請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60164完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱文英(Wen-Yen Chiu) | |
| dc.contributor.author | Chih-Yu Kuo | en |
| dc.contributor.author | 郭志宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T10:00:20Z | - |
| dc.date.available | 2022-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-11-21 | |
| dc.identifier.citation | References
1. B. Jeong and A. Gutowska, Trends Biotechnol., 2002, 20, 305-311. 2. E. Gil and S. Hudson, Prog. Polym. Sci., 2004, 29, 1173-1222. 3. N. K. Singh and D. S. Lee, Journal of controlled release : official journal of the Controlled Release Society, 2014, 193, 214-227. 4. D. Roy, W. L. Brooks and B. S. Sumerlin, Chem Soc Rev, 2013, 42, 7214-7243. 5. C. J. Lefaux, J. A. Zimberlin, A. V. Dobrynin and P. T. Mather, J. Polym. Sci., Part B: Polym. Phys., 2004, 42, 3654-3666. 6. S. K. Oiseth, A. Krozer, J. Lausmaa and B. Kasemo, J. Appl. Polym. Sci., 2004, 92, 2833-2839. 7. N. Rapoport, Prog. Polym. Sci., 2007, 32, 962-990. 8. J. A. Hubbell, J. Controlled Release, 1996, 39, 305-313. 9. E. J. Oh, K. Park, K. S. Kim, J. Kim, J.-A. Yang, J.-H. Kong, M. Y. Lee, A. S. Hoffman and S. K. Hahn, J. Controlled Release, 2010, 141, 2-12. 10. I. Strehin, Z. Nahas, K. Arora, T. Nguyen and J. Elisseeff, Biomaterials, 2010, 31, 2788-2797. 11. M. Heskins and J. E. Guillet, Journal of Macromolecular Science: Part A - Chemistry, 1968, 2, 1441-1455. 12. Y. Qiu and K. Park, Adv. Drug Del. Rev., 2012, 64, 49-60. 13. B. Jeong, Y. H. Bae and S. W. Kim, J. Controlled Release, 2000, 63, 155-163. 14. B. Jeong, Y. H. Bae, D. S. Lee and S. W. Kim, Nature, 1997, 388, 860-862. 15. B. Jeong, Y. K. Choi, Y. H. Bae, G. Zentner and S. W. Kim, J. Controlled Release, 1999, 62, 109-114. 16. A. Kuijpers, G. Engbers, J. Feijen, S. De Smedt, T. Meyvis, J. Demeester, J. Krijgsveld, S. Zaat and J. Dankert, Macromolecules, 1999, 32, 3325-3333. 17. M. Ramzi, C. Rochas and J.-M. Guenet, Macromolecules, 1998, 31, 6106-6111. 18. M. Dentini, P. Desideri, V. Crescenzi, Y. Yuguchi, H. Urakawa and K. Kajiwara, Macromolecules, 1999, 32, 7109-7115. 19. D. W. von Endt and M. T. Baker, 1991. 20. F. A. Plamper, M. Ruppel, A. Schmalz, O. Borisov, M. Ballauff and A. H. Muller, Macromolecules, 2007, 40, 8361-8366. 21. X. N. Huang, F. S. Du, B. Zhang, J. Y. Zhao and Z. C. Li, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 4332-4343. 22. X. Huang, F. Du, R. Ju and Z. Li, Macromol. Rapid Commun., 2007, 28, 597-603. 23. Y. Zou, D. E. Brooks and J. N. Kizhakkedathu, Macromolecules, 2008, 41, 5393-5405. 24. S. Kunugi, T. Tada, Y. Yamazaki, K. Yamamoto and M. Akashi, Langmuir, 2000, 16, 2042-2044. 25. I. Idziak, D. Avoce, D. Lessard, D. Gravel and X. Zhu, Macromolecules, 1999, 32, 1260-1263. 26. L. Gan, Y. Gan and G. R. Deen, Macromolecules, 2000, 33, 7893-7897. 27. K. Suwa, Y. Wada, Y. Kikunaga, K. Morishita, A. Kishida and M. Akashi, J. Polym. Sci., Part A: Polym. Chem., 1997, 35, 1763-1768. 28. Y. Akiyama, Y. Shinohara, Y. Hasegawa, A. Kikuchi and T. Okano, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 5471-5482. 29. Y. Maeda, T. Nakamura and I. Ikeda, Macromolecules, 2001, 34, 1391-1399. 30. C. de las Heras Alarcon, S. Pennadam and C. Alexander, ChSRv, 2005, 34, 276-285. 31. D. Schmaljohann, Adv. Drug Del. Rev., 2006, 58, 1655-1670. 32. O. E. Philippova, D. Hourdet, R. Audebert and A. R. Khokhlov, Macromolecules, 1997, 30, 8278-8285. 33. S. I. Kang and Y. H. Bae, J. Controlled Release, 2003, 86, 115-121. 34. W. R. Gombotz and S. F. Wee, Adv. Drug Del. Rev., 2012, 64, 194-205. 35. A. S. Lee, V. Butun, M. Vamvakaki, S. P. Armes, J. A. Pople and A. P. Gast, Macromolecules, 2002, 35, 8540-8551. 36. J.-F. Gohy, B. G. Lohmeijer, S. K. Varshney, B. Decamps, E. Leroy, S. Boileau and U. S. Schubert, Macromolecules, 2002, 35, 9748-9755. 37. R. Sutton, L. Thai, J. Hewitt, C. Voycheck and J. Tan, Macromolecules, 1988, 21, 2432-2439. 38. M. Rinaudo, Prog. Polym. Sci., 2006, 31, 603-632. 39. M. Horton and R. Ochs, Journal, 1996. 40. M.-H. Li and P. Keller, Soft Matter, 2009, 5, 927. 41. A. Kumar, I. Y. Galaev and B. Mattiasson, Biotechnol. Bioeng., 1998, 59, 695-704. 42. A. Matsumoto, R. Yoshida and K. Kataoka, Biomacromolecules, 2004, 5, 1038-1045. 43. B. J. Park, F. F. Fang and H. J. Choi, Soft Matter, 2010, 6, 5246. 44. K. S. Suslick, N. A. Rakow, M. E. Kosal and J.-H. Chou, J. Porphyrins Phthalocyanines, 2000, 4, 407-413. 45. D. A. Shipp, Journal of Macromolecular Science, Part C: Polymer Reviews, 2005, 45, 171-194. 46. M. Szwarc, M. Levy and R. Milkovich, J. Am. Chem. Soc., 1956, 78, 2656-2657. 47. M. K. Georges, R. P. Veregin, P. M. Kazmaier and G. K. Hamer, Macromolecules, 1993, 26, 2987-2988. 48. P. Delduc, C. Tailhan and S. Z. Zard, J. Chem. Soc., Chem. Commun., 1988, 308-310. 49. P. Cacioli, G. Moad, E. Rizzardo, A. Serelis and D. Solomon, Polym. Bull., 1984, 11, 325-328. 50. G. Moad, E. Rizzardo and D. Solomon, Journal of Macromolecular Science—Chemistry, 1982, 17, 51-59. 51. G. Moad, E. Rizzardo and D. Solomon, AJCh, 1983, 36, 1573-1588. 52. G. Moad, E. Rizzardo and D. H. Solomon, Tetrahedron Lett., 1981, 22, 1165-1168. 53. G. Moad, E. Rizzardo and D. H. Solomon, Macromolecules, 1982, 15, 909-914. 54. G. Moad, E. Rizzardo and S. H. Thang, AJCh, 2005, 58, 379-410. 55. J. Chiefari, R. T. Mayadunne, C. L. Moad, G. Moad, E. Rizzardo, A. Postma, M. A. Skidmore and S. H. Thang, Macromolecules, 2003, 36, 2273-2283. 56. G. Riess, G. Hurtrez and P. Bahadur, Wiley, New York, 1985, 2, 324. 57. F. Merrett, Transactions of the Faraday Society, 1954, 50, 759-767. 58. G. E. Molau, Colloidal and morphological behavior of block and graft copolymers, Springer, 1970. 59. G. Riess, Prog. Polym. Sci., 2003, 28, 1107-1170. 60. R. Nagarajan and K. Ganesh, The Journal of Chemical Physics, 1989, 90, 5843-5856. 61. J. Quintana, M. Villacampa and I. Katime, Polymer material encyclopedia, 1996, 1, 815-821. 62. P. Ekwall, L. Mandell and K. Fontell, Molecular Crystals, 1969, 8, 157-213. 63. Y. Yang, E. A. Decker, H. Xiao and D. J. McClements, Food & function, 2015, 6, 84-97. 64. C.-Y. Kuo, T.-M. Don, S.-C. Hsu, C.-F. Lee, W.-Y. Chiu and C.-Y. Huang, J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 1109-1118. 65. C. Chang, H. Wei, C.-Y. Quan, Y.-Y. Li, J. Liu, Z.-C. Wang, S.-X. Cheng, X.-Z. Zhang and R.-X. Zhuo, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 3048-3057. 66. C. H. Wang, C. H. Wang and G. H. Hsiue, Journal of controlled release : official journal of the Controlled Release Society, 2005, 108, 140-149. 67. H. Cong, J. Li, L. Li and S. Zheng, Eur. Polym. J., 2014, 61, 23-32. 68. S. Khoee and H. B. Rahimi, Bioorg. Med. Chem., 2010, 18, 7283-7290. 69. F. Taktak and V. Butun, International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 65, 151-161. 70. H. Wang, J. He, M. Zhang, Y. Tao, F. Li, K. C. Tam and P. Ni, Journal of Materials Chemistry B, 2013, 1, 6596. 71. Q. Jin, T. Cai, H. Han, H. Wang, Y. Wang and J. Ji, Macromol Rapid Commun, 2014, 35, 1372-1378. 72. F. F. Taktak and V. Butun, Poly, 2010, 51, 3618-3626. 73. T. Qu, A. Wang, J. Yuan, J. Shi and Q. Gao, Colloids and surfaces. B, Biointerfaces, 2009, 72, 94-100. 74. H. T. Song, N. H. Hoang, J. M. Yun, Y. J. Park, E. H. Song, E. S. Lee, Y. S. Youn and K. T. Oh, Colloids and surfaces. B, Biointerfaces, 2016, 144, 73-80. 75. H. Zhang, S. Guo, W. Fan and Y. Zhao, Macromolecules, 2016, 49, 1424-1433. 76. K. Ramesh, R. K. Gundampati, S. Singh, K. Mitra, A. Shukla, M. V. Jagannadham, D. Chattopadhyay, N. Misra and B. Ray, RSC Adv., 2016, 6, 25864-25876. 77. Z. Xue, Z. Wang, D. He, X. Zhou and X. Xie, J. Polym. Sci., Part A: Polym. Chem., 2016, 54, 611-620. 78. C. Liu, X. Zhu, X. Wang, D. Miao, X. Liang, C. Wang, L. Pang, H. Sun, D. Kong and J. Yang, Biomater Sci, 2016, 4, 255-257. 79. Y. Y. Li, X. Z. Zhang, J. L. Zhu, H. Cheng, S. X. Cheng and R. X. Zhuo, Nanot, 2007, 18, 215605. 80. B. Jiang, W. L. Hom, X. Chen, P. Yu, L. C. Pavelka, K. Kisslinger, J. B. Parise, S. R. Bhatia and R. B. Grubbs, J Am Chem Soc, 2016, 138, 4616-4625. 81. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa and Y. Kurihara, JMMM, 1987, 65, 245-251. 82. A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer and F. Schuth, Angew. Chem., 2004, 116, 4403-4406. 83. A. K. Gupta and M. Gupta, Biomaterials, 2005, 26, 3995-4021. 84. P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang and J. Liphardt, Nat Mater, 2006, 5, 97-101. 85. T. Hyeon, ChCom, 2003, DOI: 10.1039/b207789b, 927-934. 86. M. Takafuji, S. Ide, H. Ihara and Z. Xu, Chem. Mater., 2004, 16, 1977-1983. 87. S. Chikazumi, Physics of magnetism, Wiley, 1964. 88. P. S. Stephen, Journal, 1965. 89. S. E. Khalafalla and G. W. Reimers, Magnetics, IEEE Transactions on, 1980, 16, 178-183. 90. F. X. Redl, C. T. Black, G. C. Papaefthymiou, R. L. Sandstrom, M. Yin, H. Zeng, C. B. Murray and S. P. O'Brien, J. Am. Chem. Soc., 2004, 126, 14583-14599. 91. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. Li, J. Am. Chem. Soc., 2004, 126, 273-279. 92. World Health Organization, 2014. 93. J. Xu and S. Liu, Soft Matter, 2008, 4, 1745-1749. 94. C.-Y. Chuang, T.-M. Don and W.-Y. Chiu, J. Polym. Sci., Part A: Polym. Chem., 2009, 47, 2798-2810. 95. S. Kommareddy and M. Amiji, Bioconj. Chem., 2005, 16, 1423-1432. 96. S. Ganta, H. Devalapally, A. Shahiwala and M. Amiji, J. Controlled Release, 2008, 126, 187-204. 97. P. Vaupel, F. Kallinowski and P. Okunieff, Cancer Res., 1989, 49, 6449-6465. 98. P. Gould, Nano Today, 2006, 1, 34-39. 99. N. Rapoport, Int. J. Pharm., 2004, 277, 155-162. 100. H. Maeda, J. Wu, T. Sawa, Y. Matsumura and K. Hori, J. Controlled Release, 2000, 65, 271-284. 101. N. Ohtsuka, T. Konno, Y. Miyauchi and H. Maeda, Cancer, 1987, 59, 1560-1565. 102. E. Wagner, Expert Opinion on Biological Therapy, 2007, 7, 587-593. 103. J. Zhao, H. Wang, J. Liu, L. Deng, A. Dong and J. Zhang, Biomacromolecules, 2013, 14, 3973-3984. 104. S. Kessel, N. P. Truong, Z. Jia and M. J. Monteiro, J. Polym. Sci., Part A: Polym. Chem., 2012, 50, 4879-4887. 105. K. Y. Lee and D. J. Mooney, Chem. Rev., 2001, 101, 1869-1880. 106. A. Kumar, A. Srivastava, I. Y. Galaev and B. Mattiasson, Prog. Polym. Sci., 2007, 32, 1205-1237. 107. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo and S. H. Thang, Macromolecules, 1998, 31, 5559-5562. 108. S. Perrier and P. Takolpuckdee, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5347-5393. 109. M. Schonhoff, A. Larsson, P. B. Welzel and D. Kuckling, The Journal of Physical Chemistry B, 2002, 106, 7800-7808. 110. V. O. Aseyev, H. Tenhu and F. M. Winnik, 2006, 196, 1-85. 111. R. Machin, J. R. Isasi and I. Velaz, Eur. Polym. J., 2013, 49, 3912-3920. 112. C.-L. Lin, W.-Y. Chiu and C.-F. Lee, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 356-370. 113. S. Liu, X. Liu, F. Li, Y. Fang, Y. Wang and J. Yu, J. Appl. Polym. Sci., 2008, 109, 4036-4042. 114. W. H. Chiang, V. T. Ho, W. C. Huang, Y. F. Huang, C. S. Chern and H. C. Chiu, Langmuir, 2012, 28, 15056-15064. 115. W. Zhang, W. Zhang, Z. Cheng, N. Zhou, J. Zhu, Z. Zhang, G. Chen and X. Zhu, Macromolecules, 2011, 44, 3366-3373. 116. C. M. Schilli, M. Zhang, E. Rizzardo, S. H. Thang, Y. K. Chong, K. Edwards, G. Karlsson and A. H. E. Muller, Macromolecules, 2004, 37, 7861-7866. 117. H. Cong and S. Zheng, Colloid. Polym. Sci., 2014, 292, 2633-2645. 118. B. P. Bastakoti, S. Guragain, K. Nakashima and Y. Yamauchi, MmCP, 2015, 216, 287-291. 119. Z. Lin, S. Cao, X. Chen, W. Wu and J. Li, Biomacromolecules, 2013, 14, 2206-2214. 120. S. Kulkarni, C. Schilli, B. Grin, A. H. E. Muller, A. S. Hoffman and P. S. Stayton, Biomacromolecules, 2006, 7, 2736-2741. 121. P.-E. Millard, L. Barner, J. Reinhardt, M. R. Buchmeiser, C. Barner-Kowollik and A. H. E. Muller, Poly, 2010, 51, 4319-4328. 122. C.-Y. Kuo, Y.-C. Wang, C.-F. Lee and W.-Y. Chiu, J. Polym. Sci., Part A: Polym. Chem., 2014, 52, 561-571. 123. C. Y. Kuo, T. Y. Liu, A. Hardiansyah, C. F. Lee, M. S. Wang and W. Y. Chiu, Nanoscale research letters, 2014, 9, 520. 124. J. T. Lai, D. Filla and R. Shea, Macromolecules, 2002, 35, 6754-6756. 125. W. Meier, ChSRv, 2000, 29, 295-303. 126. P. Sun, Y. Zhang, L. Shi and Z. Gan, Macromol Biosci, 2010, 10, 621-631. 127. V. Torchilin, Adv Drug Deliv Rev, 2011, 63, 131-135. 128. C. J. Ferguson, R. J. Hughes, B. T. T. Pham, B. S. Hawkett, R. G. Gilbert, A. K. Serelis and C. H. Such, Macromolecules, 2002, 35, 9243-9245. 129. J. Z. Du, T. M. Sun, W. J. Song, J. Wu and J. Wang, Angew. Chem. Int. Ed. Engl., 2010, 49, 3621-3626. 130. T. Y. Liu, S. H. Hu, K. H. Liu, D. M. Liu and S. Y. Chen, Journal of controlled release : official journal of the Controlled Release Society, 2008, 126, 228-236. 131. S. S. Balamurugan, G. B. Bantchev, Y. Yang and R. L. McCarley, Angew. Chem., 2005, 117, 4950-4954. 132. F. Caruso, Chemistry – A European Journal, 2000, 6, 413-419. 133. W. H. Chiang, W. C. Huang, C. W. Chang, M. Y. Shen, Z. F. Shih, Y. F. Huang, S. C. Lin and H. C. Chiu, Journal of controlled release : official journal of the Controlled Release Society, 2013, 168, 280-288. 134. S. H. Hu, B. J. Liao, C. S. Chiang, P. J. Chen, I. W. Chen and S. Y. Chen, Adv Mater, 2012, 24, 3627-3632. 135. H.-Y. Huang, S.-H. Hu, C.-S. Chian, S.-Y. Chen, H.-Y. Lai and Y.-Y. Chen, JMCh, 2012, 22, 8566. 136. T.-Y. Liu, S.-H. Hu, D.-M. Liu, S.-Y. Chen and I. W. Chen, Nano Today, 2009, 4, 52-65. 137. T.-Y. Liu, S.-H. Hu, K.-H. Liu, R.-S. Shaiu, D.-M. Liu and S.-Y. Chen, Langmuir, 2008, 24, 13306-13311. 138. T.-Y. Liu, K.-H. Liu, D.-M. Liu, S.-Y. Chen and I. W. Chen, Adv. Funct. Mater., 2009, 19, 616-623. 139. T. M. Ruhland, P. M. Reichstein, A. P. Majewski, A. Walther and A. H. Muller, Journal of colloid and interface science, 2012, 374, 45-53. 140. B. Sahoo, K. S. Devi, R. Banerjee, T. K. Maiti, P. Pramanik and D. Dhara, ACS applied materials & interfaces, 2013, 5, 3884-3893. 141. B. Stewart and C. P. Wild, World, 2015. 142. R. Adam, E. Avisar, A. Ariche, S. Giachetti, D. Azoulay, D. Castaing, F. Kunstlinger, F. Levi and F. Bismuth, Ann. Surg. Oncol., 2001, 8, 347-353. 143. S. Saha, A. Adhikary, P. Bhattacharyya, T. Das and G. Sa, Anticancer Res., 2012, 32, 2567-2584. 144. P. T. Ha, M. H. Le, T. M. N. Hoang, T. T. Huong Le, T. Q. Duong, T. H. Ha Tran, D. L. Tran and X. P. Nguyen, Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012, 3, 035002. 145. C. Syng-ai, A. L. Kumari and A. Khar, Mol. Cancer Ther., 2004, 3, 1101-1108. 146. T. Huang, Z. Chen and L. Fang, Oncol. Rep., 2013, 29, 117-124. 147. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers and D. M. Parkin, Int. J. Cancer, 2010, 127, 2893-2917. 148. A. Hardiansyah, L.-Y. Huang, M.-C. Yang, B. S. Purwasasmita, T.-Y. Liu, C.-Y. Kuo, H.-L. Liao, T.-Y. Chan, H.-M. Tzou and W.-Y. Chiu, RSC Advances, 2015, 5, 23134-23143. 149. Z. Wang, C. Chen, Q. Zhang, M. Gao, J. Zhang, D. Kong and Y. Zhao, Eur. J. Pharm. Biopharm., 2015, 90, 53-62. 150. Q. Gou, L. Liu, C. Wang, Q. Wu, L. Sun, X. Yang, Y. Xie, P. Li and C. Gong, Colloids and surfaces. B, Biointerfaces, 2015, 126, 26-34. 151. G. Li, S. Song, L. Guo and S. Ma, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 5028-5035. 152. E. Lee, J. Controlled Release, 2003, 91, 103-113. 153. S. M. Lee, Y. Song, B. J. Hong, K. W. MacRenaris, D. J. Mastarone, T. V. O'Halloran, T. J. Meade and S. T. Nguyen, Angew. Chem. Int. Ed. Engl., 2010, 49, 9960-9964. 154. T. J. Li, C. C. Huang, P. W. Ruan, K. Y. Chuang, K. J. Huang, D. B. Shieh and C. S. Yeh, Biomaterials, 2013, 34, 7873-7883. 155. K. K. Cheng, P. S. Chan, S. Fan, S. M. Kwan, K. L. Yeung, Y. X. Wang, A. H. Chow, E. X. Wu and L. Baum, Biomaterials, 2015, 44, 155-172. 156. H. Wang, J. Yi, S. Mukherjee, P. Banerjee and S. Zhou, Nanoscale, 2014, 6, 13001-13011. 157. D. Shi, H. S. Cho, Y. Chen, H. Xu, H. Gu, J. Lian, W. Wang, G. Liu, C. Huth, L. Wang, R. C. Ewing, S. Budko, G. M. Pauletti and Z. Dong, Adv. Mater., 2009, 21, 2170-2173. 158. P. De, S. R. Gondi and B. S. Sumerlin, Biomacromolecules, 2008, 9, 1064-1070. 159. B. A. Kamen and A. Capdevila, Proc. Natl. Acad. Sci. U.S.A., 1986, 83, 5983. 160. K. G. Rothberg, Y. Ying, J. F. Kolhouse, B. A. Kamen and R. G. W. Anderson, J. Cell. Biol., 1990, 110, 637. 161. P. S. Low, W. A. Henne and D. D. Doorneweerd, Acc. Chem. Res., 2008, 41, 120. 162. C. P. Leamon and P. S. Low, Proc. Natl. Acad. Sci. U.S.A., 1991, 88, 5572. 163. Y. W. Wang, C. H. Jou, C. C. Hung and M. C. Yang, Colloids and surfaces. B, Biointerfaces, 2012, 90, 169-176. 164. M. M. Yallapu, S. F. Othman, E. T. Curtis, N. A. Bauer, N. Chauhan, D. Kumar, M. Jaggi and S. C. Chauhan, International Journal of Nanomedicine, 2012, 7, 1761-1779. 165. C. Sun, R. Sze and M. Zhang, Journal of biomedical materials research. Part A, 2006, 78, 550-557. 166. A. S. Wadajkar, B. Koppolu, M. Rahimi and K. T. Nguyen, JNR, 2008, 11, 1375-1382. 167. S. Patra, E. Roy, P. Karfa, S. Kumar, R. Madhuri and P. K. Sharma, ACS applied materials & interfaces, 2015, 7, 9235-9246. 168. Y. Luengo, S. Nardecchia, M. P. Morales and M. C. Serrano, Nanoscale, 2013, 5, 11428-11437. 169. S. R. Yang, H. J. Lee and J.-D. Kim, Journal of Controlled Release, 2006, 114, 60-68. 170. J. Dobson, Nature nanotechnology, 2008, 3. 171. J. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon and T. Hyeon, Angew. Chem. Int. Ed. Engl., 2008, 47, 8438-8441. 172. R. P. B. S. Santra, D. Dutta, J. T. Stanley, G. A. Walter, W. Tan, B. M. Moudgil, R. A. Mericle, Adv Mater, 2005, 17. 173. E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A. D. Leonard, B. K. Price, M. M. Cheng, P. Decuzzi, J. M. Tour, F. Robertson and M. Ferrari, Nature nanotechnology, 2008, 3, 151-157. 174. R. A. Petros and J. M. DeSimone, Nature reviews. Drug discovery, 2010, 9, 615-627. 175. S. Zhang, J. Li, G. Lykotrafitis, G. Bao and S. Suresh, Adv Mater, 2009, 21, 419-424. 176. S. H. Zhang JX, Ma PX., ACS Nano., 2010, 4, 1049-1059. 177. H. Koo, M. S. Huh, I.-C. Sun, S. H. Yuk, K. Choi, K. Kim and I. C. Kwon, Acc. Chem. Res., 2011, 44, 1018-1028. 178. C.-F. Lee, C.-C. Lin and W.-Y. Chiu, J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 5734-5741. 179. C.-F. Lee, C.-J. Wen, C.-L. Lin and W.-Y. Chiu, J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 3029-3037. 180. C. L. Lin, W. Y. Chiu and C. F. Lee, Journal of colloid and interface science, 2005, 290, 397-405. 181. Y. Bae, S. Fukushima, A. Harada and K. Kataoka, Angew. Chem. Int. Ed. Engl., 2003, 42, 4640-4643. 182. M. Hruby, C. Konak and K. Ulbrich, Journal of controlled release : official journal of the Controlled Release Society, 2005, 103, 137-148. 183. N. Nasongkla, X. Shuai, H. Ai, B. D. Weinberg, J. Pink, D. A. Boothman and J. Gao, Angew. Chem. Int. Ed. Engl., 2004, 43, 6323-6327. 184. S.-H. Hu, S.-Y. Chen, D.-M. Liu and C.-S. Hsiao, Adv. Mater., 2008, 20, 2690-2695. 185. F.-Y. Chou, C.-M. Shih, M.-C. Tsai, W.-Y. Chiu and S. J. Lue, Poly, 2012, 53, 2839-2846. 186. W. L. Tung, S. H. Hu and D. M. Liu, Acta Biomater, 2011, 7, 2873-2882. 187. C. Fang and M. Zhang, J Mater Chem, 2009, 19, 6258-6266. 188. W.-F. Ma, K.-Y. Wu, J. Tang, D. Li, C. Wei, J. Guo, S.-L. Wang and C.-C. Wang, JMCh, 2012, 22, 15206. 189. S. Yu and G. M. Chow, JMCh, 2004, 14, 2781. 190. A. Jordan, R. Scholz, P. Wust, H. Schirra, S. Thomas, H. Schmidt and R. Felix, JMMM, 1999, 194, 185-196. 191. X. Yang, J. J. Grailer, I. J. Rowland, A. Javadi, S. A. Hurley, V. Z. Matson, D. A. Steeber and S. Gong, ACS Nano, 2010, 4, 6805-6817. 192. D. A. Scheinberg, C. H. Villa, F. E. Escorcia and M. R. McDevitt, Nat Rev Clin Oncol, 2010, 7, 266-276. 193. K. Kawakami, P. Leland and R. K. Puri, Cancer Res., 2000, 60, 2981-2987. 194. M. Kawakami, K. Kawakami, V. A. Stepensky, R. A. Maki, H. Robin, W. Muller, S. R. Husain and R. K. Puri, Clin. Cancer. Res., 2002, 8, 3503-3511. 195. N. I. Obiri, J. P. Siegel, F. Varricchio and R. K. Puri, Clin. Exp. Immunol., 1994, 95, 148-155. 196. H.-y. Hong, H. Y. Lee, W. Kwak, J. Yoo, M.-H. Na, I. S. So, T.-H. Kwon, H.-S. Park, S. Huh, G. T. Oh, I.-C. Kwon, I.-S. Kim and B.-H. Lee, J. Cell. Mol. Med., 2008, 12, 2003-2014. 197. J. R. Avendano-Gomez, H. Balmori-Ramirez and E. Duran-Paramo, Journal of colloid and interface science, 2012, 380, 75-82. 198. Z. Hou, L. Li, C. Zhan, P. Zhu, D. Chang, Q. Jiang, S. Ye, X. Yang, Y. Li, L. Xie and Q. Zhang, Ultrasonics, 2012, 52, 836-841. 199. A. Seth, G. Bealle, E. Santanach-Carreras, A. Abou-Hassan and C. Menager, Adv Mater, 2012, 24, 3544-3548. 200. X. He, M. H. Na, J. S. Kim, G. Y. Lee, J. Y. Park, A. S. Hoffman, J. O. Nam, S. E. Han, G. Y. Sim, Y. K. Oh, I. S. Kim and B. H. Lee, Mol Pharm, 2011, 8, 430-438. 201. J. H. Kim, S. M. Bae, M. H. Na, H. Shin, Y. J. Yang, K. H. Min, K. Y. Choi, K. Kim, R. W. Park, I. C. Kwon, B. H. Lee, A. S. Hoffman and I. S. Kim, Journal of controlled release : official journal of the Controlled Release Society, 2012, 157, 493-499. 202. F. Y. Yang, T. T. Wong, M. C. Teng, R. S. Liu, M. Lu, H. F. Liang and M. C. Wei, Journal of controlled release : official journal of the Controlled Release Society, 2012, 160, 652-658. 203. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and G. Li, J. Am. Chem. Soc., 2003, 126, 273-279. 204. I. A. Ibrahim, A. Zikry and M. A. Sharaf, J. Am. Sci, 2010, 6, 985-989. 205. P. Moroz, S. K. Jones and B. N. Gray, IJHy, 2002, 18, 267-284. 206. A. M. Ponce, Z. Vujaskovic, F. Yuan, D. Needham and M. W. Dewhirst, IJHy, 2006, 22, 205-213. 207. F. L. Koller, D. G. Hwang, E. A. Dozier and B. Fingleton, Carcinogenesis, 2010, 31, 1010-1017. 208. M. Todaro, M. P. Alea, A. B. Di Stefano, P. Cammareri, L. Vermeulen, F. Iovino, C. Tripodo, A. Russo, G. Gulotta, J. P. Medema and G. Stassi, Cell stem cell, 2007, 1, 389-402. 209. M. Todaro, M. Perez Alea, A. Scopelliti, J. P. Medema and G. Stassi, Cell Cycle, 2008, 7, 309-313. 210. D. Sutton, N. Nasongkla, E. Blanco and J. Gao, Pharm. Res., 2007, 24, 1029-1046. 211. C.-L. Lin and W.-Y. Chiu, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5923-5934. 212. C.-L. Lin, W.-Y. Chiu and T.-M. Don, J. Appl. Polym. Sci., 2006, 100, 3987-3996. 213. C. L. Lin, C. F. Lee and W. Y. Chiu, Journal of colloid and interface science, 2005, 291, 411-420. 214. H. Wang, Y. An, N. Huang, R. Ma, J. Li and L. Shi, Macromol. Rapid Commun., 2008, 29, 1410-1414. 215. S.-H. Hu, D.-M. Liu, W.-L. Tung, C.-F. Liao and S.-Y. Chen, Adv. Funct. Mater., 2008, 18, 2946-2955. 216. M. Shibayama and T. Tanaka, in Responsive Gels: Volume Transitions I, ed. K. Dušek, Springer Berlin Heidelberg, 1993, vol. 109, ch. 1, pp. 1-62. 217. K. Na, K. H. Lee, D. H. Lee and Y. H. Bae, Eur. J. Pharm. Sci., 2006, 27, 115-122. 218. K. H. BAE, S. H. CHOI, S. Y. PARK, LEE, #160, Yuhan and T. G. PARK, Thermosensitive pluronic micelles stabilized by shell cross-linking with gold nanoparticles, American Chemical Society, Washington, DC, ETATS-UNIS, 2006. 219. F. Spinozzi, L. Paccamiccio, P. Mariani and L. Q. Amaral, Langmuir, 2010, 26, 6484-6493. 220. M. Wadsater, R. Barker, K. Mortensen, R. Feidenhans'l and M. Cardenas, Langmuir, 2013, 29, 2871-2880. 221. M. Wadsater, S. Maric, J. B. Simonsen, K. Mortensen and M. Cardenas, Soft Matter, 2013, 9, 2329. 222. Y. Liu, M. Li, Y. Yang, Y. Xia and M. P. Nieh, Biochim Biophys Acta, 2014, 1838, 1871-1880. 223. W. Aresh, Y. Liu, J. Sine, D. Thayer, A. Puri, Y. Huang, Y. Wang and M.-P. Nieh, Journal of Biomedical Nanotechnology, 2016, 12, 1852-1863. 224. P. A. Beales and T. K. Vanderlick, The Journal of Physical Chemistry B, 2009, 113, 13678-13686. 225. Q. Zhang, N. R. Ko and J. K. Oh, Chem Commun (Camb), 2012, 48, 7542-7552. 226. P. A. Beales and T. K. Vanderlick, Adv. Colloid Interface Sci., 2014, 207, 290-305. 227. P.-W. Yang, T.-L. Lin, Y. Hu and U. S. Jeng, Soft Matter, 2014, 10, 2313-2319. 228. P. W. Yang, T. L. Lin, Y. Hu and U. S. Jeng, Soft Matter, 2015, 11, 2237-2242. 229. S. Binauld and M. H. Stenzel, Chem Commun (Camb), 2013, 49, 2082-2102. 230. S. E. Paramonov, E. M. Bachelder, T. T. Beaudette, S. M. Standley, C. C. Lee, J. Dashe and J. M. J. Frechet, Bioconj. Chem., 2008, 19, 911-919. 231. T. K. Lind and M. Cardenas, Biointerphases, 2016, 11, 020801. 232. T. K. Lind, M. Cardenas and H. P. Wacklin, Langmuir, 2014, 30, 7259-7263. 233. Y. Kobayashi, V. Salgueirino-Maceira and L. M. Liz-Marzan, Chem. Mater., 2001, 13, 1630-1633. 234. A. J. Bard, R. Parsons and J. Jordan, Standard potentials in aqueous solution, CRC press, 1985. 235. J. F. Moulder, J. Chastain and R. C. King, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Perkin-Elmer Eden Prairie, MN, 1992. 236. T. A. Hor, H. Chan, K.-L. Tan, L.-T. Phang, Y. Yan, L.-K. Liu and Y.-S. Wen, Polyhedron, 1991, 10, 2437-2450. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60164 | - |
| dc.description.abstract | 本研究的目的旨在設計以及製備以聚(氮-異丙基丙烯醯胺),Poly(N-isopropylacrylamide) 或聚乙烯醇,Poly(vinyl alcohol)為主體之衍生酸鹼/磁/熱感應性高分子及其複合材料,並探討此複合材料作為腫瘤組織的醫療平台之適用性,以及是否能夠提供新穎及有效的診斷和治療。
本論文主文共分為三大部份。第一部份以可逆性分裂加成鏈轉移活性聚合法合成(Reversible Addition-Fragmentation chain Transfer polymerization, RAFT polymerization) 聚(氮-異丙基丙烯醯胺)以及聚(異丙基丙烯醯胺-丙烯酸)之嵌段共聚合物。第二部份將以第一部分所合成之嵌段共聚合物為主體,製備多功能性藥物載體,並透過體外及生物試驗獲得其生物醫學之性質。第三部份引入多重乳化法(double-emulsion)並以聚乙烯醇(Polyvinyl alcohol, PVA)為主體,製備具磁性之核殼型(core-shell)藥物載體。 第一部份挑選(S,S'-bis(a,a'-dimethyl-a'-acetic acid)trithiocarbonate, CMP)做為可逆性分裂加成鏈轉移活性聚合法(RAFT polymerization)之鏈轉移劑(chain transfer agent, CTA)。引入熱裂解型起始劑(azobisisobutyronitrile, AIBN)以及使用有機溶劑(methanol)於70度下反應後,可以製備出ABA三嵌段型高分子(poly(acrylic acid-block-N-isopropylacrylamide-block-acrylica acid), poly(AA-b-NIPAAm-b-AA)並能將準確的控制嵌段型高分子鏈段上NIPAAm與AA的鏈段比例。藉由改變不同的高分子鏈段比例、溶液酸鹼度、操作溫度、濃度等,觀察對於高分子自組裝的型態以及其物理性質之影響。 第二部份包含第三及第四章。第三章引入經表面改質過之磁性氧化鐵,結合自組裝後之高分子水膠,製備出具磁性控制、酸鹼、溫度感應型之藥物載體,並探討其藥物釋放之行為。第四章則是延續第三章之研究,將具備癌症細胞辨識性之標靶分子—葉酸(Folic acid)接枝於磁性藥物載體表面,同時也引入疏水型抗癌藥物—薑黃素(Curcumin),製備出同時具有遠端操作(磁性控制)、溫度感應、標靶治療之藥物載體,並探討此藥物載體對於人體乳癌細胞株(MCF-7 cell line)之細胞選擇性以及毒殺效果。 第三部份則以第六章為主。以聚乙烯醇為主體,利用多重乳化法備製核殼型磁性藥物載體。實驗結果顯示此藥物載體對於抗癌藥物承載具有相當大之相容性,無論親、疏水型小分子藥物,胜肽型(peptide)巨分子藥物都能被穩定的包覆。接枝標靶分子(atherosclerotic plaque-specific peptide-1, AP-1)後,此藥物載體在細胞毒性測試中,也充分表現出對於小鼠直腸大腸癌細胞株(Mouse colon carcinoma cell line, CT26)的辨識能力。隨後進行動物實驗,對於刻意誘發之小鼠腫瘤組織進行磁性藥物載體之直接注射治療,發現在高週波磁場作用下不僅能夠抑制腫瘤組織的生長,磁性粒子所產生之高熱也同時能提供對腫瘤組織的熱治療。 附錄第一部分中藉由控制特定的溫度以及酸鹼值,將已自組裝後的遠嵌型高分子核殼奈米顆粒應用於藥物控制釋放系統。引入具有螢光特性之小分子(Rhodamine 6G, R6G)於此藥物載體之表面及內部後,探討在不同的環境及濃度下此螢光標籤型藥物載體之控制釋放行為。第二部份則收錄了利用脂類自組裝而形成的奈米圓盤,在引入具有酸降解性的雙胺(acid-degradable diamine)後,則可以製備出對癌症細胞感應型的藥物載體,並對此載體的物理、化學性質進行探討。至於附錄的第三部分則是使用高溫乳化法在以聚(氮-異丙基丙烯醯胺)為基質的水膠中引入磁性氧化鐵顆粒,並利用無電鍍法製備具有催化效果之鉑奈米粒子,未來此磁性催化複合材料應用時,便可以利用磁性來進行複材之控制及回收。 | zh_TW |
| dc.description.abstract | In this research, Poly(vinyl alcohol)- and Poly(N-isopropylacrylamide) based copolymers and their pharmatical composites were prepared as the medical platform with pH/magnetic/thermo properties for providing the novel and effective diagnosis and treatment toward tumor tissues. Three divided sections were contained in this thesis. In the first section, reversible addition-fragmentation chain transfer (RAFT) polymerization was performed and applied to synthesize ABA tri-block copolymers via living polymerization. In the second section, we fabricated several kinds of multi-functional nanomedicines as the extended employments of the as-synthesized block copolymers. Besides, their biomedical properties of nanomedicines were also obtained with in vitro and in vivo tests. In the third section, double-emulsion method was conducted for core-shell, PVA-based nanoparticles as well as the anti-cancer drugs’ encapsulation. Additionally, acid-cleavable, nanodiscs-based nanoscaffold was designed and prepared via EDC/NHS initiated crosslinking between the synthesized acid-degradable diamines and PEGylated nanodiscs. Platinum and Fe3O4 core-shell nanoparticles were designed and constructed by temperature-induced emulsion of the poly(N-isopropylacrylamide) following with electroless plating methods. The results were both shown in the appendix section.
Chapter 2 was contained in the first section and RAFT polymerization with S,S'-bis(a,a'-dimethyl-a'-acetic acid)trithiocarbonate (CMP) as the chain transfer agent (CTA) were demonstrated. By using the thermal initiation following with the RAFT polymerization in methanol, ABA tri-block copolymers, poly(acrylic acid-block-N-isopropylacrylamide-block-acrylic acid), poly(AA-b-NIPAAm-b-AA) with precise control of the main chain composition to the repeating monomer units were prepared. Moreover, further discussions were studied toward the morphology and physical property changes resulting from the different composition ratio of NIPAAm to AA ratio and the system conditions involving pH values and temperatures. Various shapes of poly(AA-b-NIPAAm-b-AA)-based, self-assembly nanoparticles including core-shell nanoparticle, physical crosslinked nanogel, and inversed physically crosslinked nanogel formed at specific conditions. To the best of our knowledge, this was the first research that focus on the relationship between chemical structure and physical properties of poly(AA-b-NIPAAm-b-AA) tri-block copolymers systemically. The second section includes Chapter 3 and Chapter 4, in which different nanocarriers were fabricated and studied for bio-medical applications. In Chapter 3, physically crosslinked nanogels were employed into the preparation of anti-cancer nanomedicine. Magnetic iron oxide (Fe3O4) was introduced to achieve the remote control as well as the stability of magnetic nanocarriers. Furthermore, the intelligent functionality of nanocarriers was realized resulting from highly pH- and magnetically- sensitive quality because of the iron oxides and the functional groups (-COOH and -NH2) on its surface. Chapter 4 contains the following work related of Chapter 3, in which we further modified the magnetic nanocarriers with folic acid to gain the cancer cell-selectivity and replaced the model drug into the hydrophobic one, curcumin. Various release and pharmatical parameters such as biocompatibility, cytotoxicity, cell selectivity, and release behaviors were studied. Chapter 5 was contained in the third section where we paid more attention to develop another way of nanocarriers’ preparation including double-emulsion, sol-gel reaction, and following with targeting ligand immobilization. Both in vitro and in vivo experiments were brought out to give a full scope of pharmatical applications of the magnetic nanocarriers toward tumor therapy. In Appendix 1, we prepared the thermo- and pH-sensitive, fluorescent-labeled nanocarriers with two kinds of drug-loading process. Rhodamine 6G, a fluorescent dye, was used as the modeling drugs not only to demonstrate the release behavior but also for maintaining the spherical structure of self-assembled telechelic HOOC-PNIPAAm-COOH homopolymers. In Appendix 2, PEGylated lipids were mixed with long-chain and short-chain lipids to form carboxylic acids-exposed nanodiscs (a-discs). An acid-degradable diamine was synthesized and applied for stringing the nanodisc in order to enlarge their size for preventing the un-desired cellular uptake and providing controlled release as an anti-cancer platform. Attentions were concentrated on acquiring a stable, well-dispersed Fe3O4 and platinum composite for the purpose of reusable and recyclable catalysis in Appendix 3. Emulsion as well as the electroless plating synthesis with poly(N-isopropylacrylamide) as the matrix were utilized. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T10:00:20Z (GMT). No. of bitstreams: 1 ntu-105-F99549022-1.pdf: 23474215 bytes, checksum: a6775162873e46f48b35705765c79802 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | Contents
摘要 I Abstract III Contents VII List of Tables XVI List of Schemes XVII List of Figures XVIII Chapter 1 Introduction 1 1-1 Fundamentals of stimuli-responsive polymers 1 1-1.1 Stimuli-responsive polymers 1 1-1.2 Thermo-sensitive polymers 2 1-1.3 pH-sensitive polymers 5 1-1.4 Other stimuli-responsive polymers 8 1-1.4.1 Light-responsive polymers 8 1-1.4.2 Ionic strength-responsive polymers 9 1-1.4.3 Glucose-responsive polymers 9 1-1.4.4 Field-responsive polymers 10 1-2 Fundamentals of controlled radical / Living polymerization 11 1-2.1 Conventional radical polymerization 11 1-2.2 Controlled radical / Living polymerization 13 1-2.2.1 Nitroxide-mediated polymerization (NMP) 15 1-2.2.2 Atom transfer radical polymerization (ATRP) 16 1-2.3 Reversible addition-fragmentation chain transfer (RAFT) polymerization 16 1-2.3.1 Background of RAFT polymerization 16 1-2.3.2 Mechanism of RAFT polymerization 18 1-2.3.3 The choice of chain transfer agents (CTAs) 20 1-3 Block copolymer micelles 22 1-3.1 Introduction 22 1-3.2 Micellization of block copolymer and its generalities 23 1-3.3 Preparation of polymeric micelles 24 1-3.4 Thermodynamics of micellization 25 1-3.5 Solubilization in micelles 25 1-3.6 Comparison with the published works with our system 27 1-4 Magnetic nanoparticles 28 1-4.1 Background 28 1-4.2 Magnetic hysteresis 29 1-4.3 Praparation of Magnetic Nanoparticles 30 1-5 Polymeric nanomedicine in cancer therapeutics 32 1-6 Scope of this research 36 Chapter 2 Thermo- and pH-Induced Self-assembly of Poly(AA-b-NIPAAm-b-AA) Triblock Copolymers Synthesized via RAFT Polymerization 37 2-1 Introduction 37 2-2 Experiments 41 2-2.1 Materials 41 2-2.2 RAFT polymerization of telechelic HOOC-PNIPAAm-COOH and poly(AA-b-NIPAAm-b-AA) 41 2-2.3 Characteristics of HOOC-PNIPAAm-COOH and poly(AA-b-NIPAAm-b-AA) 43 2-2.3.1 Structure characterizations 43 2-2.3.2 LCST of poly(AA-b-NIPAAm-b-AA) solutions 44 2-2.3.3 Zeta potential of poly(AA-b-NIPAAm-b-AA) in aqueous solutions 45 2-2.3.4 Determination of Glass transition temperature (Tg) 45 2-2.3.5 Morphology observation 45 2-3 Results and discussion 45 2-3.1 Structures of PAA macro-CTA and poly(AA-b-NIPAAm-b-AA) triblock copolymers 45 2-3.2 LCST of poly(AA-b-NIPAAm-b-AA) tri-block copolymers 49 2-3.3 Self-assembling behavior and morphology 54 2-3.3.1 Thermo-induced self-assembling of telechelic HOOC-PNIPAAm-COOH homopolymer 55 2-3.3.2 Thermo-induced self-assembling of A100N150 and A150N150 56 2-3.3.3 Thermo-induced self-assembling of A150N75 57 2-3.3.4 pH-induced self-assembling of A150N225 58 2-4 Summary 60 Chapter 3 Self-Assembly Behaviors of Thermo- and pH- Sensitive, Magnetic, Poly(AA-b-NIPAAm-b-AA)-based Nanocarriers for Stimuli-Triggered Release 63 3-1 Introduction 64 3-2 Experiments 66 3-2.1 Materials 66 3-2.2 Synthesis of surface-modificated, magnetic iron oxide nanoparticles (Fe3O4-NH2, MNPs) 67 3-2.3 RAFT Polymerization of tri-block copolymers poly(AA-b-NIPAAm-b-AA) 67 3-2.4 Preparation of self-assembled magnetic nanocarriers (SAMN) 68 3-2.5 Preparation of drug-loaded nanocarriers with high-concentration R6G solution 68 3-2.6 Characterizaton of R6G-SAMN 69 3-2.6.1 Gel permeation chromatography (GPC) 69 3-2.6.2 Nuclear magnetic resonance spectroscopy (NMR) 69 3-2.6.3 Fourier transform infrared spectroscopy (FT-IR) 69 3-2.6.4LCST of Tri-block copolymer, poly(AA-b-NIPAAm-b-AA) 69 3-2.6.5 Zeta potential measurement 70 3-2.6.6 Morphology Observation 70 3-2.7 Controlled release behavior 70 3-2.8 Cell-Lines and Cytotoxicity Assay 71 3-3 Results and discussions 72 3-3.1 Characteristics of SAMN, R6G-SAMN 72 3-3.1.1 LCST of poly(AA-b-NIPAAm-b-AA) 73 3-3.1.2 FT-IR analysis 74 3-3.1.3 Surface potential 75 3-3.2 Morphology observations 76 3-3.3 Biocompatibility of magnetic nanocarriers 79 3-3.4 In vitro controlled release 79 3-3.5 Magnetically triggered release 83 3-4 Summary 84 Chapter 4 Poly(AA-b-NIPAAm-b-AA)-based, Magnetically Polymeric Nanocarriers for Targeting Delivery of Curcumin and Hyperthermia Treatments Toward Cancer Cells 85 4-1 Introduction 86 4-2 Experiments 89 4-2.1 Materials 89 4-2.2 Cell culture 89 4-2.3 Preparation of self-assembled magnetic nanocarriers (SAMN) 90 4-2.4 Preparation of folic acid modified magnetic nanocarriers (FA-SAMN) 90 4-2.5 Preparation of curcumin-loaded magnetic nanocarriers (Cur-SAMN and Cur-FA-SAMN) 90 4-2.6 In Vitro controlled release behaviors 91 4-2.7 Biomaterial test toward MCF-7 cancer cells 92 4-2.7.1 Cytotoxicity assay 92 4-2.7.2 Cell uptake studies via fluorescent microscopy 93 4-2.8 Material characterization 93 4-2.8.1 Fourier transform infrared spectroscopy (FT-IR) 93 4-2.8.2 Vibrating sample magnetometer (VSM) 93 4-2.8.3 X-ray crystallography (XRD) 93 4-2.8.4 Transmission electron microscope (TEM) 94 4-3 Results and discussion 94 4-3.1 Characteristic properties of magnetically polymeric nanocarriers 95 4-3.1.1 Encapsulation efficiency 95 4-3.1.2 FTIR spectral analysis. 96 4-3.1.3 Crystal structure of magnetically polymeric nanocarriers 97 4-3.1.4 Magnetic measurements 98 4-3.2 Morphology of magnetically polymeric nanocarriers 99 4-3.3 In vitro release behaviors 100 4-3.4 Cell viability study through MTT assay 102 4-3.5 Cell uptake behaviors toward targeting therapy 104 4-4 Summary 104 Chapter 5 PVA-based, Magnetically Triggered Nanocarriers for Controlled Drug Release as a Colorectal Cancer Therapy 107 5-1 Introduction 107 5-2 Experiments 109 5-2.1 Materials 109 5-2.2 Cell culture 110 5-2.3 Characteristics of nanocarriers 110 5-2.3.1 Morphological observation 110 5-2.3.2 Immunofluorescence and differential interference contrast microscopy 111 5-2.3.3 Cytotoxicity analysis 111 5-2.4 Preparation of magnetically triggered nanocarriers 112 5-2.4.1 Preparation of ferrite fluid 112 5-2.4.2 Preparation of MPVA nanocarriers via double-emulsion method 112 5-2.4.3 Preparation of AP-1 grafted MPVA nanocarriers 112 5-2.4.4 Drug loading process with various kinds of anti-cancer molecules 113 5-2.5 In vitro controlled release 113 5-2.6 HFMF-triggered release for in vivo 114 5-3 Results and discussion 114 5-3.1 Characteristics of magnetically triggered nanocarriers 114 5-3.1.1 Synthesis and drug encapsulation ability of magnetic drug nanocarriers 114 5-3.1.2 Morphologies of magnetically triggered nanocarriers 116 5-3.1.3 Surface modification of magnetically triggered nanocarriers 117 5-3.2 Targeting strategies using the MPVA-AP1 nanocarriers 119 5-3.3 Hemo-compatibility and cytotoxicity of smart magnetic nanocarriers 120 5-3.4 HFMF-triggered release in vitro 122 5-3.5 HFMF-triggered release in vivo 123 5-4 Summary 125 Chapter 6 Conclusions 127 Chapter 7 Suggestions of Future Work 130 References 131 Autobiography 149 List of publications 150 Appendix 1 Preparation of pH- and Thermo-sensitive PNIPAAm-based Polymeric Nanocarriers for Stimuli-Triggered Drug Release 154 A1-1 Introduction 154 A1-2 Experiments 157 A1-2.1 Materials 157 A1-2.2 RAFT polymerization of –COOH groups-ended PNIPAAm homopolymer 157 A1-2.3 Preparation of PNIPAAm-based nanocarriers 158 A1-2.3.1 Preparation of PNIPAAm-based nanocarriers with powder-type drug loading process 158 A1-2.3.2 Preparation of drug-loaded core-shell nanocarriers in two steps 158 A1-2.4 Drug release behavior 159 A1-2.5 Characteristics of HOOC-PNIPAAm-COOH and nanocarriers 159 A1-2.5.1 Molecular characterization of HOOC-PNIPAAm-COOH 159 A1-2.5.2 LCST of PNIPAAm-based nanocarrier 160 A1-2.5.3 Morphology observation 160 A1-2.5.4 Titration of HOOC-PNIPAAm-COOH 160 A1-3 Results and disscussion 161 A1-3.1 Characteristics of PNIPAAm-based drug nanocarriers 161 A1-3.1.1 Molecular characterization of HOOC-PNIPAAm-COOH 161 A1-3.1.2 LCST of HOOC-PNIPAAm-COOH 162 A1-3.1.3 Dissociation behavior of HOOC-PNIPAAm-COOH 163 A1-3.1.4 Morphology observation of HOOC-PNIPAAm-COOH 164 A1-3.2 Morphology observation of PNIPAAm-based drug nanocarriers with various loading processes 165 A1-3.2.1 Morphology of PNIPAAm-based drug nanocarriers 165 A1-3.2.2 Powder-type loading 167 A1-3.2.3 Two-step loading 168 A1-3.3 Controlled release with various conditions 170 A1-3.3.1 Powder-type drug-loading nanocarriers 170 A1-3.3.2 Two-step drug-loading nanocarriers 173 A1-4 Summary 177 Appendix 2 The acid-cleavable nanoscaffold composed of the stringed phospholipids in targeting therapy 179 A2-1 Introduction 179 A2-2 Experiments 183 A2-2.1 Materials 183 A2-2.2 Cell line 184 A2-2.3 Synthesis of acetal diamine 184 A2-2.3.1 Compound 1: 184 A2-2.3.2 Compound 2 (acetal diamine): 184 A2-2.4 Preparation and characterization of the intrinsic nanodiscs and stringed nanodiscs 185 A2-2.5 Evaluation of the cellular uptake 185 A2-2.6 Material characterization 186 A2-2.6.1 Dynamic light scattering 186 A2-2.6.2 Small angle x-ray scattering 186 A2-2.6.3 Fourier transform infrared spectroscopy (FT-IR) 187 A2-2.6.4 Transmission electron microscope (TEM) 187 A2-3 Results and disscission 187 A2-3.1 Synthesis of acetal diamine 187 A2-3.2 PEG2000-COOH contained nanodiscs (a-discs) preparation 189 A2-3.3 Structure characterization and kinetics studies of the stringing process 190 A2-3.4 Morphology differences of a-discs, stringed nanodiscs, and separated nanodiscs 193 A2-3.5 Acid-cleavable studies of the stringed nanodiscs 194 A2-3.6 Cellular uptake under different pH environments 195 A2-4 Summary 196 Appendix 3 Investigation and Characterization of PNIPAAm-based Microgels for magnetically-triggered, Pt-induced catalysis 199 A3-1 Experiments 199 A3-1.1 Materials 199 A3-1.2 Synthesis of surface-modificated, magnetic iron oxide nanoparticles (Fe3O4, Fe3O4-NH2, MNPs) 199 A3-1.3 Synthesis of organic-inorganic hybrid particles with thermo-induced method 200 A3-1.4 Catalytic platinum deposition via electroless plating 200 A3-1.5 Characteristics of the catalytic Pt/Fe3O4 nanocomposites 201 A3-1.5.1 Thermogravimetric analyzer 201 A3-1.5.2 X-ray photoelectron spectroscopy 201 A3-1.5.3 Morphology observation 201 A3-2 Results and discussion 202 A3-2.1 Morphology of PolyNIPAAm/Fe3O4/Pt nanocomposites 202 A3-2.2 relative composition of catalytic Pt/Fe3O4 nanocomposites 205 A3-2.3 relative composition of catalytic Pt/Fe3O4 nanocomposites 206 | |
| dc.language.iso | en | |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 標靶式治療 | zh_TW |
| dc.subject | 熱治療 | zh_TW |
| dc.subject | 刺激誘發之藥物釋放 | zh_TW |
| dc.subject | 自組裝 | zh_TW |
| dc.subject | 聚(氮-異丙基丙烯醯胺) | zh_TW |
| dc.subject | 可逆性分裂加成鏈轉移活性聚合法 | zh_TW |
| dc.subject | curcumin | en |
| dc.subject | reversible addition-fragmentation chain transfer (RAFT) polymerization | en |
| dc.subject | self-assembly | en |
| dc.subject | stimuli-triggered release | en |
| dc.subject | hyperthermia | en |
| dc.subject | targeting therapy | en |
| dc.subject | Poly(N-isopropylacrylamide) | en |
| dc.title | 聚(氮-異丙基丙烯醯胺)/聚乙烯醇衍生酸鹼/磁/熱敏感型奈米藥物載體於刺激藥物釋放之研究 | zh_TW |
| dc.title | Poly(N-isopropylacrylamide)/Poly(vinyl alcohol) Related pH/magnetic/thermo induced Nanocarriers for Stimuli-triggered Release | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 劉定宇(Ting-Yu Liu) | |
| dc.contributor.oralexamcommittee | 李佳芬(Chia-Fen Lee),林江珍(Jiang-Jen Lin),戴子安(Chi-An Dai),董崇民(Trong-Ming Don),童世煌(Shih-Huang Tung) | |
| dc.subject.keyword | 聚(氮-異丙基丙烯醯胺),可逆性分裂加成鏈轉移活性聚合法,自組裝,刺激誘發之藥物釋放,熱治療,標靶式治療,薑黃素, | zh_TW |
| dc.subject.keyword | Poly(N-isopropylacrylamide),reversible addition-fragmentation chain transfer (RAFT) polymerization,self-assembly,stimuli-triggered release,hyperthermia,targeting therapy,curcumin, | en |
| dc.relation.page | 206 | |
| dc.identifier.doi | 10.6342/NTU201603755 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-11-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 22.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
