Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60144
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣
dc.contributor.authorKuan-Yu Chouen
dc.contributor.author周冠宇zh_TW
dc.date.accessioned2021-06-16T09:59:00Z-
dc.date.available2019-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-12-01
dc.identifier.citation[1] J. Bardeen, and W. H. Brattain, 'The transistor, a semi-conductor triode,' Physical Review, vol. 74, p. 230, 1948.
[2] William F. Brinkman, Douglas E. Haggan, and William W. Troutman, 'A history of the invention of the transistor and where it will lead us,' IEEE Journal of Solid-State Circuits, vol. 32, no. 12, pp. 1858 - 1865, 1997.
[3] Intel Inc. 'Xeon-Processor-E7-8890 v4,' http://ark.intel.com/zh-tw/products/84676/Intel-Xeon-Processor-E7-8890-v4-60M-Cache-2_20-GHz.
[4] R. Merritt, 'TSMC, ARM aim 7nm at data centers,' EE times, 2016.
[5] Peter W Shor, 'Algorithms for quantum computation: Discrete logarithms and factoring,' 1994 Proceedings, 35th Annual Symposium on Foundations of Computer Science, IEEE, pp.124 - 134, 1994.
[6] John Clarke, and Frank K. Wilhelm, 'Superconducting quantum bits,' Nature, vol. 453, no. 19, pp. 1031 - 1042, 2008.
[7] E. Knill, Raymond Laflamme, and Gerald J. Milburn, 'A scheme for efficient quantum computation with linear optics,' Nature, vol. 409, no. 4, pp. 46 - 52, 2001.
[8] Neil A. Gershenfeld, and Isaac L. Chuang, 'Bulk spin-resonance quantum computation,' Science, vol. 275, no. 17, pp 350 - 356, 1997.
[9] L. Fedichkin, M. Yanchenko, and K.A. Valiev, 'Novel coherent quantum bit using spatial quantization levels in semiconductor quantum dot,' arXiv preprint quant-ph/0006097, 2000.
[10] B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F. Gyure , and A. T. Hunter, 'Coherent singlet-triplet oscillations in a silicon-based double quantum dot,' Nature, vol. 481, no.19, pp. 344 - 347, 2012.
[11] Daniel Loss, and David P. DiVincenzo, 'Quantum computation with quantum dots,' Physical Review A, vol. 57, no. 1, p. 120, 1998.
[12] J. R. Prance, Zhan Shi, C. B. Simmons, D. E. Savage, M. G. Lagally, L. R. Schreiber, L. M. K. Vandersypen, Mark Friesen, Robert Joynt, S. N. Coppersmith, and M. A. Eriksson, 'Single-shot measurement of triplet-singlet relaxation in a Si/SiGe double quantum dot,' Physical Review Letters, vol.108, no.4, p. 046808, 2012.
[13] Hendrik Bluhm, Sandra Foletti, Izhar Neder, Mark Rudner, Diana Mahalu, Vladimir Umansky, and Amir Yacoby, 'Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 µs,' Nature Physics, vol. 7, pp. 109 - 113, 2011.
[14] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, 'Few-electron quantum dot circuit with integrated charge read out,' Physical Review B , vol. 67, no. 16, p. 161308, 2003.
[15] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird1, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, A. C. Gossard, 'Coherent manipulation of coupled electron spins in semiconductor quantum dots,' Science, vol.309, pp. 2180 - 2184, 2005.
[16] V. Umansky, M. Heiblum, Y. Levinson, J. Smet,J.Nubler, M. Dolev, 'MBE growth of ultra-low disorder 2DEG with mobility exceeding 35× 106 cm2/Vs,' Journal of Crystal Growth, vol. 311, no. 7, pp. 1658 - 1661, 2009.
[17] S. H. Huang, T. M. Lu, S. C. Lu, C. H. Lee, C. W. Liu, and D. C. Tsui, 'Mobility enhancement of strained Si by optimized SiGe/Si/SiGe structures,' Applied Physics Letters, vol.101, p. 042111, 2012.
[18] Kamyar Saeedi, Stephanie Simmons, Jeff Z. Salvail1, Phillip Dluhy, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, John J. L. Morton, Mike L. W. Thewalt, 'Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28,' Science, vol.342, pp. 830 - 833, 2013.
[19] Lars R. Schreiber, and Hendrik Bluhm, 'Quantum computation: Silicon comes back,' Nature Nanotechnology, vol. 9, no. 12, pp. 966 - 968, 2014.
[20] R. Dingle, H. L. Störmer, A. C. Gossard1 and W. Wiegmann, 'Electron mobilities in modulation‐doped semiconductor heterojunction superlattices,' Applied Physics Letters, vol. 33, no. 7, pp. 665 - 667, 1978.
[21] S. Hiyamizu, T. Mimura, T. Fujii and K. Nanb, 'High mobility of two‐dimensional electrons at the GaAs/n‐AlGaAs heterojunction interface,' Applied Physics Letters, vol. 37, no. 9, pp. 805 - 807, 1980.
[22] G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, 'Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1−x superlattices,' Physical Review Letters, vol. 54, no. 22, p. 2441, 1985.
[23] G. Patrick Watson, Eugene A. Fitzgerald, Ya‐Hong Xie and Don Monroe, 'Relaxed, low threading defect density Si0.7Ge0.3 epitaxial layers grown on Si by rapid thermal chemical vapor deposition,' Journal of Applied Physics, vol. 75, no. 1, pp. 263 - 269, 1994.
[24] M. Yu. Melnikov, A. A. Shashkin, V. T. Dolgopolov, S.-H. Huang, C. W. Liu, and S. V. Kravchenko, 'Ultra-high mobility two-dimensional electron gas in a SiGe/Si/SiGe quantum well,' Applied Physics Letters, vol. 106, no. 9, p. 092102, 2015.
[25] Loren Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin, 'Electron mobilities exceeding 107 cm2/V s in modulation‐doped GaAs,' Applied Physics Letters, vol. 55, no. 18, pp. 1888 - 1890, 1989.
[26] N Sugii, K Nakagawa, Y Kimura, S Yamaguchi and M Miyao, 'High electron mobility in strained Si channel of heterostructure with abrupt interface,' Semiconductor Science and Technology, vol. 13, no. 8A, pp. A140 - A142, 1998.
[27] Jiun-Yun Li, Strained Silicon and Silicon-Germanium Quantum Devices by Chemical Vapor Deposition, PhD thesis, Princeton University, 2013.
[28] M Reed, W Kirk, and P Kobiela, 'Investigation of parallel conduction in GaAs/AlxGa1-xAs modulation-doped structures in the quantum limit,' IEEE Journal of Quantum Electronics, vol. 22, no. 9, pp. 1753 - 1759, 1986.
[29] J. F. Nützel, and G. Abstreiter, 'Segregation and diffusion on semiconductor surfaces,' Physical Review B, vol. 53, no. 20, p. 13551, 1996.
[30] John A. Nixon, and John H. Davies, 'Potential fluctuations in heterostructure devices,' Physical Review B, vol. 41, no. 11, p. 7929, 1990.
[31] C. K. Maiti, L. K. Bera, and S. Chattopadhyay, 'Strained-Si heterostructure field effect transistors,' Semiconductor Science and Technology, vol. 13, no. 11, pp. 1225 - 1246, 1998.
[32] G. Snider, 1D Poisson, PC version beta 8, a self-consistent Poisson and Schrodinger solver, 2010, see https://www3.nd.edu/~gsnider/
[33] Douglas J. Paul, 'Si/SiGe heterostructures: from material and physics to devices and circuits,' Semiconductor Science and Technology, vol. 19, no. 10, pp. R75 - R108, 2004.
[34] Tsuneya Ando, Alan B. Fowler, and Frank Stern, 'Electronic properties of two-dimensional systems,' Reviews of Modern Physics, vol.54, no. 2, pp. 437 - 672, 1982.
[35] Loren Pfeiffer, and K. W. West, 'The role of MBE in recent quantum Hall effect physics discoveries,' Physica E: Low-Dimensional Systems and Nanostructures, vol. 20, no. 1, pp. 57 - 64, 2003.
[36] Don Monroe, Y. H. Xie, E. A. Fitzgerald, P. J. Silverman, and G. P. Watson, 'Comparison of mobility limiting mechanisms in high mobility Si1−xGex heterostructures,' Journal of Vacuum Science & Technology B, vol. 11, no. 4, pp. 1731 - 1737, 1993.
[37] L. M. McGuire, Mark Friesen, K A Slinker, S N Coppersmith and M A Eriksson, 'Valley splitting in a Si/SiGe quantum point contact,' New Journal of Physics, vol. 12, no. 3, 2010.
[38] C. Jiang, D. C. Tsui, and G. Weimann, 'Threshold transport of high‐mobility two‐dimensional electron gas in GaAs/AlGaAs heterostructures,' Applied physics letters, vol. 53, no. 16, pp. 1533 - 1535, 1988.
[39] T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, 'Dependence of electron channel mobility on Si-SiO/sub2/interface microroughness,' IEEE Electron Device Letters, vol. 12, no. 12, pp. 652 - 654, 1991.
[40] S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, 'Possible metal-insulator transition at B= 0 in two dimensions,' Physical Review B, vol. 50, no.11, p. 8039, 1994.
[41] K. Lai, W. Pan, D. C. Tsui, and Ya-Hong Xie, 'Observation of the apparent metal-insulator transition of high-mobility two-dimensional electron system in a Si/Si1-xGex heterostructure,' Applied Physics Letters, vol. 84, no.2, pp. 302 - 304, 2004.
[42] T. M. Lu, J. Liu, J. Kim, K. Lai, D. C. Tsui, and Y. H. Xie 'Capacitively induced high mobility two-dimensional electron gas in undoped Si/SiGe heterostructures with atomic-layer-deposited dielectric,' Applied Physics Letters, vol. 90, p. 182114, 2007.
[43] A. L. Efros, 'Metal-non-metal transition in heterostructures with thick spacer layers,' Solid State Communications, vol. 70, no.3, pp. 253 - 256, 1989.
[44] Friedrich Schäffler, 'High-mobility Si and Ge structures,' Semiconductor Science and Technology, vol. 12, no. 12, p. 1515, 1997.
[45] Kun Yao, Silicon and Silicon-Germanium Epitaxy for Quantum Dot Device Fabrications Towards An Electron Spin-Based Quantum Computer, PhD thesis, Princeton University, 2009.
[46] Chiao-Ti Huang, Electrical and Material Properties of Strained Silicon/Relaxed Silicon Germanium Heterostructures for Single-Electron Quantum Dot Applications, PhD thesis, Princeton University, 2015.
[47] M. T. Currie, S. B. Samavedam, T. A. Langdo, C. W. Leitz, and E. A. Fitzgerald, 'Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing,' Applied Physics Letters, vol. 72, no. 14, pp. 1718 - 1720, 1998.
[48] K. Ismail, F. K. LeGoues, K. L. Saenger, M. Arafa, J. O. Chu, P. M. Mooney, and B. S. Meyerson, 'Identification of a mobility-limiting scattering mechanism in modulation-doped Si/SiGe heterostructures,' Physical Review Letters, vol. 73, no. 25, pp. 3447 - 3451, 1994.
[49] G. Rittier, B. Tillack, and D. Wolansky. 'Memory effect in RTCVD epitaxy of Si and SiGe.' MRS Proceedings, Cambridge University Press, vol. 429, p. 379, 1996.
[50] L. J. van der Pauw, 'A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,' Philips Tech. Rev., vol. 20, no. 8, pp. 220 - 224, 1958.
[51] Technical Instruction, He-Compressor and Cold-Head Service, Sumitomo Heavy Industries, Ltd.
[52] Closed Cycle Cryocooler Principles of Operation' Advanced Research Systems, Inc, http://www.arscryo.com/tech-notes/cryocooler-principle-of-operation.html.
[53] MODEL SR830 DSP Lock-In Amplifier, Standard Research System, revision 2.5, 2011.
[54] Takashi Mimura, 'The early history of the high electron mobility transistor (HEMT),' IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 780 - 782, 2002.
[55] R. People1, J. C. Bean, D. V. Lang1, A. M. Sergent, H. L. Störmer, K. W. Wecht, R. T. Lynch and K. Baldwin, 'Modulation doping in GexSi1− x/Si strained layer heterostructures,' Applied Physics Letters, vol. 45, no. 11, pp. 1231 - 1233, 1984.
[56] Khaled Ismail, S. Rishton, J. O. Chu, K. Chan, and B. S. Meyerson, 'High-performance Si/SiGe n-type modulation-doped transistors,' IEEE Electron Device Letters, vol. 14, no. 7, pp. 348 - 350, 1993.
[57] T. Ando, 'Self-consistent results for a GaAs/AlxGa1-x as heterojunciton. II. low
temperature mobility,' Journal of the Physical Society of Japan, vol. 51, no. 12,
pp. 3900 – 3907, 1982.
[58] K. Lee, M. S. Shur, T. J. Drummond, and H. Morko, 'Low field mobility of 2D
electron gas in modulation-doped GaAs/AlxGa1-xAs layers,' Journal of Applied
Physics, vol. 54, no. 11, 1983.
[59] W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, 'Electron mobility
in modulation-doped heterostructures,' Physics Review B, vol. 30, pp. 4571–4582,
1984.
[60] G. Abstreiter, H. Brugger, T. Wolf, H. Jorke, and H. J. Herzog, 'Strain-induced two-dimensional electron gas in selectively doped Si/SixGe1-x superlattices,' Physics Review Letters, vol. 54, pp. 2441–2444, 1985.
[61] K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, 'Extremely high electron mobility in Si/SiGe modulation-doped heterostructures,' Applied Physics Letters, vol. 66, no. 9, 1995.
[62] N. M. Ravindra, and Jin Zhao, 'Fowler-Nordheim tunneling in thin SiO2 films,' Smart Materials and Structures, vol1, no. 3, pp. 197 - 201, 1992.
[63] Chiao-Ti Huang, Jiun-Yun Li, Kevin S. Chou, and James C. Sturm, 'Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer,' Applied Physics Letters, vol.104, no. 24, p. 243510, 2014.
[64] H. H. Chen, S. H. Tseng, and J. Gong, 'The temperature-dependence of threshold voltage of N-MOSFETs with nonuniform substrate doping,' Solid-State Electronics, vol. 42, no. 10, pp. 1799 - 1805, 1998.
[65] Gray, Peter V., and Dale M. Brown, 'Density of SiO2–Si interface states,' Applied Physics Letters, vol. 8, no. 2, pp. 31 - 33, 1966.
[66] Lianfeng Yang, Jeremy R Watling, Richard C W Wilkins, Mirela Boric¸i, John R Barker, Asen Asenov and Scott Roy, 'Si/SiGe heterostructure parameters for device simulations,' Semicond. Sci. Technol., vol. 19, pp. 1174 - 1182, 2004.
[67] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, 'Strain Dependence of the Performance Enhancement in Strained-Si n-MOSFETs,' International Electron Devices Meeting, pp. 373-376, 1994.
[68] S. M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, 1981.
[69] T. M. Lu, C.-H. Lee, S.-H. Huang, D. C. Tsui, and C. W. Liu, 'Upper limit of two-dimensional electron density in enhancement-mode Si/SiGe heterostructure field-effect transistors,' Applied Physics Letters, vol. 99, no. 15, p. 153510, 2011.
[70] Stemmer, Susanne, Varistha Chobpattana, and Siddharth Rajan, 'Frequency dispersion in III-V metal-oxide-semiconductor capacitors,' Applied Physics Letters, vol. 100, no. 23, p.233510, 2012.
[71] Yu Yuan, Lingquan Wang, Bo Yu, Byungha Shin, Jaesoo Ahn, Paul C. McIntyre, Peter M. Asbeck, Mark J. W. Rodwell, and Yuan Taur, 'A distributed model for border traps in mos devices,' IEEE Electron Device Letters, vol. 32, no. 4, pp. 485 - 487, 2011.
[72] Lin, Huang-Hsuan, and Jenn-Gwo Hwu, 'Surface Nonuniformity-Induced Frequency Dispersion in Accumulation Capacitance for Silicon MOS(n) Capacitor, 'IEEE Transactions on Electron Devices, vol. 63, no. 7, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60144-
dc.description.abstract隨著電晶體尺寸持續微縮至原子尺度,尋找其他材料、結構或新型計算元件也越形重要。量子計算利用電子的量子自旋疊加狀態進行邏輯運算,其速度比傳統利用電荷之邏輯元件快非常多。在固態系統中,利用半導體異質接面所形成的二維電子氣系統最常被用來製作量子計算元件的系統,而在眾多異質接面系統中,矽/矽鍺異質接面因其核子自旋干擾小,且與傳統矽積體電路製程相容,引起科學界很大的注目,本論文即針對矽/矽鍺異質接面形成的二維電子氣進行深入的研究。
欲量測二維系統中的電子傳輸特性,一般常用的分析技術為霍爾量測,我們自行設計架設可變溫霍爾量測系統,並分別測量二維電子氣的直流與交流電性,藉由製作具有閘極的霍爾元件而改變二維電子通道的電導,我們首度在二維電子氣中發現微分負電阻的特性,主要的原因為低溫下,二維電子系統會因為表面缺陷,使其電子濃度先超過熱平衡之後,電子透過量子穿隧效應至表面層,進而再回復至平衡態,此現象而交流霍爾量測實驗結果吻合,更加確定二維電子系統的表面量子穿隧現象。這些穿隧至表面的電子可進一步屏蔽氧化層與半導體界面的缺陷電荷而降低遠端離子散射效應,進而使量子井內的電子遷移率提升。此外,我們亦發現霍爾樣品的直流臨界電壓會隨著溫度變化,在溫度約為50 K時,臨界電壓會瞬間增加,此現象亦與表面缺陷有關,在本論文中亦會有詳細的介紹與討論。
最後我們研究距離表面不同深度的二維電子樣品之電容電壓關係,我們發現電容-電壓頻率色散現象與距離有關,其原因目前尚不清楚,但我們提出幾種可能的原因並進行討論。
zh_TW
dc.description.abstractAs the sizes of the CMOS transistors are scaled down to the atomic scale, new channel materials, alternative structures, or novel computing devices to continue the scaling rule become important. Quantum computing by spin manipulation is a promising candidate to outperform the conventional logic units by charge manipulation. For solid state quantum computing, the most common baseline structure is a two-dimensional electron gas (2DEG) formed in semiconductor heterostructure. Si/SiGe heterostructures attracts tremendous attentions due to the reduced nuclear spin decoherence and compatibility of Si VLSI technology. Thus, we focus on the transport properties of 2DEG in Si/SiGe heterostructures in this thesis.
Hall measurement technique is commonly used for the characterisitcs 2DEG transport. We established a home-made Hall system of varying temperature (4 K ~ 300 K) to investigate the DC and AC characteristics of 2DEGs. We fabricated Hall-bar devices with top gate to modulate the 2DEG density. For the first time, a negative differential resistance in DC characteristics is observed. This is due to the crossover of non-equilibrium and equilibrium in the 2DEG system. At low temperatures, electrons cannot be populated at the surface due to the channel freeze-out. In order to conserve the charges, electrons would be accumulated in the underlying 2DEG channel and surpass the equilibrium density. However, as the gate voltage increases further, the increased 2DEG density enhances the electric-field and the tunneling probability of 2DEG electrons to the surface is also enhanced. The mobility of tunneled electrons at the surface is much lower than that in the 2DEG channel, leading to a lower total conductance and current. By varying the temperature, we found at ~50 K, the threshold voltage of Hall devices increases abruptly, which cannot be explained by the theory of MOSFET. Here we propose a model which involves the defect freeze-out at the surface to explain this phenomenon.
Last, we investigated the relationship of capacitance vs. gate voltage for 2DEGs at different depths. An interesting depth dependence of frequency dispersion was observed and possible mechanisms are also discussed in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:59:00Z (GMT). No. of bitstreams: 1
ntu-105-R03943063-1.pdf: 4657132 bytes, checksum: c345588ad0e38006dd441b4d27ca239b (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xvii
第一章 引言 1
1.1 動機 1
1.2 二維電子氣與量子點元件 2
1.3 文獻回顧 5
1.4 論文架構 6
第二章 無摻雜矽/矽鍺異質接面二維電子氣 8
2.1 二維電子氣靜電特性 9
2.2 二維電子氣傳輸特性 11
2.3 矽/矽鍺異質接面二維電子氣之能帶 15
2.4 二維電子磊晶、材料分析與元件製程 17
2.4.1 二維電子磊晶與材料分析 17
2.4.2 元件製程 22
第三章 實驗方法與量測 26
3.1 霍爾量測原理簡介 26
3.2 雙層傳導 29
3.3 實驗系統架設 32
3.3.1 低溫系統 32
3.3.2 電性量測系統 35
3.4 實驗系統測試校正 40
第四章 二維電子氣直流電性量測 46
4.1 文獻回顧 46
4.1.1 在矽與矽鍺異質接面內由二維電子氣穿隧引發的遮蔽效應 47
4.2 直流電性 50
4.2.1 電流飽和/衰減現象 52
4.2.2 閘極電壓回掃 58
4.3 溫度效應 60
4.3.1 臨界電壓 61
4.3.2 電流峰值 70
4.3.3 平衡後的飽和電流 71
4.3.4 閘極電壓回掃之關閉臨界電壓 72
4.4 量子井距表面深度的影響 73
4.4.1 討論 73
4.4.2 臨界電壓 73
4.4.3 閘極電壓回掃之關閉臨界電壓 75
第五章 二維電子氣交流電性量測 76
5.1 量子井內的二維電子氣濃度 76
5.2 電容特性 84
5.2.1 二維電子 84
5.2.2 二維電洞 92
第六章 結論及未來工作 94
參考文獻 96
dc.language.isozh-TW
dc.subject二維電子氣zh_TW
dc.subject矽/矽鍺異質接面zh_TW
dc.subjectSi/SiGe Heterostructuresen
dc.subject2DEGen
dc.title無摻雜矽/矽鍺異質接面之二維電子氣直流與交流電性分析zh_TW
dc.titleDC and AC Characteristics of Two Dimensional Electron Gases in Undoped Silicon/Silicon Germanium Heterostructuresen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳敏璋,李敏鴻,廖洺漢,林俊達
dc.subject.keyword二維電子氣,矽/矽鍺異質接面,zh_TW
dc.subject.keyword2DEG,Si/SiGe Heterostructures,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201603784
dc.rights.note有償授權
dc.date.accepted2016-12-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
4.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved