Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60153
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉(Fu-Shan Jaw)
dc.contributor.authorCheng-Ta Yangen
dc.contributor.author楊政達zh_TW
dc.date.accessioned2021-06-16T09:59:36Z-
dc.date.available2019-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-11-28
dc.identifier.citation1. Andrews NC, Schmidt PJ. Iron homeostasis. Annu Rev Physiol 2007;69:69-85
2. Alustiza JM, Castiella A, De Juan MD, et al. Iron overload in the liver diagnostic and quantification. Eur J Radiol 2007;61:499-506
3. Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Aspects Med 2001;22:1-87
4. Miret S, Simpson RJ, McKie AT. Physiology and molecular biology of dietary iron absorption. Annu Rev Nutr 2003;23:283-301
5. Pietrangelo A. Hereditary hemochromatosis--a new look at an old disease. N Engl J Med 2004;350:2383-2397
6. Brittenham GM, Badman DG. Noninvasive measurement of iron: report of an NIDDK workshop. Blood 2003;101:15-19
7. Siegelman ES, Mitchell DG, Semelka RC. Abdominal iron deposition: metabolism, MR findings, and clinical importance. Radiology 1996;199:13-22
8. Gossuin Y, Muller RN, Gillis P. Relaxation induced by ferritin: a better understanding for an improved MRI iron quantification. NMR Biomed 2004;17:427-432
9. Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am 2010;18:359-381, ix
10. Princiotto JV, Zapolski EJ. Difference between the two iron-binding sites of transferrin. Nature 1975;255:87-88
11. Batts KP. Iron overload syndromes and the liver. Mod Pathol 2007;20 Suppl 1:S31-39
12. St Pierre TG, Clark PR, Chua-Anusorn W. Single spin-echo proton transverse relaxometry of iron-loaded liver. NMR Biomed 2004;17:446-458
13. St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 2005;105:855-861
14. Chu WC, Au WY, Lam WW. MRI of cardiac iron overload. J Magn Reson Imaging 2012;36:1052-1059
15. Borgna-Pignatti C, Cappellini MD, De Stefano P, et al. Cardiac morbidity and mortality in deferoxamine- or deferiprone-treated patients with thalassemia major. Blood 2006;107:3733-3737
16. Wood JC. Cardiac iron across different transfusion-dependent diseases. Blood Rev 2008;22 Suppl 2:S14-21
17. Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 2010;139:393-408, 408 e391-392
18. Adams P, Brissot P, Powell LW. EASL International Consensus Conference on Haemochromatosis. J Hepatol 2000;33:485-504
19. Ludwig J, Hashimoto E, Porayko MK, Moyer TP, Baldus WP. Hemosiderosis in cirrhosis: a study of 447 native livers. Gastroenterology 1997;112:882-888
20. Pirisi M, Scott CA, Avellini C, et al. Iron deposition and progression of disease in chronic hepatitis C. Role of interface hepatitis, portal inflammation, and HFE missense mutations. Am J Clin Pathol 2000;113:546-554
21. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 2011;54:328-343
22. Tung BY, Emond MJ, Bronner MP, et al. Hepatitis C, iron status, and disease severity: relationship with HFE mutations. Gastroenterology 2003;124:318-326
23. Franchini M, Targher G, Capra F, Montagnana M, Lippi G. The effect of iron depletion on chronic hepatitis C virus infection. Hepatol Int 2008;2:335-340
24. Lambrecht RW, Sterling RK, Naishadham D, et al. Iron levels in hepatocytes and portal tract cells predict progression and outcomes of patients with advanced chronic hepatitis C. Gastroenterology 2011;140:1490-1500 e1493
25. Nelson JE, Klintworth H, Kowdley KV. Iron metabolism in Nonalcoholic Fatty Liver Disease. Curr Gastroenterol Rep 2012;14:8-16
26. Porter JB. Concepts and goals in the management of transfusional iron overload. Am J Hematol 2007;82:1136-1139
27. Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica 2004;89:1187-1193
28. Buja LM, Roberts WC. Iron in the heart. Etiology and clinical significance. Am J Med 1971;51:209-221
29. Jensen PD, Jensen FT, Christensen T, et al. Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool. Blood 2003;101:4632-4639
30. Cappellini MD, Bejaoui M, Agaoglu L, et al. Prospective evaluation of patient-reported outcomes during treatment with deferasirox or deferoxamine for iron overload in patients with beta-thalassemia. Clin Ther 2007;29:909-917
31. Barry M, Flynn DM, Letsky EA, Risdon RA. Long-term chelation therapy in thalassaemia major: effect on liver iron concentration, liver histology, and clinical progress. Br Med J 1974;2:16-20
32. Modell B, Letsky EA, Flynn DM, Peto R, Weatherall DJ. Survival and desferrioxamine in thalassaemia major. Br Med J (Clin Res Ed) 1982;284:1081-1084
33. Brittenham GM, Griffith PM, Nienhuis AW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med 1994;331:567-573
34. Filosa A, Vitrano A, Rigano P, et al. Long-term treatment with deferiprone enhances left ventricular ejection function when compared to deferoxamine in patients with thalassemia major. Blood Cells Mol Dis 2013;51:85-88
35. Sharma R, Anand R, Chandra J, et al. Distal ulnar changes in children with thalassemia and deferiprone related arthropathy. Pediatr Blood Cancer 2013;60:1957-1962
36. Osborne RH, De Abreu Lourenco R, Dalton A, et al. Quality of life related to oral versus subcutaneous iron chelation: a time trade-off study. Value Health 2007;10:451-456
37. Delea TE, Sofrygin O, Thomas SK, et al. Cost effectiveness of once-daily oral chelation therapy with deferasirox versus infusional deferoxamine in transfusion-dependent thalassaemia patients: US healthcare system perspective. Pharmacoeconomics 2007;25:329-342
38. Cappellini MD, Cohen A, Piga A, et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood 2006;107:3455-3462
39. Piga A, Galanello R, Forni GL, et al. Randomized phase II trial of deferasirox (Exjade, ICL670), a once-daily, orally-administered iron chelator, in comparison to deferoxamine in thalassemia patients with transfusional iron overload. Haematologica 2006;91:873-880
40. Naderi M, Sadeghi-Bojd S, Valeshabad AK, et al. A prospective study of tubular dysfunction in pediatric patients with Beta thalassemia major receiving deferasirox. Pediatr Hematol Oncol 2013;30:748-754
41. Lee JW, Kang HJ, Choi JY, et al. Pharmacogenetic study of deferasirox, an iron chelating agent. PLoS One 2013;8:e64114
42. Yoshikawa T, Hara T, Araki H, et al. First report of drug-induced esophagitis by deferasirox. Int J Hematol 2012;95:689-691
43. Angelucci E, Brittenham GM, McLaren CE, et al. Hepatic iron concentration and total body iron stores in thalassemia major. N Engl J Med 2000;343:327-331
44. Leitch HA. Controversies surrounding iron chelation therapy for MDS. Blood Rev 2011;25:17-31
45. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 2005;106:1460-1465
46. Rowe JW, Wands JR, Mezey E, et al. Familial hemochromatosis: characteristics of the precirrhotic stage in a large kindred. Medicine (Baltimore) 1977;56:197-211
47. Emond MJ, Bronner MP, Carlson TH, et al. Quantitative study of the variability of hepatic iron concentrations. Clin Chem 1999;45:340-346
48. Kreeftenberg HG, Koopman BJ, Huizenga JR, et al. Measurement of iron in liver biopsies--a comparison of three analytical methods. Clin Chim Acta 1984;144:255-262
49. Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 2001;344:495-500
50. Copel L, Sosna J, Kruskal JB, Kane RA. Ultrasound-guided percutaneous liver biopsy: indications, risks, and technique. Surg Technol Int 2003;11:154-160
51. Papakonstantinou O, Kostaridou S, Maris T, et al. Quantification of liver iron overload by T2 quantitative magnetic resonance imaging in thalassemia: impact of chronic hepatitis C on measurements. J Pediatr Hematol Oncol 1999;21:142-148
52. Harmatz P, Butensky E, Quirolo K, et al. Severity of iron overload in patients with sickle cell disease receiving chronic red blood cell transfusion therapy. Blood 2000;96:76-79
53. Karam LB, Disco D, Jackson SM, et al. Liver biopsy results in patients with sickle cell disease on chronic transfusions: poor correlation with ferritin levels. Pediatr Blood Cancer 2008;50:62-65
54. Adamkiewicz TV, Abboud MR, Paley C, et al. Serum ferritin level changes in children with sickle cell disease on chronic blood transfusion are nonlinear and are associated with iron load and liver injury. Blood 2009;114:4632-4638
55. Brittenham GM, Sheth S, Allen CJ, Farrell DE. Noninvasive methods for quantitative assessment of transfusional iron overload in sickle cell disease. Semin Hematol 2001;38:37-56
56. Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 1996;23:815-850
57. Brittenham GM, Farrell DE, Harris JW, et al. Magnetic-susceptibility measurement of human iron stores. N Engl J Med 1982;307:1671-1675
58. Carneiro AA, Fernandes JP, de Araujo DB, et al. Liver iron concentration evaluated by two magnetic methods: magnetic resonance imaging and magnetic susceptometry. Magn Reson Med 2005;54:122-128
59. Avrin WF, Kumar S. Noninvasive liver-iron measurements with a room-temperature susceptometer. Physiol Meas 2007;28:349-361
60. Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004;363:357-362
61. Rofsky NM, Fleishaker H. CT and MRI of diffuse liver disease. Semin Ultrasound CT MR 1995;16:16-33
62. Mortele KJ, Ros PR. Imaging of diffuse liver disease. Semin Liver Dis 2001;21:195-212
63. Fischer MA, Reiner CS, Raptis D, et al. Quantification of liver iron content with CT-added value of dual-energy. Eur Radiol 2011;21:1727-1732
64. Boll DT, Merkle EM. Diffuse liver disease: strategies for hepatic CT and MR imaging. Radiographics 2009;29:1591-1614
65. Goldman IS, Winkler ML, Raper SE, et al. Increased hepatic density and phospholipidosis due to amiodarone. AJR Am J Roentgenol 1985;144:541-546
66. De Maria M, De Simone G, Laconi A, et al. Gold storage in the liver: appearance on CT scans. Radiology 1986;159:355-356
67. Akpinar E, Akhan O. Liver imaging findings of Wilson's disease. Eur J Radiol 2007;61:25-32
68. Hernando D, Levin YS, Sirlin CB, Reeder SB. Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 2014;40:1003-1021
69. Jensen JH, Chandra R. Theory of nonexponential NMR signal decay in liver with iron overload or superparamagnetic iron oxide particles. Magn Reson Med 2002;47:1131-1138
70. Papakonstantinou O, Foufa K, Benekos O, et al. Use of fat suppression in R(2) relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. Magn Reson Imaging 2012;30:926-933
71. Wood JC, Ghugre N. Magnetic resonance imaging assessment of excess iron in thalassemia, sickle cell disease and other iron overload diseases. Hemoglobin 2008;32:85-96
72. Bulte JW, Miller GF, Vymazal J, Brooks RA, Frank JA. Hepatic hemosiderosis in non-human primates: quantification of liver iron using different field strengths. Magn Reson Med 1997;37:530-536
73. Clark PR, Chua-anusorn W, St Pierre TG. Bi-exponential proton transverse relaxation rate (R2) image analysis using RF field intensity-weighted spin density projection: potential for R2 measurement of iron-loaded liver. Magn Reson Imaging 2003;21:519-530
74. Israel J, Unger E, Buetow K, et al. Correlation between liver iron content and magnetic resonance imaging in rats. Magn Reson Imaging 1989;7:629-634
75. Kaltwasser JP, Gottschalk R, Schalk KP, Hartl W. Non-invasive quantitation of liver iron-overload by magnetic resonance imaging. Br J Haematol 1990;74:360-363
76. Dixon RM, Styles P, al-Refaie FN, et al. Assessment of hepatic iron overload in thalassemic patients by magnetic resonance spectroscopy. Hepatology 1994;19:904-910
77. Wang ZJ, Haselgrove JC, Martin MB, et al. Evaluation of iron overload by single voxel MRS measurement of liver T2. J Magn Reson Imaging 2002;15:395-400
78. Pavitt HL, Aydinok Y, El-Beshlawy A, et al. The effect of reducing repetition time TR on the measurement of liver R2 for the purpose of measuring liver iron concentration. Magn Reson Med 2011;65:1346-1351
79. St Pierre TG, El-Beshlawy A, Elalfy M, et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 2013
80. Hernando D, Kramer JH, Reeder SB. Multipeak fat-corrected complex R2* relaxometry: theory, optimization, and clinical validation. Magn Reson Med 2013;70:1319-1331
81. Westwood MA, Anderson LJ, Firmin DN, et al. Interscanner reproducibility of cardiovascular magnetic resonance T2* measurements of tissue iron in thalassemia. J Magn Reson Imaging 2003;18:616-620
82. Westwood MA, Firmin DN, Gildo M, et al. Intercentre reproducibility of magnetic resonance T2* measurements of myocardial iron in thalassaemia. Int J Cardiovasc Imaging 2005;21:531-538
83. Tanner MA, He T, Westwood MA, Firmin DN, Pennell DJ. Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica 2006;91:1388-1391
84. Ramazzotti A, Pepe A, Positano V, et al. Multicenter validation of the magnetic resonance T2* technique for segmental and global quantification of myocardial iron. J Magn Reson Imaging 2009;30:62-68
85. Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. J Magn Reson Imaging 2010;32:315-319
86. Meloni A, Rienhoff HY, Jr., Jones A, et al. The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. Br J Haematol 2013;161:888-891
87. Storey P, Thompson AA, Carqueville CL, et al. R2* imaging of transfusional iron burden at 3T and comparison with 1.5T. J Magn Reson Imaging 2007;25:540-547
88. Anwar M, Wood J, Manwani D, et al. Hepatic Iron Quantification on 3 Tesla (3 T) Magnetic Resonance (MR): Technical Challenges and Solutions. Radiol Res Pract 2013;2013:628150
89. Meloni A, Positano V, Keilberg P, et al. Feasibility, reproducibility, and reliability for the T*2 iron evaluation at 3 T in comparison with 1.5 T. Magn Reson Med 2012;68:543-551
90. Hankins JS, McCarville MB, Loeffler RB, et al. R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 2009;113:4853-4855
91. Gandon Y, Guyader D, Heautot JF, et al. Hemochromatosis: diagnosis and quantification of liver iron with gradient-echo MR imaging. Radiology 1994;193:533-538
92. Ernst O, Sergent G, Bonvarlet P, et al. Hepatic iron overload: diagnosis and quantification with MR imaging. AJR Am J Roentgenol 1997;168:1205-1208
93. Bonkovsky HL, Rubin RB, Cable EE, et al. Hepatic iron concentration: noninvasive estimation by means of MR imaging techniques. Radiology 1999;212:227-234
94. Alustiza JM, Emparanza JI, Aldazabal P, et al. [Standardization of the quantification of iron concentration in the liver by magnetic resonance imaging]. Radiologia 2012;54:149-154
95. Virtanen JM, Komu ME, Parkkola RK. Quantitative liver iron measurement by magnetic resonance imaging: in vitro and in vivo assessment of the liver to muscle signal intensity and the R2* methods. Magn Reson Imaging 2008;26:1175-1182
96. Rose C, Vandevenne P, Bourgeois E, Cambier N, Ernst O. Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients. Eur J Haematol 2006;77:145-149
97. Nielsen P, Engelhardt R, Duerken M, Janka GE, Fischer R. Using SQUID biomagnetic liver susceptometry in the treatment of thalassemia and other iron loading diseases. Transfus Sci 2000;23:257-258
98. Voskaridou E, Douskou M, Terpos E, et al. Magnetic resonance imaging in the evaluation of iron overload in patients with beta thalassaemia and sickle cell disease. Br J Haematol 2004;126:736-742
99. Mavrogeni S. Evaluation of myocardial iron overload using magnetic resonance imaging. Blood Transfus 2009;7:183-187
100. Alexopoulou E, Stripeli F, Baras P, et al. R2 relaxometry with MRI for the quantification of tissue iron overload in beta-thalassemic patients. J Magn Reson Imaging 2006;23:163-170
101. Pennell DJ. T2* magnetic resonance and myocardial iron in thalassemia. Ann N Y Acad Sci 2005;1054:373-378
102. Jensen PD, Jensen FT, Christensen T, Ellegaard J. Non-invasive assessment of tissue iron overload in the liver by magnetic resonance imaging. Br J Haematol 1994;87:171-184
103. Anderson LJ, Holden S, Davis B, et al. Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 2001;22:2171-2179
104. St Pierre TG, El-Beshlawy A, Elalfy M, et al. Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 2014;71:2215-2223
105. Cheng HL, Holowka S, Moineddin R, Odame I. Liver iron overload assessment by T *2 magnetic resonance imaging in pediatric patients: an accuracy and reproducibility study. Am J Hematol 2012;87:435-437
106. St Pierre TG, Clark PR, Chua-Anusorn W. Measurement and mapping of liver iron concentrations using magnetic resonance imaging. Ann N Y Acad Sci 2005;1054:379-385
107. Christoforidis A, Perifanis V, Spanos G, et al. MRI assessment of liver iron content in thalassamic patients with three different protocols: comparisons and correlations. Eur J Haematol 2009;82:388-392
108. Li MJ, Peng SS, Lu MY, et al. Diabetes mellitus in patients with thalassemia major. Pediatr Blood Cancer 2014;61:20-24
109. McCarville MB, Hillenbrand CM, Loeffler RB, et al. Comparison of whole liver and small region-of-interest measurements of MRI liver R2* in children with iron overload. Pediatr Radiol 2010;40:1360-1367
110. Yoon JH, Lee JM, Woo HS, et al. Staging of hepatic fibrosis: comparison of magnetic resonance elastography and shear wave elastography in the same individuals. Korean J Radiol 2013;14:202-212
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60153-
dc.description.abstract地中海型貧血的病人,需要終生的輸血,因而容易導致在身體器官的鐵質過度沉積。這些鐵質沉積主要發生於肝臟。利用原子吸收光譜儀去測定肝臟活體切片,是目前定量肝中鐵濃度最準的方法。在過去幾年中,核磁共振提供一種非侵入性的測量方法,有逐漸取代活體切片的趨勢。但是,傳統核磁共振序列(MEMPSE)的缺點為掃描時間過長。因此我們提出一種新的核磁共振序列(BHMEMPSE),此序列在人體掃描只需要四分鐘,希望能取代傳統做法。
在本論文的第一部份,我們將不同濃度的FeCl3水溶液,用三種不同的核磁共振序列(MEMPSE,BHMEMPSE,gradient echo)掃描,發現掃描後計算出的R2/R2*數值,與FeCl3水溶液的鐵濃度呈現線性關係(在0.01 ~ 0.5 mg Fe/g的範圍內)。這個範圍相當於R2/R2*介於3 ~ 220 1/s中,適用於臨床病人的肝中鐵濃度測量。在曲線配適模型中,我們也發現mono-exponential curve fitting model是最好也最實用的方式。本論文第二部分為病人的核磁共振掃描,我們發現BHMEMPSE和MEMPSE呈現線性關係,雖然新的核磁共振序列(BHMEMPSE)的影像比較模糊,但是利用ROI圈選測量R2的方式依然可行。
zh_TW
dc.description.abstractIn thalassemia patients, lifelong blood transfusion leads to iron overload in vital organs. Excess iron are mainly stored in the liver. The estimation of iron by atomic absorption spectroscopy in liver biopsy is the gold standard for the assessment of iron overload. In the last decade MR has been developed to replace liver biopsy and serve as an alternative non-invasive method for quantification of liver iron. However, traditional multiple spin-echo sequence has the disadvantage of long scanning time. Therefore, we proposed a new breath-hold multi-echo multi-planar spin echo (BHMEMPSE) sequence, which only takes 4 minutes in human study, to assess liver iron content.
In the first part, we scanned the calibrated iron solution phantom with MEMPSE, BHMEMPSE and gradient-echo sequences. These three sequences demonstrated linear trend of R2/R2* against different concentrations of iron solution, in the range of 0.01 ~ 0.5 mg Fe/g FeCl3 solution. This range corresponds to R2/R2* range of 3 ~ 220 1/s, which is wide enough for routine clinical use. We also determined that mono-exponential curve fitting model was the best one, which was more practical for clinical use.
In the second part, we demonstrated the excellent linear relationship of the BHMEMPSE sequence to the MEMPSE sequence in human study. Although the anatomic details of the BHMEMPSE images were vaguely seen, drawing a circular region of interest within the liver for R2 measurement was feasible.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:59:36Z (GMT). No. of bitstreams: 1
ntu-105-D01548001-1.pdf: 1421841 bytes, checksum: 05bdd56a179da082a90a97030e47b1b6 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 .................................................. i
ABSTRACT ............................................. ii
中文摘要 ............................................. iii
CONTENTS ............................................. iv
LIST OF FIGURES ..................................... vii
LIST OF TABLES ..................................... viii
Chapter 1 Introduction .............................- 1 -
1.1 Pathophysiology of iron overload ..............- 1 -
1.2 Mechanism of iron overload ....................- 2 -
1.2.1 Chronic blood transfusion ..................- 2 -
1.2.2 Increased intestinal absorption ............- 4 -
1.2.3 Chronic liver disease ......................- 4 -
1.3 Treatment of iron overload ....................- 5 -
1.3.1 Deferoxamine ...............................- 6 -
1.3.2 Oral chelators - Deferiprone and Deferasirox ....................................................- 6 -
Chapter 2 Quantification of liver iron content .....- 8 -
2.1 Need for liver iron quantification ............- 8 -
2.2 Liver biopsy ..................................- 9 -
2.3 Serum markers ................................- 10 -
2.4 Biomagnetic susceptometry ....................- 11 -
2.5 Ultrasound ...................................- 14 -
2.6 Computed tomography ..........................- 14 -
2.7 MR-based quantification methods of liver iron content ...........................................- 17 -
2.7.1 R2 relaxometry techniques .................- 17 -
2.7.1.1 Pulse sequence design ..................- 17 -
2.7.1.2 Choice of TE ...........................- 18 -
2.7.1.3 R2 estimation signal model .............- 18 -
2.7.1.4 Existing MRI-based methods and calibration ...................................................- 19 -
2.7.1.5 Limitation .............................- 23 -
2.7.2 R2* relaxometry techniques ................- 23 -
2.7.2.1 Pulse sequence design ..................- 24 -
2.7.2.2 Choice of TE ...........................- 24 -
2.7.2.3 Status of development and validation ...- 25 -
2.7.2.4 Field strength dependence of R2* .......- 27 -
2.7.2.5 Limitation .............................- 27 -
2.7.3 Signal intensity ratio techniques .........- 27 -
Chapter 3 A new MR sequence for assessing liver iron content - phantom study ...........................- 30 -
3.1 Introduction and study purpose ...............- 30 -
3.2 Material and method ..........................- 31 -
3.2.1 Aqueous iron solutions ....................- 31 -
3.2.2 MRI measurements ..........................- 32 -
3.2.3 Curve fitting models ......................- 34 -
3.3 Results ......................................- 36 -
3.3.1 Comparison of three curve fitting models ..- 36 -
3.3.2 Comparison among MEMPSE, BHMEMPSE and
gradient-echo imaging .............................- 41 -
3.3.3 Comparison between MEMPSE with 5 TEs and 8 TEs ...................................................- 44 -
3.4 Discussion ...................................- 46 -
Chapter 4 A 4-minute breath-hold MR sequence for assessing liver iron content – patients study .....- 49 -
4.1 Introduction and study purpose ...............- 49 -
4.2 Material and method ..........................- 51 -
4.2.1 Patients study ............................- 51 -
4.2.2 MRI sequences and R2 measurement in patients ...................................................- 52 -
4.2.3 Reproducibility analysis ..................- 56 -
4.2.4 Statistical analysis ......................- 56 -
4.3 Results ......................................- 58 -
4.3.1 Patient profile ...........................- 58 -
4.3.2 Measurement of liver R2 by using the MEMPSE and
BHMEMPSE sequences ................................- 59 -
4.3.3 Intra- and inter-observer agreement .......- 63 -
4.4 Discussion ...................................- 63 -
Chapter 5 Conclusion ..............................- 69 -
Chapter 6 References ..............................- 72 -
Chapter 7 Appendix ................................- 80 -
dc.language.isoen
dc.subject鐵質沉積zh_TW
dc.subject核磁共振zh_TW
dc.subject地中海型貧血zh_TW
dc.subject肝臟zh_TW
dc.subjectliveren
dc.subjectiron overloaden
dc.subjectmagnetic resonance imagingen
dc.subjectthalassemiaen
dc.title利用核磁共振定量肝中鐵濃度於地中海型貧血患者zh_TW
dc.titleQuantification of Liver Iron with Magnetic Resonance Imaging in Thalassemia Patientsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.coadvisor彭信逢(Steven Shinn-Forng Peng)
dc.contributor.oralexamcommittee黃基礎(Ji-Chuu Hwang),施庭芳(Tiffany Ting-Fang Shih),陳邦斌(Bang-Bin Chen)
dc.subject.keyword鐵質沉積,肝臟,核磁共振,地中海型貧血,zh_TW
dc.subject.keywordiron overload,liver,magnetic resonance imaging,thalassemia,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201603762
dc.rights.note有償授權
dc.date.accepted2016-11-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved