共價結合醣晶片上。利用質譜儀,我們能夠去分析晶片上醣分子的分子量變化。擁有如此方便的特性,我們將能分析許多醣轉移酶或是醣分解酶的活性。 針對共價結合醣晶片,帶有磷酸的醣分子直接被結合到晶片表面。利用金屬表面所帶來的高度反射性,螢光訊號將能夠被高度放大,如此我們能夠分析許多以前無法分析的抗體-抗原結合反應。 利用所建立的分析平台,我們針對愛滋病毒的廣效中和性抗體,進行了深入的探討。其中PG16 和PGT141-144 抗體,皆第一次經由完整的多醣資料庫而被分析出抗原的專一性。另外針對PG9抗體,我們完整分析出非常特別的多抗原結合反應。而這些新發現的抗原組合,將能夠為將來的愛滋病毒疫苗設計,帶來相當程度的幫助。 | zh_TW |
| dc.description.abstract | A new type of glycan array covalently or non-covalently attached to aluminum-oxide coated glass (ACG) slides has been developed for studies of enzymatic reactions and antibody bindings. For non-covalent array, glycans with a poly-fluorinated hydrocarbon (-C8F17) tail are spotted robotically onto the ACG slide surface con taining a layer of poly-fluorinated hydrocarbon terminated with phosphonic acid. The samples on non-covalent array can be characterized by MS-TOF without addition of matrix. A representive cellotetraose array was developed to study the activity and specificity of different cellulases and to differentiate the exo- and endo-glucanase activities. For covalent array, glycans with a phosphonic acid tail were synthesized and printed onto the ACG slide surface. Compared to glycan arrays on glass slides and other surfaces, this method of arraying using phosphonic acid reacting with ACG is more direct, convenient, and effective. Moreover, the high reflectivity of ACG surface significantly amplified the signal of binding.
With the advantage of ACG-based glycan array, the weak bindings of HIV-1 broadly neutralizing antibodies (bNAbs) PG16, PG9, and PGT141-144 have been well characterized by ACG-based glycan array. Through glycans affinity profiling, we proved that the epitope of PG16 is a tri-saccharide of α-2,6-NeuAc-Gal-GlcNAc rather than previously reported whole complex-type glycan. Moreover, we found the hetero-ligand binding effect of PG9 was proved by the combination of complex-type glycan and Man5GlcNAc glycan. Besides, the promiscuous affinity of PG9 to hybrid type glycan also expands the neutralizing range of HIV-1 bNAbs PG9. Moreover, glycan array of mixing glycans becomes critical in dissolve the epitope of bNAbs since binding assay on single glycans may yield misleading results. The results of ACG-based glycan array showed that Man3GlcNAc2 has also been discovered to be the best binding target of bNAbs PGT141, PGT142, PGT143, and PGT144. In addition, Man5GlcNAc2 and Man9GlcNAc2, both have similar core structure, could be bound by PGT 141-145 antibodies in a weaker manner. This result also explains the broad neutralizing range of isolated HIV-1 antibodies. With ACG-based glycan array, we are able to discuss, for the first time, the details of broad neutralizing ranges of many isolated HIV-1 antibodies with glycan database of diverseness. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:13:29Z (GMT). No. of bitstreams: 1 ntu-101-F95b46022-1.pdf: 7619102 bytes, checksum: a95c48c0c3c730454df46e1dae9dd461 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | ABSTRACT I
中文摘要 III TABLE OF CONTENTS 1 CONTENT OF FIGURES 4 CONTENT OF SCHEMES 7 CHAPTER 1. INTRODUCTION 8 1.1 Glycan 8 1.2 Glycan Array 8 1.2.1 General 8 1.2.2 Methods to construct glycan array 9 1.2.3 Non-covalent glycan array 9 1.2.4 Covalent glycan array 10 1.2.5 Quality control of glycan array 11 1.3 Phosphonic acid and aluminum oxide 14 1.4 HIV-1 Neutralizing Antibodies 15 1.4.1 The discovery of broadly neutralizing antibodies (bNAb) 16 CHAPTER 2. RESULT AND DISCUSSION 19 2.1 Noncovalent Array 19 2.1.1 Preparation of Teflon-like ACG Slides. 20 2.1.2 Non-covalent glycan array on the Teflon-like ACG slides. 21 2.1.1 Study of cellulase specificity with mass spectrometry. 27 2.1.2 The activity studies of commercial available cellulases. 29 2.2 Covalent Array 34 2.2.1 Creation of covalent glycan array on ACG slides. 34 2.2.2 One-pot synthesis of Globo H with phosphonic acid linker 36 2.2.3 Sensitivity of the glycan array on ACG slides 38 2.2.4 Calculation of dissociation constant of antibody MBr1 40 2.3 Study the Specificities of HIV-1 Neutralizing Antibodies 42 2.3.1 Optimize the protocol of antibody binding assay 42 2.3.2 Broadly neutralizing antibody PG16 43 2.3.3 PG9 broadly neutralizing antibody 53 2.3.4 Analyzing hetero-ligands binding effect of PG9 55 2.3.5 PGT121 broadly neutralizing antibody 59 2.3.6 PGT141, PGT142, PGT143, PGT144 and PGT145 62 CHAPTER 3. CONCLUSION 70 CHAPTER 4. MATERIAL AND METHODS 72 4.1.1 General material and methods 72 4.2 Slide preparation 72 4.2.1 Preparation of Aluminum oxide coated glass slides 72 4.2.2 Surface anodizingof aluminum oxide coated glass slide 73 4.2.3 Fabrication of the phosphonic acid based Teflon-like ACG Slides 74 4.3 Non-covalent glycan array 74 4.3.1 MS-TOF analysis of the poly-fluorinated mannose derivative adsorbed on the Teflon-like ACG Slides 74 4.3.2 Fluorescence-tagged Con A/mannose binding of the poly-fluorinated mannose adsorbed on the Teflon-Like ACG Slides. 75 4.3.3 On-chip analysis by MALDI-TOF (Microcentrifuge tube) 75 4.3.4 On-chip analysis by MALDI-TOF (reaction on chip directly) 76 4.4 Binding assay of HIV-1 bNAbs on ACG slides 76 4.5 Chemical Synthetic Procedures 78 CHAPTER 5. REFERENCES 106 CHAPTER 6. NMR SPECTRA 116 | |
| dc.language.iso | en | |
| dc.subject | 醣晶片 | zh_TW |
| dc.subject | Glycan Array | en |
| dc.title | 鍍鋁玻片上的醣晶片研究 | zh_TW |
| dc.title | Development of Glycan Array Based on Aluminum Oxide Coated Glass Slide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 吳宗益(Chung-Yi Wu) | |
| dc.contributor.oralexamcommittee | 胡恩德(En-Te Hwu),林俊成(Chun-Cheng Lin),吳漢忠(Han-Chung Wu) | |
| dc.subject.keyword | 醣晶片, | zh_TW |
| dc.subject.keyword | Glycan Array, | en |
| dc.relation.page | 170 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-20 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| Appears in Collections: | 生化科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-101-1.pdf Restricted Access | 7.44 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
