Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60132
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福(King-Fu Lin)
dc.contributor.authorHsin-Ping Chiuen
dc.contributor.author邱馨平zh_TW
dc.date.accessioned2021-06-16T09:58:10Z-
dc.date.available2017-02-08
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-12-13
dc.identifier.citation1. 行政院衛生福利部統計處 http://www.mohw.gov.tw/cht/DOS/.
2. Jakob Suckale, M.S., Pancreas islets in metabolic signaling - focus on the beta-cell. Frontiers in Bioscience, 2008. 13: p. 7156-7171.
3. Wang, W., et al., Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. Journal of Materials Research, 2011. 18(12): p. 2756-2759.
4. Anandan, S., X. Wen, and S. Yang, Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Materials Chemistry and Physics, 2005. 93(1): p. 35-40.
5. Hsieh, C.-T., et al., Field emission from various CuO nanostructures. Applied Physics Letters, 2003. 83(16): p. 3383.
6. Jisen, W., et al., Synthesis of copper oxide nanomaterials and the growth mechanism of copper oxide nanorods. Materials & Design, 2004. 25(7): p. 625-629.
7. Wang, W., et al., A simple wet-chemical synthesis and characterization of CuO nanorods. Applied Physics A: Materials Science & Processing, 2003. 76(3): p. 417-420.
8. 蘇清源, 石墨烯氧化物之特性與應用前景. PHYSICS BIMONTHLY, 2011(33-2): p. 145-256.
9. Muge Acik, Y.J.C., Cecilia Mattevi, Cheng Gong, Geunsik Lee, Kyeongjae Cho, Manish Chhowalla, Yves J. Chabal, The Role of Intercalated Water in Multilayered Graphene Oxide. ACS Nano, 2010. 4: p. 5861–5868.
10. Jaemyung Kim, L.J.C., Franklin Kim, Wa Yuan, Kenneth R. Shull, and and J. Huang, Graphene Oxide Sheets at Interfaces. Journal of the American Chemical Society 2010. 132: p. 8180–8186.
11. Iijima, S., Helical microtubules of graphitic carbon. Letters to Nature, 1991. 354: p. 56-58.
12. Ray H. Baughman, A.A.Z., Walt A. de Heer, Carbon Nanotubes—the Route Toward Applications. Science, 2002. 297(5582): p. 787-792.
13. Lin, K.-F., et al., Exfoliation of montmorillonite by the insertion of disklike micelles via the soap-free emulsion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry, 2006. 44(19): p. 5572-5579.
14. Utracki, L.A., M. Sepehr, and E. Boccaleri, Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polymers for Advanced Technologies, 2007. 18(1): p. 1-37.
15. Chien-Chia Chu, M.-L.C. and a.J.-J.L. Chung-Min Tsai, Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. Macromolecules, 2005. 38: p. 6240-6243.
16. J. J. LIN, G.P.S., H. G. WADDILL, Synthesis and Reactivity of Mannich-Derived Polyoxyethylene Amines as Epoxy Curing Agents. Journal of Applied Polymer Science, 1997. 66: p. 2339–2346.
17. Jiang-Jen Lin, I.-J.C., Renchain Wang, and Rong-Jer Lee, Tailoring Basal Spacings of Montmorillonite by Poly(oxyalkylene)diamine Intercalation. Macromolecules, 2001. 34: p. 8832-8834.
18. Lin, J.-J. and S.-F. Lin, Phase inversion of self-aggregating Mannich amines with poly(oxyethylene) segments. Journal of Colloid and Interface Science, 2003. 258(1): p. 155-162.
19. FENG-PO TSENG, et al., Preparation and Epoxy Curing of Novel Dicyclopentadiene-Derived Mannich Amines. Journal of Applied Polymer Science, 1999. 71: p. 2129–2139.
20. Lin, K.-J., C.-A. Dai, and K.-F. Lin, Revisit to the formation mechanism of exfoliated montmorillonite/PMMA nanocomposite latex through soap-free emulsion polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(2): p. 459-466.
21. 程宥鈞, 以陰離子和陽離子脫層蒙脫石製備離子液體複合材料之製程及阻抗分析, in 國立臺灣大學材料科學與工程學研究所. 2013, 國立臺灣大學.
22. Chia-Chi Pang, M.-H.C., Thong-Yueh Lin, Tse-Chuan Chou, Ethanol Sensor by Using the Nickel Foil Electrode Electroanalysis, 2001. 13: p. 499-503.
23. Lee, Y.G. and T.-C. Chou, The Microstructure Variation Related to the Cobalt-Doped Electroless Nickel Ethanol Amperometric Sensor. Journal of The Electrochemical Society, 2003. 150(1): p. H21.
24. Han, J.-H., et al., Electrochemical oxidation of hydrogen peroxide at nanoporous platinum electrodes and the application to glutamate microsensor. Electrochimica Acta, 2006. 52(4): p. 1788-1791.
25. Sharon Marx, A.Z., Iva Turyan, and Daniel Mandler, Parathion Sensor Based on Molecularly Imprinted Sol-Gel Films. Analytical Chemistry, 2004. 76: p. 120-126.
26. Park, S., H. Boo, and T.D. Chung, Electrochemical non-enzymatic glucose sensors. Anal Chim Acta, 2006. 556(1): p. 46-57.
27. 何敏夫, 臨床化學概論. 2002: 合記圖書出版社.
28. Clark, L.C.a.C.L., Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 1962. 102(1): p. 29-45.
29. Updike, S.J.a.G.P.H., The Enzyme Electrode. Nature, 1967. 214: p. 986-988.
30. Ferri, S., K. Kojima, and K. Sode, Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird's Eye View of Glucose Sensing Enzymes. Journal of Diabetes Science and Technology, 2011. 5(5): p. 1068-1076.
31. Sejin Park, T.D.C., and Hee Chan Kim, Nonenzymatic Glucose Detection Using Mesoporous Platinum. Analytical Chemistry,, 2003. 75: p. 3046-3049.
32. Niu, X., et al., Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case. Biosens Bioelectron, 2014. 51: p. 22-8.
33. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
34. Jang, B.Z. and A. Zhamu, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. Journal of Materials Science, 2008. 43(15): p. 5092-5101.
35. Kang, X., et al., A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem, 2007. 363(1): p. 143-50.
36. Song, J., et al., Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl Mater Interfaces, 2013. 5(24): p. 12928-34.
37. Nina I. Kovtyukhova, P.J.O., Benjamin R. Martin,, S.A.C. Thomas E. Mallouk, Eugenia V. Buzaneva,| and, and A.D. Gorchinskiy|, Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemical Materials, 1999. 11: p. 771-778.
38. Xuejiao Zhou, Y.Z., ChongWang, Xiaochen Wu, Yongqiang Yang, Bin Zheng, Haixia Wu, and a.J.Z. Shouwu Guo, Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. American Chemical Society, 2012. 6: p. 6592–6599.
39. Tsai, Y., 歐姆龍血糖儀培訓資料. 2012: OMRON HEALTHCARE TAIWAN.
40. Vashist, S.K., Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta, 2012. 750: p. 16-27.
41. Ferrante do Amaral, C.E. and B. Wolf, Current development in non-invasive glucose monitoring. Med Eng Phys, 2008. 30(5): p. 541-9.
42. SARIN, D.K.S.A.G.S., Tear glucose levels in normal people and in diabetic patients. British Journal of Ophthalmology, 1980. 64: p. 693-695.
43. Bandodkar, A.J., et al., Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem, 2015. 87(1): p. 394-8.
44. Wang, J., Analytical Electrochemistry 2ed, ed. J. Wang. 2000, A JOHN WILEY & SONS, INC.
45. Macdonald, J.R., Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987. 223: p. 25-50.
46. Christopher M. A. Brett, A.M.O.B., Electrochemistry: Principles, Methods, and Applications. 1993: Oxford University Press.
47. Wang, X., E. Liu, and X. Zhang, Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochimica Acta, 2014. 130: p. 253-260.
48. Holzwarth, U. and N. Gibson, The Scherrer equation versus the 'Debye-Scherrer equation'. Nat Nanotechnol, 2011. 6(9): p. 534.
49. Cao, F., et al., Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers. Talanta, 2011. 86: p. 214-20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60132-
dc.description.abstract本論文主要著重於利用簡易的方式製備氧化銅複材應用在葡萄糖感測器之電極。參照文獻利用水熱法(Hydrothermal method) 製備氧化銅氧化石墨烯複材,其電極表現靈敏度高達3576 (μA/mM cm2),線性範圍0.01-6 mM,最低偵測極限為10 M,已可媲美現今學術界之標準。為了再進一步提升靈敏度及降低偵測極限以廣泛應用於非侵入式感測器中測量唾液、尿液中葡萄糖含量,本研究首次利用脫層蒙脫土(exMMT)、多層奈米碳管(CNT)與氧化銅奈米粒子之複合材料,結合脫層蒙脫土的催化金屬離子氧化之特性與多層奈米碳管之高導電性,以改善氧化銅之表面形貌與導電性並應用於葡萄糖感測電極。接著利用XRD、TEM、XPS鑑定表
面型態,並利用循環伏安法、安培法和交流阻抗來分析電化學特’性。
首先利用 Cu(NO3)2 與Cu(OAc)2 製備氧化銅,XRD 鑑定CuO 屬於單斜晶系;TEM 觀察Cu(NO3)2 與Cu(OAc)2 製備之氧化銅大小各別約10 nm、5 nm,Cu(OAc)2製備之CuO 電性表現較差,主要因為顆粒小團聚較密集,葡萄糖氧化後電子不易傳遞到電極表面,但加入exMMT 後,exMMT 能有效分散CuO,而且尺寸較小、比表面積較大的Cu(OAc)2 製備之CuO 電性表現較好,因此以Cu(OAc)2 製備之CuO 作為本研究主要的CuO。根據本實驗室先前之研究得知,exMMT 中的Mg 離子具有催化金屬離子氧化之特性,並且在本研究的XPS 結果中看到,CuO/exMMT複材中exMMT 會釋出Mg 離子後氧化Cu 離子,並造成複材中出現孔洞。同樣以Cu(OAc)2 利用水熱法製備CuO/CNT 複合材料,以XRD 確認CuO 為單斜晶系,CuO 顆粒尺寸約5 nm,在適當的CNT 比例下,CNT 能夠有效分散CuO並提升複材之導電性,在CuO/CNT 系統中表現最好為CuO/CNT(3.1wt%)電極。
接著在表現最好的 CuO/exMMT (0.4wt%)系統中添加不同比例之CNT,並且改變CNT 加入之時機,以增加複合材料電極的效能。最後在含有葡萄糖之鹼性溶液中、電壓0.55 V 下進行電性分析,可得到三系統中表現最好之複材電極為:CuO/exMMT(0.4wt%)、CuO/CNT(3.1wt%)、CuO/exMMT(0.4wt%)/CNT(2.1wt%),電極靈敏度分別為3582、3468、3654 (μA/mM cm2)。表現最好之三種電極經由尿液樣品測試後,結果表示上述三種電極在尿液樣品中皆可偵測葡萄糖; 干擾物測試後發現製備之CuO 、CuO/GO 、CuO/exMMT(0.4wt%)、CuO/CNT(3.1wt%)、CuO/exMMT(0.4wt%)/CNT(2.1wt%)電極對葡萄糖具有高度選擇性,血液與尿液中常見之干擾物質像是維他命c、尿酸、多巴胺等不會影響偵測;雖然在相同濃度的葡萄糖與干擾物中所偵測的電流值差不多,但干擾物在血液或尿液中濃度非常低(約1 比20 倍的葡萄糖),因此我們仍可分辨葡萄糖的存在。本研究利用簡單、有效的方法製備上述氧化銅複材電極,希望未來能產業化,大量應用在非酵素型葡萄糖感測器上。
zh_TW
dc.description.abstractIn this study, a simple strategy to prepare copper oxide/montmorillonite nanocomposite used for nonenzyme glucose detector was developed. By following the method published in the literature, we successfully prepared the CuO/GO/GCE electrode by using hydrothermal method. At the applied potential of 0.55V, the CuO/GO/GCE electrode presented a high sensitivity of 3576 (μA/mM cm2), linear range of 0.01-6 mM, detection limit of 10 M. In this research, the CuO nanoparticle was blended with exfoliate montmorillonite (exMMT) which could enhance the oxidation of metal ions and muti-walled carbon nanotube (CNT) which could improve the conductivity of CuO, and applied in non-invasive detection of glucose in saliva and urine. The surface morphology of as-prepared nanocomposites was characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Electrochemical measurements including cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy (EIS) were employed to estimate their sensibility.
First, CuO in monoclinic phase were prepared by Cu(NO3)3 and Cu(OAc)2 with diameter of 10 nm and 5 nm respectively which were characterized by XRD and TEM. Because of the aggregation of CuO in nature, glucose cannot diffuse into the porous surface of electrode to obtain the desirable electrochemical performance. When employing the appropriate concentration of exMMT, CuO can be effectively disaggregated. Therefore, CuO/exMMT prepared by Cu(OAc)2 was used for further studies in this research. According to the past research in our laboratory, Mg ion of exMMT could accelerate the oxidation of metal ion, and the XPS result also showed the exMMT would release the Mg ions to oxidase Cu ions in the CuO/exMMT composite, which may lead to the 3D porous structure.
CuO/CNT were also fabricated by hydrothermal process. The CuO of CuO/CNT was in monoclinic phase with the particle size about 5 nm. Under the appropriate concentration of CNT, CuO can be disaggregated by CNT and improved composite’s conductivity. The result showed CuO/CNT (3.1wt%) composite had the best performance in the CuO/CNT system.
Next, because the CuO/exMMT (0.4wt%) system had the highest sensitivity, we further incorporated different amount of CNT with the control of addition time to enhance the performance of composite electrodes. The results indicated that CuO/exMMT (0.4wt%), CuO/CNT (3.1wt%) and CuO/exMMT(0.4wt%)/CNT (2.1wt%) have the excellent performance in the glucose detection with sensitivity of 3582、3468、3654 (μA/mM cm2) at the applied potential of 0.55V.
Moreover, these three electrodes can be used to determine the glucose concentration in urine. The interfering test showed the good selectivity of CuO, CuO/GO, CuO/exMMT(0.4wt%), CuO/CNT(3.1wt%), and CuO/exMMT(0.4wt%)/CNT(2.1wt%) electrodes toward glucose blending with common interfering species, such as ascorbic acid, uric acid, dopamine etc. Althought the sensitivity of these electrodes for the interfering species are almost the same as glucose, the concentration of interfering species in blood or urine is very low and will not interfere with the detection of glucose.
Therefore, this research has demonstrated a simple and effective method to fabricate CuO nanocomposite electrodes for nonenzymatic detection of glucose.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:58:10Z (GMT). No. of bitstreams: 1
ntu-105-R03549020-1.pdf: 8411540 bytes, checksum: 31bc710fc91ec98838f61d2f6a5a7b8d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 x
表目錄 xviii
Chapter 1 緒論 1
1.1 前言 1
1.2 糖尿病之簡介 2
1.3 奈米複合材料之介紹 4
1.3.1 氧化銅 (Cupper Oxide, CuO) 4
1.3.2 氧化石墨烯 (Graphene Oxide, GO) 5
1.3.3 奈米碳管 (Carbon Nanotubes, CNTs) 6
1.3.4 蒙脫石 (MMT) 8
1.4 研究動機與目的 11
1.5 研究架構 12
Chapter 2 文獻回顧與實驗原理 13
2.1 葡萄糖感測器之簡介 13
2.2 電化學分析原理 18
2.2.1 循環伏安法(Cyclic Voltammetry, CV) 18
2.2.2 計時安培法(Chronoamperometry) 20
2.2.3 交流阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 20
Chapter 3 實驗設備與方法 24
3.1 實驗藥品與材料 24
3.2 實驗儀器與設備 25
3.3 材料製備方法 26
3.3.1 製備氧化銅 (CuO) 26
3.3.2 製備氧化石墨烯 (GO) 26
3.3.3 製備氧化銅/氧化石墨烯 (CuO/GO) 之複合材料 27
3.3.4 製備脫層蒙脫石 (exMMT) 27
3.3.5 製備氧化銅/脫層蒙脫石(CuO/exMMT)之複合材料 28
3.3.6 製備氧化銅/多層奈米碳管 (CuO/CNT) 之複合材料 29
3.3.7 製備氧化銅/脫層蒙脫石/多層奈米碳管 (CuO/exMMT/CNT) 之複合材料 29
3.4 複材電極製備方法 30
3.4.1 玻璃碳電極預處理 30
3.4.2 複合材料電極 30
3.5 電化學系統裝置 31
3.5.1 量測參數設定 32
3.5.2 電極靈敏度測試計算 32
3.6 儀器鑑定與試片製作 33
3.6.1 TEM 33
3.6.2 XRD 33
3.6.3 XPS 33
3.6.4 TGA 33
3.7 尿液樣品測定製備 34
3.7.1 尿液樣品製備 34
3.7.2 干擾物樣品製備 34
Chapter 4 結果與討論 36
4.1 氧化銅/氧化石墨烯(CuO/GO)複材之結構與電性分析 36
4.1.1 氧化石墨烯(GO)與CuO/GO複材之結構分析 36
4.1.2 氧化銅/氧化石墨烯(CuO/GO)電極之電性分析 38
4.1.3 總結 42
4.2 不同前驅物製備氧化銅(CuO)之結構與電性分析 43
4.2.1 兩種不同前驅物製備之CuO表面形貌 43
4.2.2 兩種不同前驅物製備之CuO晶型結構分析 46
4.2.3 CuO電極之CV測量 48
4.2.4 CuO電極之安培法測量 50
4.2.5 CuO電極之交流阻抗分析 53
4.3 氧化銅與脫層蒙脫石(CuO/exMMT)複材之結構與電性分析 55
4.3.1 脫層蒙脫石(exMMT)之含量鑑定與結構分析 55
4.3.2 兩種前驅物製備之CuO加exMMT之複材的表面形貌與電性分析 58
4.3.3 不同添加順序之CuO/exMMT複材表面型態與電性分析 63
4.3.4 CuO/exMMT表面形貌與結構分析 66
4.3.5 CuO/exMMT電極之電性分析 72
4.3.6 CuO/exMMT電極之交流阻抗分析 77
4.4 氧化銅與奈米碳管(CuO/CNT)複材之結構與電性分析 82
4.4.1 多層奈米碳管(CNT)之TEM影像 82
4.4.2 CuO/CNT之表面型態與結構分析 82
4.4.3 CuO/CNT電極之電性分析 86
4.4.4 CuO/CNT電極之交流阻抗分析 90
4.5 氧化銅與脫層蒙脫石及奈米碳管複材(CuO/exMMT/CNT)之結構與電性分析 95
4.5.1 CuO/exMMT/CNT之表面型態與結構分析 95
4.5.2 CuO/exMMT/CNT之電性分析 97
4.5.3 CuO/exMMT/CNT複材之不同添加CNT時間之電性探討 101
4.5.4 CuO/exMMT/CNT電極之交流阻抗分析 103
4.5.5 CuO/exMMT與CuO/exMMT/CNT系統電性比較 109
4.6 尿液樣品測定與干擾物測試 110
4.6.1 尿液樣品測定 110
4.6.2 干擾物測試 114
Chapter 5 結論 117
Chapter 6 參考資料 120
dc.language.isozh-TW
dc.subject多層奈米碳管zh_TW
dc.subject脫層蒙脫土zh_TW
dc.subject氧化石墨烯zh_TW
dc.subject奈米複合 材料zh_TW
dc.subject氧化銅奈米粒子zh_TW
dc.subject水熱法zh_TW
dc.subject非侵入式zh_TW
dc.subject非酵素型葡萄糖感測器zh_TW
dc.subjectexMMTen
dc.subjectnon-invasiveen
dc.subjecthydrothermalen
dc.subjectcopper-oxide nanoparticleen
dc.subjectnanocompositeen
dc.subjectgraphene oxideen
dc.subjectnonenzymatic glucose detectoren
dc.subjectMWCNTen
dc.title氧化銅奈米複合材料的製備以及在非酵素型葡萄糖感測器上之應用zh_TW
dc.titleSynthesis of Copper Oxide Nano-composite and Application in Non-enzymatic Glucose Detectoren
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee童世煌(Shih-Huang Tung),羅世強(Shyh-Chyang Luo)
dc.subject.keyword非酵素型葡萄糖感測器,非侵入式,水熱法,氧化銅奈米粒子,奈米複合 材料,氧化石墨烯,脫層蒙脫土,多層奈米碳管,zh_TW
dc.subject.keywordnonenzymatic glucose detector,non-invasive,hydrothermal,copper-oxide nanoparticle,nanocomposite,graphene oxide,exMMT,MWCNT,en
dc.relation.page122
dc.identifier.doi10.6342/NTU201603799
dc.rights.note有償授權
dc.date.accepted2016-12-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
8.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved