Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳立仁(Li-Jen Chen)
dc.contributor.authorYu-Cian Changen
dc.contributor.author張宇謙zh_TW
dc.date.accessioned2021-06-16T09:58:37Z-
dc.date.available2025-08-17
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Gu, H. and Soucek, M.D., Preparation and Characterization of Monodisperse Cerium Oxide Nanoparticles in Hydrocarbon Solvents. Chemistry of Materials, 2007. 19(5):1103-1110.
2. Liu, Y., Zuo, J., Ren, X., and Yong, L., Synthesis and Character of Cerium Oxide (CeO2) Nanoparticles by the Precipitation Method. Metalurgija, 2014. 53(4):463-465.
3. Calvache-Muñoz, J., Prado, F.A., and Rodríguez-Páez, J.E., Cerium Oxide Nanoparticles: Synthesis, Characterization and Tentative Mechanism of Particle Formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 529:146-159.
4. de Lima Batista, A.M., Miranda, M.A.R., Martins, F.I.C.C., Santos, C.M., and Sasaki, J.M., Synthesis of Cerium Oxide (CeO2) by Co-Precipitation for Application as a Reference Material for X-Ray Powder Diffraction Peak Widths. Powder Diffraction, 2018. 33(1):21-25.
5. Na, T., ZHANG, M., Juan, L., Huaju, L., Yong, L., and Wenjie, S., Facile Synthesis of CeO2 Nanospheres. Chinese Journal of Catalysis, 2008. 29(11):1070-1072.
6. Liu, B., Liu, B., Li, Q., Li, Z., Liu, R., Zou, X., Wu, W., Cui, W., Liu, Z., and Li, D., Solvothermal Synthesis of Monodisperse Self-Assembly CeO2 Nanospheres and Their Enhanced Blue-Shifting in Ultraviolet Absorption. Journal of Alloys and Compounds, 2010. 503(2):519-524.
7. Sun, C., Li, H., Zhang, H., Wang, Z., and Chen, L., Controlled Synthesis of CeO2 Nanorods by a Solvothermal Method. Nanotechnology, 2005. 16(9):1454.
8. Xue, Y., Balmuri, S.R., Patel, A., Sant, V., and Sant, S., Synthesis, Physico-Chemical Characterization, and Antioxidant Effect of Pegylated Cerium Oxide Nanoparticles. Drug Delivery and Translational Research, 2018. 8(2):357-367.
9. Ho, C., Yu, J.C., Kwong, T., Mak, A.C., and Lai, S., Morphology-Controllable Synthesis of Mesoporous CeO2 Nano-and Microstructures. Chemistry of Materials, 2005. 17(17):4514-4522.
10. Miao, J.-J., Wang, H., Li, Y.-R., Zhu, J.-M., and Zhu, J.-J., Ultrasonic-Induced Synthesis of CeO2 Nanotubes. Journal of Crystal Growth, 2005. 281(2-4):525-529.
11. Sun, C., Li, H., Wang, Z., Chen, L., and Huang, X., Synthesis and Characterization of Polycrystalline CeO2 Nanowires. Chemistry Letters, 2004. 33(6):662-663.
12. Lu, X., Li, X., Qian, J., and Chen, Z., The Surfactant-Assisted Synthesis of CeO2 Nanowires and Their Catalytic Performance for Co Oxidation. Powder Technology, 2013. 239:415-421.
13. Yang, Z., Zhou, K., Liu, X., Tian, Q., Lu, D., and Yang, S., Single-Crystalline Ceria Nanocubes: Size-Controlled Synthesis, Characterization and Redox Property. Nanotechnology, 2007. 18(18):185606.
14. Dang, F., Kato, K., Imai, H., Wada, S., Haneda, H., and Kuwabara, M., Characteristics of CeO2 Nanocubes and Related Polyhedra Prepared by Using a Liquid− Liquid Interface. Crystal Growth Design, 2010. 10(10):4537-4541.
15. Lin, H.-L., Wu, C.-Y., and Chiang, R.-K., Facile Synthesis of CeO2 Nanoplates and Nanorods by [1 0 0] Oriented Growth. Journal of Colloid and Interface Science, 2010. 341(1):12-17.
16. Umar, A., Kumar, R., Akhtar, M., Kumar, G., and Kim, S., Growth and Properties of Well-Crystalline Cerium Oxide (CeO2) Nanoflakes for Environmental and Sensor Applications. Journal of Colloid and Interface Science, 2015. 454:61-68.
17. Zhang, W., Niu, X., Chen, L., Yuan, F., and Zhu, Y., Soot Combustion over Nanostructured Ceria with Different Morphologies. Scientific Reports, 2016. 6(1):1-10.
18. Chen, G., Xu, C., Song, X., Xu, S., Ding, Y., and Sun, S., Template-Free Synthesis of Single-Crystalline-Like CeO2 Hollow Nanocubes. Crystal Growth and Design, 2008. 8(12):4449-4453.
19. Fang, S., Xin, Y., Ge, L., Han, C., Qiu, P., and Wu, L., Facile Synthesis of CeO2 Hollow Structures with Controllable Morphology by Template-Engaged Etching of Cu2O and Their Visible Light Photocatalytic Performance. Applied Catalysis B: Environmental, 2015. 179:458-467.
20. Yuan, Q., Duan, H.-H., Li, L.-L., Sun, L.-D., Zhang, Y.-W., and Yan, C.-H., Controlled Synthesis and Assembly of Ceria-Based Nanomaterials. Journal of Colloid and Interface Science, 2009. 335(2):151-167.
21. Yang, S. and Gao, L., Controlled Synthesis and Self-Assembly of CeO2 Nanocubes. Journal of the American Chemical Society, 2006. 128(29):9330-9331.
22. Luňáček, J., Životský, O., Janoš, P., Došek, M., Chrobak, A., Maryško, M., Buršík, J., and Jirásková, Y., Structure and Magnetic Properties of Synthesized Fine Cerium Dioxide Nanoparticles. Journal of Alloys and Compounds, 2018. 753:167-175.
23. Sekar, M.A.M., Manoharan, S.S., and Patil, K., Combustion Synthesis of Fine-Particle Ceria. Journal of Materials Science Letters, 1990. 9(10):1205-1206.
24. Duran, P., Capel, F., Gutierrez, D., Tartaj, J., and Moure, C., Cerium (Iv) Oxide Synthesis and Sinterable Powders Prepared by the Polymeric Organic Complex Solution Method. Journal of the European Ceramic Society, 2002. 22(9-10):1711-1721.
25. Tok, A.I.Y., Boey, F.Y.C., Dong, Z., and Sun, X., Hydrothermal Synthesis of CeO2 Nano-Particles. Journal of Materials Processing Technology, 2007. 190(1-3):217-222.
26. Yan, L., Yu, R., Chen, J., and Xing, X., Template-Free Hydrothermal Synthesis of CeO2 Nano-Octahedrons and Nanorods: Investigation of the Morphology Evolution. Crystal Growth and Design, 2008. 8(5):1474-1477.
27. Zhang, H., Wang, W., Zhang, B., Li, H., and Zhang, Q., Controllable Synthesis of Spherical Cerium Oxide Particles. RSC Advances, 2016. 6(37):30956-30962.
28. Yu, Y., Zhong, L., Zhong, Q., and Cai, W., Controllable Synthesis of CeO2 Nanoparticles with Different Sizes and Shapes and Their Application in No Oxidation. RSC Advances, 2016. 6(56):50680-50687.
29. Lee, J.-S., Lee, J.-S., and Choi, S.-C., Synthesis of Nano-Sized Ceria Powders by Two-Emulsion Method Using Sodium Hydroxide. Materials Letters, 2005. 59(2-3):395-398.
30. Garzón-Manjón, A., Solano, E., de la Mata, M., Guzmán, R., Arbiol, J., Puig, T., Obradors, X., Yáñez, R., Ricart, S., and Ros, J., Induced Shape Controllability by Tailored Precursor Design in Thermal and Microwave-Assisted Synthesis of Fe3O4 Nanoparticles. Journal of Nanoparticle Research, 2015. 17(7):291.
31. Zhang, D., Fu, H., Shi, L., Pan, C., Li, Q., Chu, Y., and Yu, W., Synthesis of CeO2 Nanorods Via Ultrasonication Assisted by Polyethylene Glycol. Inorganic Chemistry, 2007. 46(7):2446-2451.
32. Baqer, A.A., Matori, K.A., Al-Hada, N.M., Shaari, A.H., Saion, E., and Chyi, J.L.Y., Effect of Polyvinylpyrrolidone on Cerium Oxide Nanoparticle Characteristics Prepared by a Facile Heat Treatment Technique. Results in Physics, 2017. 7:611-619.
33. Sugiura, M., Ozawa, M., Suda, A., Suzuki, T., and Kanazawa, T., Development of Innovative Three-Way Catalysts Containing Ceria–Zirconia Solid Solutions with High Oxygen Storage/Release Capacity. Bulletin of the Chemical Society of Japan, 2005. 78(5):752-767.
34. Jung, H., Kittelson, D.B., and Zachariah, M.R., The Influence of a Cerium Additive on Ultrafine Diesel Particle Emissions and Kinetics of Oxidation. Combustion and Flame, 2005. 142(3):276-288.
35. Izu, N., Shin, W., Murayama, N., and Kanzaki, S., Resistive Oxygen Gas Sensors Based on CeO2 Fine Powder Prepared Using Mist Pyrolysis. Sensors and Actuators B: Chemical, 2002. 87(1):95-98.
36. Chen, G., Ni, Z., Bai, Y., Li, Q., and Zhao, Y., The Role of Interactions between Abrasive Particles and the Substrate Surface in Chemical-Mechanical Planarization of Si-Face 6h-Sic. RSC Advances, 2017. 7(28):16938-16952.
37. Hoshino, T., Kurata, Y., Terasaki, Y., and Susa, K., Mechanism of Polishing of SiO2 Films by CeO2 Particles. Journal of Non-Crystalline Solids, 2001. 283(1):129-136.
38. Song, X., Jiang, N., Li, Y., Xu, D., and Qiu, G., Synthesis of CeO2-Coated SiO2 Nanoparticle and Dispersion Stability of Its Suspension. Materials Chemistry and Physics, 2008. 110(1):128-135.
39. Izu, N., Matsubara, I., Itoh, T., Shin, W., and Nishibori, M., Controlled Synthesis of Monodispersed Cerium Oxide Nanoparticle Sols Applicable to Preparing Ordered Self-Assemblies. Bulletin of the Chemical Society of Japan, 2008. 81(6):761-766.
40. Zhou, F., Zhao, X., Xu, H., and Yuan, C., CeO2 Spherical Crystallites: Synthesis, Formation Mechanism, Size Control, and Electrochemical Property Study. The Journal of Physical Chemistry C, 2007. 111(4):1651-1657.
41. Itoh, T., Uchida, T., Izu, N., Matsubara, I., and Shin, W., Effect of Core–Shell Ceria/Poly (Vinylpyrrolidone)(Pvp) Nanoparticles Incorporated in Polymer Films and Their Optical Properties. Materials, 2013. 6(6):2119-2129.
42. Aguirre, M., Paulis, M., and Leiza, J.R., Uv Screening Clear Coats Based on Encapsulated CeO2 Hybrid Latexes. Journal of Materials Chemistry A, 2013. 1(9):3155-3162.
43. Popov, A.L., Popova, N., Gould, D.J., Shcherbakov, A.B., Sukhorukov, G.B., and Ivanov, V.K., Ceria Nanoparticles-Decorated Microcapsules as a Smart Drug Delivery/Protective System: Protection of Encapsulated P. Pyralis Luciferase. ACS Applied Materials Interfaces, 2018. 10(17):14367-14377.
44. Garzón-Manjón, A., Aranda-Ramos, A., Melara-Benítez, B., Bensarghin, I., Ros, J., Ricart, S., and Nogués, C., Simple Synthesis of Biocompatible Stable CeO2 Nanoparticles as Antioxidant Agents. Bioconjugate Chemistry, 2018. 29(7):2325-2331.
45. Zhang, D., Niu, F., Li, H., Shi, L., and Fang, J., Uniform Ceria Nanospheres: Solvothermal Synthesis, Formation Mechanism, Size-Control and Catalytic Activity. Powder Technology, 2011. 207(1-3):35-41.
46. Pan, C., Zhang, D., Shi, L., and Fang, J., Template‐Free Synthesis, Controlled Conversion, and Co Oxidation Properties of CeO2 Nanorods, Nanotubes, Nanowires, and Nanocubes. European Journal of Inorganic Chemistry, 2008. 2008(15):2429-2436.
47. Zhou, K., Yang, Z., and Yang, S., Highly Reducible CeO2 Nanotubes. Chemistry of Materials, 2007. 19(6):1215-1217.
48. Ji, Z., Wang, X., Zhang, H., Lin, S., Meng, H., Sun, B., George, S., Xia, T., Nel, A.E., and Zink, J.I., Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials. ACS Nano, 2012. 6(6):5366-5380.
49. Li, K. and Chen, Y., Effect of Natural Organic Matter on the Aggregation Kinetics of CeO2 Nanoparticles in KCl and CaCl2 Solutions: Measurements and Modeling. Journal of Hazardous Materials, 2012. 209:264-270.
50. Sehgal, A., Lalatonne, Y., Berret, J.-F., and Morvan, M., Precipitation− Redispersion of Cerium Oxide Nanoparticles with Poly (Acrylic Acid): Toward Stable Dispersions. Langmuir, 2005. 21(20):9359-9364.
51. Dippon, U., Pabst, S., and Klitzke, S., Colloidal Stabilization of CeO2 Nanomaterials with Polyacrylic Acid, Polyvinyl Alcohol or Natural Organic Matter. Science of the Total Environment, 2018. 645:1153-1158.
52. Chen, H. and Ruckenstein, E., Formation of Complex Colloidal Particles: Morphologies and Mechanisms. Soft Matter, 2012. 8(34):8911-8916.
53. Hernández-Alonso, M.D., Hungría, A.B., Martínez-Arias, A., Coronado, J.M., Conesa, J.C., Soria, J., and Fernández-García, M., Confinement Effects in Quasi-Stoichiometric CeO2 Nanoparticles. Physical Chemistry Chemical Physics, 2004. 6(13):3524-3529.
54. Yu, T., Joo, J., Park, Y.I., and Hyeon, T., Large‐Scale Nonhydrolytic Sol–Gel Synthesis of Uniform‐Sized Ceria Nanocrystals with Spherical, Wire, and Tadpole Shapes. Angewandte Chemie International Edition, 2005. 44(45):7411-7414.
55. Liang, X., Xiao, J., Chen, B., and Li, Y., Catalytically Stable and Active CeO2 Mesoporous Spheres. Inorganic Chemistry, 2010. 49(18):8188-8190.
56. Izu, N., Uchida, T., Matsubara, I., Itoh, T., Shin, W., and Nishibori, M., Formation Mechanism of Monodispersed Spherical Core–Shell Ceria/Polymer Hybrid Nanoparticles. Materials Research Bulletin, 2011. 46(8):1168-1176.
57. Izu, N., Uchida, T., Itoh, T., and Shin, W., Decreasing the Shell Ratio of Core-Shell Type Nanoparticles with a Ceria Core and Polymer Shell by Acid Treatment. Solid State Sciences, 2018. 85:32-37.
58. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348):56-58.
59. Li, Y., Yang, X.-Y., Feng, Y., Yuan, Z.-Y., and Su, B.-L., One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications. Critical Reviews in Solid State and Materials Sciences, 2012. 37(1):1-74.
60. Chowdhury, S. and Lin, K.-S., Synthesis and Characterization of 1d Ceria Nanomaterials for Co Oxidation and Steam Reforming of Methanol. Journal of Nanomaterials, 2011. 2011.
61. Pan, C., Zhang, D., and Shi, L., Ctab Assisted Hydrothermal Synthesis, Controlled Conversion and Co Oxidation Properties of CeO2 Nanoplates, Nanotubes, and Nanorods. Journal of Solid State Chemistry, 2008. 181(6):1298-1306.
62. Zhang, D., Fu, H., Shi, L., Fang, J., and Li, Q., Carbon Nanotube Assisted Synthesis of CeO2 Nanotubes. Journal of Solid State Chemistry, 2007. 180(2):654-660.
63. Mai, H.-X., Sun, L.-D., Zhang, Y.-W., Si, R., Feng, W., Zhang, H.-P., Liu, H.-C., and Yan, C.-H., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. The Journal of Physical Chemistry B, 2005. 109(51):24380-24385.
64. 蕭章能, 以高分子分散劑作為奈米粉體濕式分散研磨、界面改質及合成的研究. 國立交通大學, 材料科學與工程研究所, 博士論文, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60138-
dc.description.abstract二氧化鈰奈米材料(ceria nanomaterial)因為其尺寸小、比表面積大、還有化學性質活潑等因素,再加上取得容易,因此為稀土元素中應用最為廣泛的金屬氧化物,其應用於觸媒、半導體、電化學、與生醫等領域皆有出色的發展。多種形狀的二氧化鈰奈米顆粒之製備方式以及其適合的應用領域之研究已經被大量的發表,然而多數的二氧化鈰奈米材料皆使用水熱合成或是溶劑熱合成法來進行製備,因此本研究從製備方式改變,使用回流加熱法來進行合成,希望能以較低的技術門檻與較短的反應時間,同時保留其穩定性的方式來製備二氧化鈰奈米材料。
首先,本研究使用回流加熱法,在PVP和乙二醇的輔助下以140℃反應2小時製備出平均粒徑45奈米的二氧化鈰奈米球(ceria nanosphere),接著我們觀察反應前驅物濃度對反應造成的影響,透過調整前驅物和乙二醇的濃度,成功製備出單分散(monodisperse),平均粒徑20.6奈米與91.7奈米的奈米球,最後我們分別探討PVP、溶劑與前驅物對反應的影響,透過調整上述三種反應參數,我們分別得到三種聚集且不規則狀的奈米顆粒,證明PVP做為界面活性劑以及高分子分散劑對產物形態所帶來的益處。
除此之外,我們同樣使用回流加熱法,在製備奈米球的系統中加入氫氧化鈉,以同樣的反應溫度以及時間,成功製備均勻(uniform)且分散的二氧化鈰奈米棒(ceria nanorods),達到了形狀的控制,也改善了在鹼性環境下合成二氧化鈰奈米棒容易聚集的問題,進一步發現在PVP和乙二醇的輔助下,只需要0.5小時就能製備出二氧化鈰奈米棒,且若沒有在系統中添加PVP與乙二醇,所得之二氧化鈰奈米棒之聚集程度高出許多,甚至難以辨識其輪廓,在奈米棒的周邊也會有許多雜質生成。上述的現象可證明PVP能夠加速奈米晶粒的自組裝(self-assembly),且有助於二氧化鈰奈米棒的分散。最後為了控制二氧化鈰奈米棒的長度與長寬比,我們嘗試了不同的反應參數。當我們改變了反應時間及溫度,觀察反應時間2-24小時,反應溫度100-180℃,發現隨著反應時間由2小時上升到6小時,奈米棒有變長的情形,但同時聚集的程度也變得更加明顯,且可以明顯看出有許多不同形態的產物,當反應時間從6小時拉長到24小時,奈米棒似乎反而有變短的趨勢,但是一樣有許多不同型態的產物生成。當我們改變了前驅物的濃度,發現當前驅物濃度降低時,二氧化鈰奈米棒的長度有些微的上升,同時寬度並沒有改變。最後當我們改變氫氧化鈉的濃度,發現奈米棒的長度有顯著的上升,因此我們可以認定若要改變二氧化鈰奈米棒的長度,增加氫氧化鈉濃度是比較有效率的做法。
zh_TW
dc.description.abstractCerium dioxide (ceria) nanomaterials is the most widely applied metal oxide among rare earth family due to their small size, large specific surface area, high chemical activity, and they are the most abundant element in lanthanide metal. Ceria has excellent development on catalyst, semiconductor, electrochemistry, and biomedical science. Researches of synthesis processes, different shapes of ceria nanoparticles and their shape dependent applications have been published several times. However, most of the ceria nanomaterials are synthesized by hydrothermal method and solvothermal method, therefore, this study changed from the synthesis method, using reflux heating method to synthesize, we hope that we can prepare ceria nanomaterials employed lower technical equipment and shorter reaction time while retaining the stability.
First, we use the reflux heating method, and with the aid of PVP and ethylene glycol , we successfully synthesize ceria nanospheres at temperature 140℃ and reaction time 2 hours, which with the average radius of 45nm. Next, we investigate the effect of the precursor concentration on the reaction. By adjusting the concentration of the precursor and ethylene glycol, we successfully prepared monodisperse nanospheres with average particle sizes of 20.6 nm and 91.7 nm. Last, we separately discuss the effects of PVP, solvent and precursor on the reaction. By adjusting the above three reaction parameters, we obtained three aggregated and irregular nanoparticles, proving the effect of PVP as a surfactant and soft template on the product morphology.
In addition, again, we used reflux heating method, and add sodium hydroxide to the system for preparing nanospheres. We successfully prepared uniform and dispersed ceria nanorods at the same reaction temperature and time, which means we achieve the shape selective synthesis, and also improved the common problem of aggregation when preparing ceria nanorods in alkaline environment. It was further found that with the aid of PVP and ethylene glycol, it took only 0.5 hours to prepare ceria nanorods, and if without PVP and ethylene glycol, the degree of aggregation of the obtained ceria nanorods is much higher, and it is even difficult to identify the rod shape, what’s more, many impurities are generated around the nanorods. The above phenomenon can explain that PVP and ethylene glycol can push the speed of self-assembly of nanocrystal grains and contribute to the dispersion of ceria nanorods. Finally, with the purpose of control the length and aspect ratio of the ceria nanorods, we tried different reaction parameters. As we change the reaction time at the range of 2-24 hours and reaction temperature at the range of 100-180℃, it was found that as the reaction time increased from 2 hours to 6 hours, the nanorods became a little bit longer, but at the same time the degree of aggregation became more obvious, and it can be clearly seen that there are some different shapes of products. When the reaction time extended from 6 hours to 24 hours, the nanorods seem to have a tendency to become shorter, but there are still many different shapes of products. When we changed the concentration of the precursor, we found that as the concentration of the precursor decreased, the length of the ceria nanorods increased slightly, while the width did not change. Finally, when we changed the concentration of sodium hydroxide, we found that the length of the nanorods increased significantly. Therefore, we can assume that it is more efficient to increase the concentration of sodium hydroxide if we want to change the length of the ceria nanorods.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:58:37Z (GMT). No. of bitstreams: 1
U0001-1308202013282300.pdf: 32654873 bytes, checksum: ce4aec86792526ee9b700e49a39a779d (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
口試委員會審定書 i
誌謝 iii
摘要 v
ABSTRACT vii
目錄 ix
圖目錄 xii
表目錄 xix
第一章 緒論 1
第二章 文獻回顧 4
2.1 奈米材料 4
2.1.1 表面效應 4
2.1.2 小尺寸效應 5
2.1.3 量子尺寸效應 5
2.2 二氧化鈰 5
2.3 二氧化鈰奈米顆粒之製備 5
2.4 二氧化鈰奈米球 7
2.4.1 二氧化鈰奈米球的製備 7
2.4.2 二氧化鈰奈米球應用於化學機械研磨液 9
2.5 二氧化鈰奈米棒 10
2.5.1 二氧化鈰奈米棒的製備 10
2.5.2 二氧化鈰奈米棒應用於觸媒 12
2.6 二氧化鈰奈米材料之形狀的控制 12
第三章 實驗藥品、設備與實驗方法 26
3.1 實驗藥品 26
3.1.1 製備二氧化鈰 藥品 26
3.1.2 清潔用 藥品 26
3.2 實驗設備 27
3.2.1 加熱系統 27
3.2.2 回流裝置 27
3.2.3 其他儀器 27
3.3 實驗方法 29
3.3.1 二氧化鈰奈米球的合成 29
3.3.2 二氧化鈰奈米棒的合成 30
3.3.3 動態光散射粒徑及界面電位分析儀量測 31
3.3.4 X光繞射儀 31
3.3.5 場發射掃描式電子顯微鏡 32
3.3.6 場發射穿透式電子顯微鏡 32
3.3.7 酸液配製 33
第四章 合成二氧化鈰奈米球之結果探討 39
4.1 二氧化鈰奈米球的合成與粒徑的控制 39
4.1.1 標準粒徑之奈米球 40
4.1.2 降低前驅物濃度對粒徑造成的影響 40
4.1.3 增加前驅物濃度對粒徑造成的影響 41
4.2 界面活性劑、溶劑與前驅物對反應的影響之探討 42
第五章 合成二氧化鈰奈米棒之結果探討 61
5.1 二氧化鈰奈米棒的特性探討 61
5.2 以回流加熱法合成二氧化鈰奈米棒之結果探討 62
5.2.1 反應溫度對回流加熱法合成二氧化鈰奈米棒之影響 63
5.2.2 反應時間對回流加熱法合成二氧化鈰奈米棒之影響 63
5.2.3 以回流加熱法合成二氧化鈰奈米棒之長度的控制 66
5.3 以回流加熱法添加分散劑合成二氧化鈰奈米棒之結果探討 68
5.3.1 以回流加熱法添加分散劑合成二氧化鈰奈米棒之反應評估 68
5.3.2 反應溫度對以回流加熱法添加分散劑合成二氧化鈰奈米棒之影響 69
5.3.3 反應時間對以回流加熱法添加分散劑合成二氧化鈰奈米棒之影響 70
5.3.4 氫氧化鈉濃度對以回流加熱法添加分散劑合成二氧化鈰奈米棒之影響 72
5.4 回流加熱法合成二氧化鈰奈米棒的綜合討論 73
5.4.1 合成機制的討論 73
5.4.2 回流加熱法合成單晶二氧化鈰奈米棒之探討 74
第六章 結論 131
參考文獻 132
dc.language.isozh-TW
dc.title以回流加熱法製備二氧化鈰奈米顆粒zh_TW
dc.titleSynthesis of CeO2 Nanoparticles by Reflux Heating Methoden
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英(Wen-Yen Chiu),呂宗昕(Chung-Hsin Lu),游文岳(Wen-Yueh Yu)
dc.subject.keyword二氧化鈰,奈米球,奈米棒,奈米結構,回流加熱法,zh_TW
dc.subject.keywordceria,nanosphere,nanorods,nanostructure,reflux heating method,en
dc.relation.page138
dc.identifier.doi10.6342/NTU202003235
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-1308202013282300.pdf
  目前未授權公開取用
31.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved