Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60106
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉力瑜(Li-Yu Liu)
dc.contributor.authorQiu-Yuan Chenen
dc.contributor.author陳丘原zh_TW
dc.date.accessioned2021-06-16T09:56:28Z-
dc.date.available2019-07-26
dc.date.copyright2017-02-08
dc.date.issued2016
dc.date.submitted2016-12-26
dc.identifier.citationDehghani, H., Sabaghpour, S. H., & Ebadi, A. (2010). Study of Genotype x Environment Interaction for Chickpea Yield in Iran. Agronomy Journal, 102(1), 1-8.
Forkman, J., & Piepho, H. P. (2014). Parametric Bootstrap Methods for Testing Multiplicative Terms in GGE and AMMI Models. Biometrics, 70(3), 639-647.
Gabriel, K. R. (1971). BIPLOT GRAPHIC DISPLAY OF MATRICES WITH APPLICATION TO PRINCIPAL COMPONENT ANALYSIS. Biometrika, 58(3), 453-&.
Laffont, J.-L., Wright, K., & Hanafi, M. (2013). Genotype Plus Genotype x Block of Environments Biplots. Crop Science, 53(6), 2332-2341.
Luo, J., Pan, Y. B., Que, Y. X., Zhang, H., Grisham, M. P., & Xu, L. P. (2015). Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China. Scientific Reports, 5, 11.
XU, N. Y., Fok, M., ZHANG, G. W., Jian, L. I., & ZHOU, Z. G. (2014). The Application of GGE Biplot Analysis for Evaluating Test Locations and Mega-Environment Investigation of Cotton Regional Trials. Journal of Integrative Agriculture, 13(9), 1921-1933.
Yan, W. K., Hunt, L. A., Sheng, Q. L., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), 597-605.
Yan, W. K., Cornelius, P. L., Crossa, J., & Hunt, L. A. (2001). Two types of GGE biplots for analyzing multi-environment trial data. Crop Science, 41(3), 656-663.
Yan, W. K. (2001). GGEbiplot - A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agronomy Journal, 93(5), 1111-1118.
Yan, W., & Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623-645.
Yan, W. K., Kang, M. S., Ma, B. L., Woods, S., & Cornelius, P. L. (2007). GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Science, 47(2), 643-655.
Yang, R.-C., Crossa, J., Cornelius, P. L., & Burgueno, J. (2009). Biplot Analysis of Genotype x Environment Interaction: Proceed with Caution. Crop Science, 49(5), 1564-1576.
Yan, W. K., Fregeau-Reid, J., Pageau, D., Martin, R., Mitchell-Fetch, J., Etienne, M., Sparry, E. (2010). Identifying Essential Test Locations for Oat Breeding in Eastern Canada. Crop Science, 50(2), 504-515.
Yan, W. K., & Holland, J. B. (2010). A heritability-adjusted GGE biplot for test environment evaluation. Euphytica, 171(3), 355-369.
Yan, W. K., Pageau, D., Fregeau-Reid, J., & Durand, J. (2011). Assessing the Representativeness and Repeatability of Test Locations for Genotype Evaluation. Crop Science, 51(4), 1603-1610.
Yan, W. K. (2013). Biplot Analysis of Incomplete Two-Way Data. Crop Science, 53(1), 48-57.
Yan, W. K. (2015). Mega-environment Analysis and Test Location Evaluation Based on Unbalanced Multiyear Data. Crop Science, 55(1), 113-122.
Yan, W. K., Fregeau-Reid, J., Martin, R., Pageau, D., & Mitchell-Fetch, J. (2015). How many test locations and replications are needed in crop variety trials for a target region? Euphytica, 202(3), 361-372.
沈明來 (2014). 試驗設計學 (九州圖書文物有限公司).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60106-
dc.description.abstractGGE 雙標圖分析,可同時將區域試驗資料中基因型、環境以及基因型與環 境的交互作用資訊標示在二維平面圖上,提供育種學家判斷品種優劣以及定義試驗區域之生態群的依據。生態群的定義是數個栽培地點的集合,同生態群中的栽培地點其品系之外表型的反應相似。由於基因型與環境之交互作用的存在,少有品種能在所有環境下都表現良好,因此在進行品種評估前,應先了解目標區域的生態群組成。決定生態群亦可從各生態群中挑選少數具有代表性的栽培地點進行未來的區域試驗,以節省試驗所需花費的成本與時間。
本研究透過生態群的概念模擬一筆具有 100 個地點與 15 個基因型的區域試驗資料,討論是否將試驗區域的生態群分類後,挑選較少的試驗地點數,仍能維持試驗區域生態群之特性,期望能同時維持品種與環境之交互作用的特性與降低區域試驗所需之花費。模擬結果發現,在了解各個地點之生態群劃分後,隨機挑選較少的地點數雖然會降低地點生態群正確劃分的機率,但從 100 個環境中只取 5 個環境重複 1000 次,仍能維持 89.7% 的正確率。我們也對臺灣 77~79 年之水稻區域試驗資料進行生態群分析,顯示臺灣地區的生態群劃分年度的影響高於地理區域的影響,因此臺灣區域試驗地點的生態群劃分仍需要更進一步的探討。
zh_TW
dc.description.abstractGGE biplot illustrates the effects of genotype, environment and their interactions estimated from a multiple environment trial (MET) into a two-dimensional scatter plot. It allows breeders to justify the genotype, and to identify the mega-environments in which the tested genotype perform similarly. Due to the genotype and environment interaction, it is difficult to identify a single line which can perform the best in all test locations. Therefore, after dividing the target region into homogeneous mega-environments, one can to pick the most appropriate line in each mega-environment for future promotion. After determining the mega-environments, it can be expected that fewer sites well representing the mega-environment can be selected for future MET to save the money and manpower expenses.
This study aims to find out the minimal number of test locations for consolidated mega-environment analysis. We simulated a MET data with 100 locations and 15 genotypes, as well as a predefined mega-environment structure. Subsample of different numbers of locations were randomly drawn from the simulated data to perform mega-environment analysis. Comparing with the outcomes of whole simulated data, we found the results of subsamples remained the correct rate equal to or higher than 88.24%. In real data, we performed mega-environment analysis on three sets of four-seasonal rice multiple environment trials in Taiwan. However, we found that there is no obvious mega-environment pattern in Taiwan from the 77-79 rice regional trial datasets.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:56:28Z (GMT). No. of bitstreams: 1
ntu-105-R03621205-1.pdf: 1333080 bytes, checksum: c2e595f5cdbb2268241e2e013379691d (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝......ii
圖目錄....iv
表目錄....v
摘要......vi
Abstract.......vii
壹.序言....1
貳.材料與方法....3
一.試驗材料....3
(一)模擬資料....3
(二)多年度實際資料 – 臺灣.....4
二.統計分析方法.....5
(一)GGE雙軸圖分析(GGE biplot analysis).....5
(二)GGE 雙軸圖生態群分析.....7
(三)雙軸圖中評價試驗地點的參數.....10
參.結果與討論.....12
一.模擬資料雙軸圖分析.....12
二.臺灣實際資料 – 綜合變方分析.....19
三.臺灣實際資料 – 合併期作.....19
四.臺灣地區區域試驗地點的評估-合併期作.....24
五.臺灣實際資料 – 分開期作.....26
六.臺灣地區區域試驗地點的評估-分開期作.....33
貳.總結.....37
參考文獻.....38
附錄.....40
dc.language.isozh-TW
dc.title區域試驗資料中參試地點生態群劃分研究zh_TW
dc.titleStudy on Grouping Test Locations into Mege-environmentsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖振鐸(Chen-Tuo Liao),胡凱康(Kae-Kang Hwu)
dc.subject.keyword區域試驗,GGE雙軸圖,奇異值分解,基因與環境之交互作用,生態群,zh_TW
dc.subject.keywordmultiple environment trial,GGE biplot,singular value decomposition,genotype by environment interaction,mega-environments,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201601477
dc.rights.note有償授權
dc.date.accepted2016-12-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
1.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved