請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60135
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭鴻祥(Hung-Hsiang Cheng) | |
dc.contributor.author | Chi-Ling Shen | en |
dc.contributor.author | 沈志領 | zh_TW |
dc.date.accessioned | 2021-06-16T09:58:22Z | - |
dc.date.available | 2017-02-08 | |
dc.date.copyright | 2017-02-08 | |
dc.date.issued | 2016 | |
dc.date.submitted | 2016-12-09 | |
dc.identifier.citation | [1] Liu, Ansheng. 'Silicon based Optoelectronics.' April 13 2006.
[2] E. Onaran, M. C. Onbasli, A. Yesilyurt, H. Y. Yu, A. M. Nayfeh, and A. K. Okyay, 'Silicon-germanium multi-quantum well photodetectors in the near infrared, ' Opt. Express 20, 7608–7615, (2012). [3] S. Su , B. Cheng , C. Xue , W. Wang , Q. Cao , H. Xue , W. Hu , G. Zhang , Y. Zuo and Q. Wang, 'GeSn p-i-n photodetector for all telecommunication bands detection', Opt. Express, vol. 19, no. 7, pp. 6400-6405, (2011). [4] http://www.bbcmag.com/2008issues/june08/BBP_June08_OtoL.pdf. [5] Su, Shaojian, et al.'GeSn pin photodetector for all telecommunication bands detection.' Optics express 19.7: 6400-6405, (2011). [6] https://en.wikipedia.org/wiki/Direct_and_indirect_band_gaps. [7] http://www.doitpoms.ac.uk/tlplib/semiconductors/direct.php. [8] http://www.invocom.et.put.poznan.pl/~invocom/C/P1-9/swiatlowody_en/p1-1_6_ 3.htm. [9] http://www.ioffe.ru/SVA/NSM/Semicond/SiGe/bandstr.html. [10] K. Gallacher, P. Velha, D. J. Paul, S. Cecchi, J. Frigerio, D. Chrastina, and G. Isella, '1.55 μm direct bandgap electroluminescence from strained n-Ge quantum wells grown on Si substrates', Appl. Phys. Lett.101, 211101, (2012). [11] El Kurdi, M., Kociniewski, T., Ngo, T. P., Boulmer, J., Debarre, D., Boucaud, et al, D. 'Enhanced photoluminescence of heavily n-doped germanium. 'Appl. Phys. Lett, 94(19), 191107,(2009). [12] http://www2.warwick.ac.uk/fac/sci/physics/current/postgraduate/regs/mpags/ex5 /devices/mosfet. [13] Ssu-Hsuan Huang. ' Investigation of Germanium-tin alloy optoelectronics. ' National Taiwan University, (2015). [14] https://en.wikipedia.org/wiki/Heterojunction. [15] https://commons.wikimedia.org/wiki/File:Heterojunction_types.png. [16] He, G., & Atwater, H. A. ' Interband transitions in Sn x Ge 1− x alloys. 'Physical review letters, 79(10), 1937, (1997). [17] Wirths, S., Geiger, R., Von Den Driesch, N., Mussler, G., Stoica, T., Mantl, et al, 'Lasing in direct-bandgap GeSn alloy grown on Si. ' Nature photonics, 9(2), 88-92,(2015). [18] Ghetmiri, S. A., Du, W., Margetis, J., Mosleh, A., Cousar, L., Conley, B. R., et al 'Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. 'Applied Physics Letters, 105(15), 151109, (2014). [19] Gupta, Suyog, et al. 'Achieving direct band gap in germanium through integration of Sn alloying and external strain.' Journal of Applied Physics 113.7: 073707,(2013). [20] Tonkikh, Alexander A., et al. 'Pseudomorphic GeSn/Ge (001) quantum wells: Examining indirect band gap bowing.' Applied Physics Letters 103.3: 032106, (2013) [21] Homewood, Kevin P., and Manon A. Lourenço. 'Optoelectronics: The rise of the GeSn laser.' Nature Photonics 9.2: 78-79, (2015). [22] http://resource.npl.co.uk/mtdata/phdiagrams/gesn.htm. [23] https://en.wikipedia.org/wiki/Carrier_generation_and_recombination. [24] http://www.pveducation.org/pvcdrom/pn-junction/types-of-recombination [25] R. N. Hall, 'Electron-hole recombination in germanium,' Phys. Rev. 87(2), 387 (1952). [26] Auger, P. 'Sur les rayons secondaires produits dans un gaz par des rayons XCR Acad. Sc., 1925, 180, 65. AUGER P. et PERRIN F.' Considérations théoriques sur les directions d’émission des photoélectrons. C. R. Acad. Sc180: 1742. (1925). [27]https://semiconductingmenagerie.wordpress.com/2009/04/02/carrier-recombination- and-generation/. [28] Cheung, S. K., and N. W. Cheung. 'Extraction of Schottky diode parameters from forward current‐voltage characteristics.'Applied Physics Letters 49.2: 85-87,(1986). [29] Sze, Simon M., and Kwok K. Ng. Physics of semiconductor devices. John wiley & sons,(2006). [30] Mathews, Jay. 'Investigation of Light Absorption and Emission in Ge and GeSn Films Grown on Si Substrates.' Diss. Arizona State University,( 2011). [31] Cho, A. Y.; Arthur, J. R.; Jr. 'Molecular beam epitaxy'. Prog. Solid State Chem. 10: 157–192,(1975). [32] http://mxp.physics.umn.edu/s07/Projects/S07_Graphene/intro.htm. [33] https://en.wikipedia.org/wiki/Photolithography. [34] http://www.microchem.com/Prod-LithographyOverviewPosNeg.htm. [35] https://www.plasma.com/en/plasma-technology/lexikon/rie/ [36] https://en.wikipedia.org/wiki/Reactive-ion_etching. [37] Ronald Curley, Thomas McCormack, and Matthew Phipps, ' Low-pressure CVD and PlasmaEnhanced CVD'. [38] http://www.oxfordplasma.de/technols/dp.htm. [39] http://www.polyteknik.com/E-Beam_Evaporation.html. [40] https://upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Electron_Beam_ Deposition_001.jpg/300px-Electron_Beam_Deposition_001.jpg. [41] https://en.wikipedia.org/wiki/Wire_bonding. [42] https://en.wikipedia.org/wiki/Transmission_electron_microscopy. [43] https://en.wikipedia.org/wiki/X-ray_crystallography. [44] https://sites.google.com/site/dfanagno1/xrd. [45] http://chemwiki.ucdavis.edu/Core/Analytical_Chemistry/Instrumental_Analysis/ Diffraction/Powder_X-ray_Diffraction [46] Dong, Yuan, et al. 'Suppression of dark current in germanium-tin on silicon pin photodiode by a silicon surface passivation technique.' Optics express 23.1418611-18619,(2015) [47]Roucka,Radek, et al.'High-performance near-IR photodiodes: A novel chemistry-based approach to Ge and Ge–Sn devices integrated on silicon.' Quantum Electronics, IEEE Journal of 47.2 213-222. (2011). [48] Z. Huang, J. Oh, S. K. Banerjee, and J. C. Campbell, “Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors,” IEEE J. Quantum Electron., vol. 43, no. 3, pp. 238–242, Mar. (2007). [49]Saks, N. S. 'A technique for suppressing dark current generated by interface states in buried channel CCD imagers.' Electron Device Letters, IEEE 1.7 131-133. (1980). [50] Mathews, Jay, et al. 'Extended performance GeSn/Si (100) pin photodetectors for full spectral range telecommunication applications.' Applied Physics Letters 95.13: 133506,(2009). [51] Mäder, K. A., A. Baldereschi, and H. Von Känel. 'Band structure and instability of Ge1− xSnx alloys.'Solid state communications 69.12: 1123-1126,(1989). [52] D'Costa, Vijay R., et al. 'Sn-alloying as a means of increasing the optical absorption of Ge at the C-and L-telecommunication bands.' Semiconductor Science and Technology 24.11: 115006,(2009). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60135 | - |
dc.description.abstract | 近幾年,在關於四族的光電元件中,如操作在近紅外光波段的光偵測器和光發射器,以鍺錫為基底的p-i-n二極體引起了許多人極大的研究興趣,許多關於光特性的研究,如光的吸收及發射,已經完成了。然而進一步了解電性是很重要的。對於光吸收端來說,最重要的參數就是暗電流,光響應以及頻寬,在這篇文章中我們著重在討論暗電流的部分,因為暗電流會增加積體電路光電接收端能量的消耗,跟訊號雜訊比(SNR)。
但是,在實際上鍺錫二極體關於電流電壓的討論是十分複雜的,舉例來說,當金屬/半導體接觸的時候有能量位障存在於異質表面,因此,更深入的探討關於載子的行為以及傳輸是很必要的。在這裡,我們將會描述兩個都是由MBE所成長但結構不同的鍺錫p-i-n二極體,N924和N935,接著會詳細的分析從實驗上得到關於電性的數據。 | zh_TW |
dc.description.abstract | In recent years, GeSn-based p-i-n diodes have attracted great research attention on group IV opto-electronics such as photodetectors and emitters operated at near infrared wavelengths. Lots of efforts have been done to obtain the photo-electronic properties such as light absorption or emission. However, to further understand the electrical characteristics is needed. For optical receivers the critical photodiode parameters are dark current, responsivity, and bandwidth. In this paper, we will focus on dark current which may increase the power consumption and degrade the signal-to-noise-ratio (SNR) of the integrated optical receivers.
However, for a practical GeSn-based diode, the I-V analysis is complicated, for example, the potential barriers at the hetero-interface as well as at the metal/semiconductor contact. Therefore, deeper investigation on the carrier transport and behaviors is needed. In this paper, we will report on two different GeSn-based p-i-n diodes, N924 and N935, which fabricated by MBE, then briefly analysis the result of electrical characteristics from our measurements. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:58:22Z (GMT). No. of bitstreams: 1 ntu-105-R03943104-1.pdf: 2991466 bytes, checksum: 2c5c10a5b77903610117ff56f484d28c (MD5) Previous issue date: 2016 | en |
dc.description.tableofcontents | Content
口試委員審定書•••••••••••••••••••••••••••I 誌謝•••••••••••••••••••••••••••••••• II 中文摘要•••••••••••••••••••••••••••••III Abstract •••••••••••••••••••••••••••••IV Content ••••••••••••••••••••••••••••••V Lists of figures•••••••••••••••••••••••••••VII Lists of tables••••••••••••••••••••••••••••X Chapter 1 introduction 1.1Motivation ………………………………………………………………………1 1.2 Band gap engineering and group IV semiconductor materials ………………3 1.3 Strain effect………………………………………………………………………6 1.4 Heterojunction……………………………………………………………………7 1.5 GeSn alloy ………………………………………………………………………8 1.6 Carrier generation and recombination ………………………………………10 1.7 The theory of p-n diode ………………………………………………………12 Chapter 2 Experimental equipment and characterization techniques 2.1Experimental equipments………………………………………………………14 2.1.1 Molecular beam epitaxy………………………………………………………15 2.1.2 Mask aligner……………………………………………………………………17 2.1.3 Reactive ion etcher……………………………………………………………19 2.1.4 Plasma enhanced chemical vapor deposition…………………………………21 2.1.5 Electron beam metal evaporator ………………………………………………22 2.1.6 Manual wire bonder……………………………………………………………24 2.2 Measurement setup……………………………………………………………26 2.2.1 Transmission electron microscopy……………………………………………26 2.2.2 X-Ray Diffraction……………………………………………………………27 Chapter 3 Fabrication of photodetector on a Si substrate 3.1 Introduction……………………………………………………………………29 3.2 Sample structure and characteristics…………………………………………29 3.3 Device processing of photodiode………………………………………………32 3.4 Experiment results and discussions with N935………………………………40 Chapter 4 Fabrication of photodetector on a Ge substrate 4.1 Sample structure and characteristics…………………………………………47 4.2 Experiment results and discussions with N924………………………………50 Chapter 5 Conclusions and future works 5.1 Conclusions……………………………………………………………………57 5.2 Future work……………………………………………………………………58 References………………………………………………………………………59 | |
dc.language.iso | en | |
dc.title | p-i-n結構之鍺錫元件電流特性 | zh_TW |
dc.title | Electrical characteristics of GeSn p-i-n structure | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 余英松(Ing-Song YU),洪冠明(Kuan-Ming Hung),楊斯博(Zu-Po Yang) | |
dc.subject.keyword | 鍺錫合金,光偵測器,活化能,理想因子,暗電流,表面鈍化, | zh_TW |
dc.subject.keyword | GeSn alloy,photodetectors,activation energy,ideality factor,dark current,surface passivation, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201603801 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2016-12-13 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-105-1.pdf 目前未授權公開取用 | 2.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。