請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60125完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧茂華(Mao-Hua Teng) | |
| dc.contributor.author | Hong-Yi Lin | en |
| dc.contributor.author | 林宏益 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:57:42Z | - |
| dc.date.available | 2017-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-12-15 | |
| dc.identifier.citation | [1] M. Poplawska, M. Bystrzejewski, I. P. Grudziński, M. A. Cywińska, J. Ostapko, A. Cieszanowski, “Immobilization of gamma globulins and polyclonal antibodies of class IgG onto carbon-encapsulated iron nanoparticles functionalized with various surface linkers,” Carbon 74, 180-194 (2014).
[2] M, Bystrzejewski, A, Huczko, H, Lange, S, Cudziło, W, Kiciński, “Combustion synthesis route to carbon-encapsulated iron nanoparticles,” Diamond Relat. Mater. 16, 225-228 (2007). [3] A. Taylor, Y. Krupskaya, S. Costa, S. Oswald, K. Krämer, S. Füssel, R. Klingeler, B. Büchner, E. Borowiak-Palen, M. P. Wirth, “Functionalization of carbon encapsulated iron nanoparticles,” J. Nanoparticle Res. 12, 513-519 (2010). [4] J. J. Host, V. P. Dravid, M. H. Teng, “Systematic study of graphite encapsulated nickel nanocrystal synthesis with formation mechanism implications,” J. Mater. Res. 13, 2547-2555 (1998). [5] M. H. Teng, C. I Hsiao, Y. L. Hsiao, “Formation mechanism of microcrystalline spherical graphite particles in solidified nickel,” Diamond Relat. Mater. 18, 396-398 (2009). [6] C. H. Liang, H. C. Tsai, Taiwan Patent No. 96,144,351 (1 June, 2009). [7] S. R. Chung, K. W. Wang, M. H. Teng, T. P. Perng, “Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder,” Int. J. Hydrogen Energy 34, 1383-1388 (2009). [8] U. O. Hafeli, “Magnetically modulated therapeutic systems,” Int. J. Pharm. 277, 19-24 (2004). [9] 吳俊人 (2007) “利用聚乙二醇和葉酸接枝於石墨包覆鐵磁性奈米粒子做癌症之熱治療,國立台灣大學碩士論文,共123頁。 [10] C. C. Chiu, J. C. Lo, M. H. Teng, “A novel high efficiency method for the synthesis of graphite encapsulated metal (GEM) nanoparticles,” Diamond Relat. Mater. 24, 179-183 (2012). [11] M. H. Teng, S. W. Tsai, C. I. Hsiao, Y. D. Chen, “Using diamond as a metastable phase carbon source to facilitate the synthesis of graphite encapsulated metal (GEM) nanoparticles by an arc-discharge method,” J. Alloys Compd. 434-435, 678-681 (2007). [12] D. G. Gromov, S. A. Gavrilov, Thermodynamics - Physical Chemistry of Aqueous Systems, edited by J. C. Moreno-Piraján (2011), InTech, DOI: 10.5772/21429. [13] J. Jing, A. Krämer, R. Birringer, H. Gleiter, U. Gonser, “Modified atomic structure in a Pd-Fe-Si nanoglass: A Mössbauer study,” J. Non-Cryst. Solids 113, 167-170 (1989). [14] M. Tomita, Y. Saito, T. Hayashi, “LaC2 encapsulated in graphite nano-particle,” Jpn. J. Appl. Phys. 32, L280-282 (1993). [15] R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, “Single crystal metals encapsulated in carbon nanoparticles,” Science 259, 346-348 (1993). [16] J. J. Host, M. H. Teng, B. R. Elliot, J. H. Hwang, T. O. Mason, D. L. Johnson, V. P. Dravid, “Graphite encapsulated nanocrystals produced using a low carbon : metal ratio,” J. Mater. Res. 12, 1268-1273 (1996). [17] W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, “Solid C60: a new form of carbon,” Nature 347, 354-358 (1990). [18] E. A. Katz, Nanostructured Materials for Solar Energy Conversion, edited by T. Soga (Elsevier, 2006), Chap. 13, 361-443. [19] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerene,” Nature 318, 162-163 (1985). [20] V. P. Dravid, J. J. Host, M. H. Teng, B. R. Elliott, J. H. Hwang, D. L. Johnson, T. O. Mason, J. R. Weertman, “Controlled-size nanocapsules,” Nature 374, 602 (1995). [21] C. Guerret-Piécourt, Y. L. bouar, A. Lolseau, H. Pascard, “Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes,” Nature, 372, 761-765 (1994). [22] S. Seraphin, D. Zhou, J. Jiao, “Filling the carbon nanocages,” J. Appl. Phys. 80, 2079-2104 (1996). [23] S. Seraphin, D. Zhou, J. Jiao, M. Minke, S. Wang, T. Yadav, J. C. Withers, “Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters,” Chem. Phys. Lett. 217, 191-195 (1994). [24] B. R. Elliot, J. J. Host, V. P. Dravid, M. H. Teng, J. H. Hwang, “A descriptive model linking possible formation mechanisms for graphite encapsulated nanoparticles to processing parameters,” J. Mater. Res. 12, 3328-3344 (1997). [25] T. J. Konno, R. Sinclair, “Crystallization of amorphous carbon in carbon-cobalt layered thin films,” Acta. Metall. Mater. 43, 471-484 (1995). [26] J. J. Host, Ph.D. dissertation, Arc synthesis and magnetic properties of graphite encapsulated nanocrystals, Northwestern University, 1997. [27] S. S. Lee, M. H. Teng, “Dispersion of graphite encapsulated nickel nanoparticles in a NP-9 colloidal system,” Diamond Relat. Mater. 20, 183-186 (2011). [28] M. H. Teng, S. W. Tsai, W. A. Chiou, “Magnetic packing of graphite encapsulated nickel nanoparticles,” J. Alloys Compd. 495, 488-490 (2010). [29] J. C. Lo, J. C. Lu, M. H. Teng, “A new crucible design of the arc-discharge method for the synthesis of graphite encapsulated metal (GEM) nanoparticles,” Diamond Relat. Mater. 20, 330-333 (2011). [30] S. S. Li, J. C. Lu, M. H. Teng, “Synthesis of carbon encapsulated non-ferromagnetic metal nanoparticles,” Diamond Relat. Mater. 24, 88-92 (2012). [31] S. S. Li, C. C. Chiu, R. W. Chang, Y. S. Liou, M. H. Teng, “Synthesis and properties of modified graphite encapsulated iron metal nanoparticles,” Diamond Relat. Mater. 63, 153-158 (2016). [32] 林沛彥 (1999) “石墨包裹奈米晶粒材料與機械設計”,國立台灣大學學士論文,共68頁。 [33] 張麗娟 (1999) “石墨包裹奈米鎳晶粒的純化分離效果初步研究”,國立台灣大學碩士論文,共140頁。 [34] 林春長 (2002) “石墨包裹奈米鈷晶粒之純化研究”,國立台灣大學碩士論文,共126頁。 [35] 鄭啟煇 (2002) “用電弧法在甲烷與氦氣混合氣體中合成石墨包裹奈米鎳晶粒的初步結果”,國立台灣大學碩士論文,共69頁。 [36] 蕭敦仁 (2005) “石墨包裹鎳奈米晶粒在高溫高壓下合成鑽石的初步探討”,國立台灣大學碩士論文,共83頁。 [37] 陳永得 (2006) “以人造鑽石及噴氣式電弧法合成石墨包裹奈米鐵晶粒之初步結果”,國立台灣大學碩士論文,共88頁。 [38] 蕭崇毅 (2006) “合成石墨包裹奈米金屬晶粒製程中熔融金屬內碳原料變化之初步研究”,國立台灣大學碩士論文,共87頁。 [39] 李尚實 (2006) “不同粒徑大小的石墨包裹奈米鎳晶粒在NP-9膠體系統中之分散研究”,國立台灣大學碩士論文,共95頁。 [40] 蔡少葳 (2007) “石墨包裹奈米鎳晶粒的緻密化之初步研究”,國立台灣大學碩士論文,共75頁。 [41] 羅仁傑 (2010) “石墨包裹奈米鐵晶粒的合成方法改進研究:石墨坩堝設計”,國立台灣大學碩士論文,共71頁。 [42] 蕭淵隆 (2010) “甲醇之蒸散速率效應對石墨包裹奈米鎳晶粒緻密化之研究”,國立台灣大學碩士論文,共76頁。 [43] 呂睿晟 (2011) “非鐵磁性石墨包裹奈米晶粒合成方法之初步研究”,國立台灣大學碩士論文,共80頁。 [44] 邱志成 (2012) “以高合成效率的製程方法合成石墨包裹奈米鐵、鈷、鎳以及銅晶粒之初步研究”,國立台灣大學碩士論文,共105頁。 [45] 李雱雯 (2013) “以退火改善石墨包裹奈米鐵晶粒之包裹良率”,國立台灣大學碩士論文,共75頁。 [46] 李尚實 (2015) “石墨包裹奈米鐵晶粒的純化及表面改質程序之研究”,國立台灣大學博士論文,共153頁。 [47] 許舜婷 (2016) “ 輸入微量液態碳源對合成石墨奈米鎳晶粒及電弧型態轉變之初步研究”,國立台灣大學碩士論文,共75頁。 [48] 汪建民 (1998) “材料分析”,中國材料科學學會。 [49] 王明光與王敏昭 (2003) “實用儀器分析”,國立編譯館。 [50] J. C. Santamarina, K. A. Klein, Y. H. Wang, E. Prencke, “Specific surface: determination and relevance,” Can. Geotech. J. 39, 233-241 (2002). [51] 許樹恩與吳泰伯 (1996) “X光繞射原理與材料結構分析”,中國材料科學學會。 [52] J. Y. Geng, H. X. Wang, W. P. Sun, “Modeling study on the plasma flow and heat transfer characteristics of low-power hydrogen, helium, nitrogen, and argon arc-heated thrusters,” IEEE Trans. Plasma Sci. 42, 2730-2731 (2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60125 | - |
| dc.description.abstract | 石墨包裹奈米金屬顆粒(Graphite Encapsulated Metal Nanoparticles,簡稱為GEM奈米顆粒),是一種殼核結構的奈米材料,其粒徑介於5至100奈米之間。GEM奈米顆粒的外層為石墨,可以保護內部的金屬晶粒免受到來自外界的酸蝕、氧化等嚴酷環境的破壞。以鎢電弧法合成GEM顆粒時,選擇以液態有機化合物取代原本的固態石墨粉與鑽石粉為碳源,所合成之GEM奈米顆粒的包裹良率可從原本的低於20%增至最高達80%。
本研究用於合成石墨包裹奈米鎳金屬顆粒所使用的五種液態碳源為:乙醇、異丙醇、正丙醇、環己烷與苯,其包裹良率分別為54.7±7.0%、69.5±4.4%、61.8±4.2%、76.5±7.3%與74.7±5.9%。分析結果發現,包裹良率會隨著各碳源單位體積的含碳量增加而提升,但當含碳量高於環己烷,則包裹良率維持在同一水平,可能的原因為碳的供給已經足量。從TEM影像得到Ni-GEM晶粒的表面形貌為圓球狀,為提供比表面積粒徑分析的其中一個假設。分別使用兩種粒徑分析方法:一為X光粉末繞射法,並由Scherrer方程式計算出平均粒徑;另一種方法為結合熱重差分析法與比表面積分析法的結果,由粒徑轉換公式算出晶粒的平均粒徑,同時也從X光粉末繞射分析法確定氧化物粉末為NiO而不是Ni2O3。得到不同液態碳源所合成的晶粒的粒徑後,從鍵解離能的觀點解釋粒徑變化,最後則是從液態碳源單位體積的含氫量與氫、氧反應後剩餘氫濃度與氧與碳反應後剩餘碳濃度的理論計算結果得出電弧合併區氫濃度最為可能影響使用高含碳源碳量其粒徑大小的因素。 | zh_TW |
| dc.description.abstract | Graphite encapsulated metal (GEM) nanoparticles are core-shell nanostructured materials with a diameter ranging from 5-100 nm. Due to the protection provided by the outer graphitic shells, GEM can survive in severely corrosive environments, under acid erosion and oxidation. The encapsulation efficiency increased substantially after replacing the diamond powder with liquid alcohol as the carbon source by using Tungsten arc-discharge. The encapsulation efficiency of GEM nanoparticles increased from lower than 20% to about 80%.
In this study, five types of liquid compounds were used: ethanol, 2-propanol, n-propanol, cyclohexane and benzene; the encapsulation efficiencies were 54.7±7.0%, 69.5±4.4%, 61.8±4.2%, 76.5±7.3%, 74.7±5.9%, respectively. The results shown that the encapsulation efficiency will increase along with the carbon content, but when the carbon content is higher than cyclohexane, the encapsulation efficiency is maintained at the same level. The most possible reason is that the supply of carbon has been sufficient. From TEM images, Ni-GEM particles have a spherical surface which can be referred to as one of condition of hypothesis for particle size analysis. Two particle size analysis methods were used: one is using X-ray powder diffraction method and Scherrer equation to calculate the particle size; the other one is combining the results of thermogravimetric analysis and specific surface area analysis, then computing the particle size. Moreover, from X-ray powder diffraction analysis, it was determined that the oxide was NiO rather than Ni2O3. Comparing the relationship between dissociation energy and change of particle size, after obtaining the particle size of GEM which synthesized by different types of liquid carbon source. Finally, according to the theoretical calculation results of hydrogen content, hydrogen concentration after reaction with oxygen, and carbon content after reaction with oxygen, the factor that the residue hydrogen concentration at the coalescence region plays an important role in the change of particle size when using high-carbon-content carbon source. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:57:42Z (GMT). No. of bitstreams: 1 ntu-105-R02224209-1.pdf: 3966509 bytes, checksum: 5eb5e990aaa8eda326b1dd7bf5265479 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 前言 1 1.1 研究目的與動機 1 1.2 研究方法 2 第二章 文獻回顧 4 2.1 奈米材料 4 2.1.1 奈米材料的特性 4 2.1.2 奈米材料的製備方法 5 2.2 石墨包裹奈米金屬晶粒的結構 8 2.3 二步驟機制模型 12 2.3.1 相分離 12 2.3.2 催化 12 2.4 本研究團隊對石墨包裹奈米金屬晶粒的研究與演進 15 2.4.1電弧裝置的設計與實驗步驟的改良 17 2.4.2碳源型態的演變 20 2.4.3實驗後續相關研究 22 第三章 實驗方法與步驟 26 3.1實驗裝置 26 3.1.1 真空系統 26 3.1.2 水冷系統 27 3.1.3 電極與電源系統 28 3.1.4 液態碳源導入系統 29 3.2 實驗步驟 30 3.2.1初產物的製備 30 3.2.2 純化流程 32 3.3 合成石墨包裹奈米鎳晶粒所使用的液態碳源 35 3.4實驗分析儀器及藥品 36 3.4.1 實驗分析儀器 36 3.4.2 實驗材料和藥品 40 第四章 實驗結果與討論 41 4.1以多種液態碳源作為合成Ni-GEM晶粒的包裹良率差異比較 41 4.1.1使用單位體積含碳量做為比較不同液態碳源間的參數 41 4.1.2液態碳源的選擇 45 4.1.3 不同液態碳源合成Ni-GEM晶粒包裹良率結果統整 46 4.2 穿透式電子顯微鏡影像分析 50 4.3 使用不同液態碳源合成Ni-GEM晶粒的粒徑分析 52 4.3.1以X光繞射分析法計算不同液態碳源合成Ni-GEM晶粒的平均粒徑 52 4.3.2以熱重分析與比表面積分析計算不同液態碳源合成Ni-GEM晶粒的平均粒徑 57 4.4液態碳源之鍵解離能與晶粒粒徑的關聯 62 4.5 氫含量與氧含量對GEM晶粒粒徑大小的影響 66 4.5.1 氫含量對GEM晶粒粒徑大小的影響 66 4.5.2 氧含量對GEM晶粒粒徑大小的影響 68 第五章 結論與建議 70 參考文獻 72 附錄A 77 附錄B 78 附錄C 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石墨包裹 | zh_TW |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | 電弧法 | zh_TW |
| dc.subject | 液態碳源 | zh_TW |
| dc.subject | 包裹良率 | zh_TW |
| dc.subject | graphite encapsulated | en |
| dc.subject | nanoparticle | en |
| dc.subject | arc-discharge method | en |
| dc.subject | liquid carbon source | en |
| dc.subject | encapsulation efficiency | en |
| dc.title | 電弧法合成石墨包裹奈米鎳晶粒—使用不同含碳量之液態碳源對於包裹良率變化的研究 | zh_TW |
| dc.title | Study of Encapsulation Efficiency Variations on Synthesizing Graphite Encapsulated Nickel Nanoparticles by Using Different-Carbon-Content Liquid Carbon Sources | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉雅瑄(Ya-Hsuan Liou),張裕煦(Yu-Hsu Chang),王玉瑞(Yuh-Ruey Wang) | |
| dc.subject.keyword | 石墨包裹,奈米顆粒,電弧法,液態碳源,包裹良率, | zh_TW |
| dc.subject.keyword | graphite encapsulated,nanoparticle,arc-discharge method,liquid carbon source,encapsulation efficiency, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201603810 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-12-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 3.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
