Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60182
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊昀叡(Ray Y. Chuang)
dc.contributor.authorPin-Yin Liuen
dc.contributor.author劉品吟zh_TW
dc.date.accessioned2021-06-16T10:13:22Z-
dc.date.available2023-03-30
dc.date.copyright2021-04-07
dc.date.issued2021
dc.date.submitted2021-03-30
dc.identifier.citationBerardino, P., Costantini, M., Franceschetti, G., Iodice, A., Pietranera, L., Rizzo, V. (2003). Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Engineering Geology, 68(1-2), 31-51.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383.
Burrows, K., Walters, R. J., Milledge, D., Densmore, A. L. (2020). A systematic exploration of satellite radar coherence methods for rapid landslide detection. Natural Hazards and Earth System Sciences, 20(11), 3197-3214.
Ciampalini, A., Raspini, F., Lagomarsino, D., Catani, F., Casagli, N. (2016). Landslide susceptibility map refinement using PSInSAR data. Remote Sensing of Environment, 184, 302-315.
Colesanti, C., Ferretti, A., Prati, C., Rocca, F. (2003). Monitoring landslides and tectonic motions with the permanent scatterers technique. Engineering Geology, 68(1-2), 3-14.
Colesanti, C., Wasowski, J. (2006). Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Engineering Geology, 88(3-4), 173-199.
Conover, W. J. (1998). Practical nonparametric statistics (Vol. 350): John Wiley Sons.
Czuchlewski, K. R., Weissel, J. K., Kim, Y. (2003). Polarimetric synthetic aperture radar study of the Tsaoling landslide generated by the 1999 Chi-Chi earthquake, Taiwan. Journal of Geophysical Research: Earth Surface, 108(F1).
Dong, J., Liao, M., Xu, Q., Zhang, L., Tang, M., Gong, J. (2018). Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: A case study of Danba County in the Dadu River Basin. Engineering Geology, 240, 95-109.
El-Darymli, K., McGuire, P., Gill, E., Power, D., Moloney, C. (2014, May). Understanding the significance of radiometric calibration for synthetic aperture radar imagery. In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1-6). IEEE.
Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., Rucci, A. (2011). A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3460-3470.
Ferretti, A., Prati, C., Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5), 2202-2212.
Ferretti, A., Prati, C., Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
Fruneau, B., Achache, J., Delacourt, C. (1996). Observation and modelling of the Saint-Etienne-de-Tinée landslide using SAR interferometry. Tectonophysics, 265(3-4), 181-190.
Hanssen, R. F. (2001). Radar interferometry: data interpretation and error analysis (Vol. 2): Springer Science Business Media.
Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., Rocca, F. (2004). Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304(5679), 1952-1955.
Hooper, A., Zebker, H., Segall, P., Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23).
Jia, H., Wang, Y., Ge, D., Deng, Y., Wang, R. (2020). Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha river landslide (Tibet, China). Remote Sensing of Environment, 247, 111899.
Lauknes, T. R., Piyush Shanker, A., Dehls, J. F., Zebker, H. A., Henderson, I. H. C., Larsen, Y. (2010). Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment, 114(9), 2097-2109.
Lee, J.-S., Wen, J.-H., Ainsworth, T. L., Chen, K.-S., Chen, A. J. (2008). Improved sigma filter for speckle filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(1), 202-213.
Lillesand, T., Kiefer, R. W., Chipman, J. (2015). Remote sensing and image interpretation: John Wiley Sons.
Manconi, A., Casu, F., Ardizzone, F., Bonano, M., Cardinali, M., De Luca, C., Guzzetti, F. (2014). Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy. Natural Hazards and Earth System Sciences, 14(7), 1835-1841.
Michael Foumelis., (2019). ESA SNAP – Sentinel-1 Toolbox Multi-temporal Analysis of Sentinel-1 SAR Backscattered Intensity: Kunming (P.R. China) French Geological Survey (BRGM)
Miranda, N., Meadows, P. J., Type, D., Note, T. (2015). Radiometric calibration of S-1 Level-1 products generated by the S-1 IPF. Viewed at https://sentinel. esa. int/documents/247904/685163/S1-Radiometric-Calibration-V1. 0. pdf.
Mondini, A. (2017). Measures of spatial autocorrelation changes in multitemporal SAR images for event landslides detection. Remote Sensing, 9(6).
Mondini, A., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A., Monserrat, O. (2019). Sentinel-1 SAR amplitude imagery for rapid landslide detection. Remote Sensing, 11(7).
Oliver, C., Quegan, S. (2004). Understanding synthetic aperture radar images: SciTech Publishing.
Paradella, W. R., Ferretti, A., Mura, J. C., Colombo, D., Gama, F. F., Tamburini, A., Camargo, P. O. (2015). Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Engineering Geology, 193, 61-78.
Plank, S., Twele, A., Martinis, S. (2016). Landslide mapping in vegetated areas using change detection based on optical and polarimetric SAR data. Remote Sensing, 8(4).
Quegan, S., Le Toan, T., Yu, J. J., Ribbes, F., Floury, N. (2000). Multitemporal ERS SAR analysis applied to forest mapping. IEEE Transactions on Geoscience and Remote Sensing, 38(2), 741-753.
Raspini, F., Ciampalini, A., Del Conte, S., Lombardi, L., Nocentini, M., Gigli, G., Casagli, N. (2015). Exploitation of amplitude and phase of satellite SAR images for landslide mapping: the case of Montescaglioso (South Italy). Remote Sensing, 7(11), 14576-14596.
Rott, H., Scheuchl, B., Siegel, A., Grasemann, B. (1999). Monitoring very slow slope movements by means of SAR interferometry: A case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophysical Research Letters, 26(11), 1629-1632.
Shibayama, T., Yamaguchi, Y., Yamada, H. (2015). Polarimetric scattering properties of landslides in forested areas and the dependence on the local incidence angle. Remote Sensing, 7(11), 15424-15442.
Singhroy, V., Molch, K., Bulmer, M. (2002). Characterization of landslide deposits using SAR images. Paper presented at the IEEE International Geoscience and Remote Sensing Symposium.
Small, D. (2011). Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(8), 3081-3093.
Small, D., Schubert, A. (2008). Guide to ASAR geocoding. ESA-ESRIN Technical Note RSL-ASAR-GC-AD, 1, 36.
Squarzoni, C., Delacourt, C., Allemand, P. (2003). Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Engineering Geology, 68(1-2), 53-66.
Strozzi, T., Farina, P., Corsini, A., Ambrosi, C., Thüring, M., Zilger, J., Werner, C. (2005). Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides, 2(3), 193-201.
Tanase, M. A., Aponte, C., Mermoz, S., Bouvet, A., Le Toan, T., Heurich, M. (2018). Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sensing of Environment, 209, 700-711.
Tessari, G., Floris, M., Pasquali, P. (2017). Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps. Environmental Earth Sciences, 76(2).
Tofani, V., Raspini, F., Catani, F., Casagli, N. (2013). Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Remote Sensing, 5(3), 1045-1065.
Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., Mahoney, R., El Saleous, N. (2005). An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485-4498.
V. Singhroy, K. E. Mattar, Gray, A. L. (1998). Landslide characterisaton in canada using interferometric sar and combined sar and tm images. Advances in Space Research, 21(No. 3), 465-476.
Vietmeier, J., Wagner, W., Dikau, R. (1999). Monitoring moderate slope movements (landslides) in the southern French Alps using differential SAR interferometry. Paper presented at the Proceedings of Fringe.
Wang, C., Mao, X., Wang, Q. (2016). Landslide displacement monitoring by a fully polarimetric SAR offset tracking method. Remote Sensing, 8(8), 624.
Wang, J. R., Schmugge, T. J. (1980). An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Transactions on Geoscience and Remote Sensing(4), 288-295.
Zebker, H. A., Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950-959.
Zhao, C., Lu, Z., Zhang, Q., de la Fuente, J. (2012). Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sensing of Environment, 124, 348-359.
Zhao, C., Zhang, Q., Yin, Y., Lu, Z., Yang, C., Zhu, W., Li, B. (2013). Pre-, co-, and post- rockslide analysis with ALOS/PALSAR imagery: a case study of the Jiweishan rockslide, China. Natural Hazards and Earth System Sciences, 13(11), 2851-2861.
行政院農業委員會林務局新竹林區管理處 (2018)。105-107 年度新竹處無人載具空拍及災害緊急調查分析。
林文雄 (2008)。遙測影像技術應用於崩塌地潛勢之評估─以苗栗縣泰安鄉坡地為例,國立聯合大學防災科技研究所碩士論文。全國博碩士論文摘要檢索系統。
李準勝 (2008)。苗栗鹿場地區地質環境特性與邊坡穩定敏感度分析之研究,國立中興大學水土保持工程研究所碩士論文。全國博碩士論文摘要檢索系統。
韋廷樺 (2016)。大規模崩塌地形衍育概念模型-鹿場案例,國立交通大學土木工程學系碩士論文。全國博碩士論文摘要檢索系統。
彭永光 (2013)。山區道路崩塌風險潛勢探討-以苗21線鹿場部落聯絡道為例,國立中興大學水土保持學系碩士論文。全國博碩士論文摘要檢索系統。
黃孟涵 (2006)。以合成孔徑雷達干涉法研究台灣之地殼變形。國立臺灣大學地質科學研究所碩士論文。全國博碩士論文摘要檢索系統。
塗明寬和陳文政 (1991)。五萬分之一臺灣地質圖:圖幅第十三號(竹東)。新北市中和區:經濟部中央地質調查所。
劉森華 (2012)。鹿場部落聯絡道路崩塌潛勢探討及減災對策研究,國立聯合大學土木與防災工程學系碩士論文。全國博碩士論文摘要檢索系統。
鍾國平 (2008)。苗栗縣南庄鄉石門及鹿場地滑地穩定性與災害因子之研究,國立中興大學水土保持工程研究所碩士論文。全國博碩士論文摘要檢索系統。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60182-
dc.description.abstract坡地山崩是很常見且危害極高的災害,尤其台灣高山多雨的環境,土石崩塌的事件不斷發生,因此需要長期監控崩塌地之變化,掌握崩塌地狀況。傳統上,進行國土衛星監測,大多使用光學衛星影像繪製崩塌地範圍,但其劣勢在於易受到雲霧遮蔽無法進行高頻率時間分析,且僅能針對地表特徵物變遷做圈繪。合成孔徑雷達(Synthetic Aperture Radar, SAR)衛星由於波長較長可穿透雲層回傳訊號,且微波不僅能辨識地物還能夠偵測地形變化,故可彌補光學衛星影像的不足。然而過往研究中,因崩塌地位於植被和地形干擾的環境,導致同調性低,較難利用SAR的相位資訊解算位移量,但可藉由SAR強度資訊的變遷應用於快速圈繪崩塌地位置。然而,SAR強度資訊易受到環境影響而有差異變化,目前研究仍缺少探討SAR強度的變化量如何反映崩塌地與環境因子的關聯性。本研究目的在於發展一套雷達強度時間序列的計算流程,並進一步分析環境因子和雷達訊號之間的相關性。
本研究選定苗栗鹿場之大型崩塌地為研究區域,原因其一為此崩塌地位於Sentinel-1A/B升軌方向適合的觀測方位;其二,2018年4月13日發生超過十公頃之大規模崩塌,崩塌範圍較大易於觀測;其三,崩塌事件前後無降雨事件,可排除土壤濕度的影響,建立基礎假設為:無土壤濕度、裸露地均質、林相單一,僅探討四個環境因子:地形(坡向、坡度、區域入射角)地貌(地表覆蓋)。本研究方法首先建立事件前期SAR強度平均的量化結果,並分析四個環境因子的關係,接著比較崩塌事件中期的SAR強度變遷,最後利用前兩者的結果提出雷達強度時間序列的計算流程,並用光學影像和無人機空拍數值模型驗證。研究結果顯示,坡向因子主要控制了SAR強度的長期平均反射值高低,而坡度跟地表覆蓋物也交互被影響著,坡度因子能反映前坡縮短、疊置的狀況,而地表覆蓋物則有時間週期的變化趨勢。在事件中期,具有四種時間序列顯示了崩塌中不同的變化趨勢:強度增強、強度降低、強度不變和提前有變化,其變化趨勢符合事件前期作為背景值的坡向量化結果。最後透過前兩者結果的標準化和多重門檻值的方法流程判斷坡向改變,整體準確度為63%,坡頂和坡趾從坡向面東為主,崩成以西為主或南北方,流動部則較少坡向改變,並且在最大崩塌事件前也可偵測到部分崩塌事件以及河道堆積。本研究流程有助於判斷崩塌事件前後的坡向改變並進一步探討崩塌地的地形演育。
zh_TW
dc.description.abstractLandslides are a very common and extremely hazardous disaster, especially in Taiwan, where landslides are frequently triggered by earthquakes and heavy rain. Traditionally, optical satellite images are widely used to map landslides but are limited for high-frequency time series analysis because the images are susceptible to cloud and fog. In addition, the images are simply used for change detection based on surface features. Synthetic Aperture Radar (SAR) satellites can make up for the limitations since they have long wavelengths, which can penetrate clouds. Not only microwaves can identify ground objects but also detect terrain changes. In previous studies, most of the landslides limit coherence by dense vegetation and rugged topography that is difficult to calculate the displacement by SAR phase. More studies have pointed out that the intensity changes of SAR can quickly detect landslides. However, few studies explored how the temporal change of SAR intensity reflects the correlation between landslide and environmental factors. The study aims to develop a procedure for computing SAR intensity time series and further to analyze the relationships between the intensity signals and environmental factors.
The study area is located in Luchang, Miaoli area according to the following reasons. First, it is a suitable observation position for the ascending of Sentinel-1A/B. Second, a large-scale landslide event occurred on April 13, 2018. Third, it was not caused by rainfall, so the influence of soil moisture can be excluded. In terms of research methods, first, we establish the long-term average quantitative results before the event and compare the relationships of four factors including aspect, slope, local incidence angle and landcover. Then we compare SAR intensity variation during the event. Finally, we set the procedure to identify landslide evolution, which is verified by optical image and DEM of drone aerial photography.
The research results show that before the event, aspects mainly control the long-term average reflection of the SAR intensity in the mountain area, and slope and landcover are also influential. Slope can reflect the shortening and overlay. Landcover result in periodic variations in the time series. During the event, there are four time-series trends: intensity increase, intensity decrease, intensity unchanged, and previous change. Those trends are similar to the aspect result in the early period of the event. We identify the change of aspect by standardization and the multiple thresholds method, and the overall accuracy is 63%. In the scarp and toe areas, the aspect changes from the east to other directions, but the aspect remains unchanged in the main body. Moreover, we can detect minor landsliding prior to the main event and the formation of the debris dam. The procedure can provide preliminary identification of the aspect changes, which is helpful for discussing landslide evolution.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T10:13:22Z (GMT). No. of bitstreams: 1
U0001-2903202113231700.pdf: 10650128 bytes, checksum: 045d812ca6ad67f74a155fa34abe0b41 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員會審定書
學術致謝 i
致謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
第一節 研究動機 1
第二節 研究目的 4
第三節 論文架構 4
第二章 文獻回顧 6
第一節 合成孔徑雷達回波性質 6
第二節 合成孔徑雷達應用於崩塌地之相位發展 12
第一項 差分干涉 12
第二項 時間序列方法 13
第三節 合成孔徑雷達應用於崩塌地之振幅方法 15
第一項 地表物分類 15
第二項 像徵點追蹤 16
第三項 變遷分析 16
第四節 綜合概述 18
第三章 研究區域 20
第一節 研究區域介紹 20
第二節 歷史崩塌時間段 23
第三節 選址條件 26
第四章 研究方法 27
第一節 研究方法架構 27
第二節 研究資料 28
第一項 雷達Sentinel-1衛星影像 30
第二項 光學SPOT衛星影像 34
第三項 數值高程模型(DEM)資料 36
第三節 資料前處理 37
第一項 雷達振幅影像之時間序列 37
第二項 光學影像產製地表覆蓋物 41
第三項 地形效應 43
第四節 環境因子的時序分析 45
第一項 事件前期時間序列之因子分析 45
第二項 事件中期時間序列之比較 47
第五節 驗證資料 47
第一項 無人機空拍影像處理 47
第二項 驗證方式 49
第五章 研究結果 51
第一節 升軌方向之事件前期強度時間序列 51
第一項 坡向因子 52
第二項 坡度因子 64
第三項 區域入射角因子 77
第四項 地表覆蓋物因子 80
第二節 升軌方向之崩塌事件時段裸露地分析 91
第一項 第一部分常年崩塌地結果 (1-1~1-5) 93
第二項 第二部分中間崩塌事件結果 (2-1~2-4) 99
第三項 第三部分最大崩塌事件區域結果(3-1~3-3) 104
第三節 無人機空拍影像驗證結果 109
第一項 第一階段結果和驗證 111
第二項 第二階段結果和驗證 112
第六章 討論 116
第一節 地形地貌對雷達影像之影響 116
第二節 雷達強度時間序列之訊號變化影響 120
第三節 無人機空拍影像驗證結果討論 122
第四節 研究限制和未來建議 128
第七章 結論 130
參考文獻 132
附錄I. Sentinel-1A/B雷達影像資訊 137
附錄II. Sentinel-1A/B雷達強度原始影像 140
附錄III. 申請無人機空拍影像之公文 143
附錄IIII. 事件前期強度背景值總表 144
dc.language.isozh-TW
dc.subject反向散射zh_TW
dc.subject多重門檻值zh_TW
dc.subject變遷偵測zh_TW
dc.subject地形演育zh_TW
dc.subjectchange detectionen
dc.subjectmultiple thresholdsen
dc.subjectbackscatteringen
dc.subjectlandslide evolutionen
dc.title崩塌地形與地表覆蓋變化對合成孔徑雷達強度時間序列之影響:以苗栗鹿場崩塌地為例zh_TW
dc.titleEffects of Geometry and Landcover on SAR Intensity Time Series for Landslide Monitoring: A Case Study of Luchang, Miaoli, Areaen
dc.typeThesis
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee董家鈞(Jia-Jyun Dong),姜壽浩(Shou-Hao Chiang),顏君毅(Jiun-Yee Yen),林玉儂(Yunung Nina Lin)
dc.subject.keyword多重門檻值,變遷偵測,反向散射,地形演育,zh_TW
dc.subject.keywordmultiple thresholds,change detection,backscattering,landslide evolution,en
dc.relation.page146
dc.identifier.doi10.6342/NTU202100807
dc.rights.note有償授權
dc.date.accepted2021-03-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
U0001-2903202113231700.pdf
  未授權公開取用
10.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved