請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曲芳華(Fang-Hua Chu) | |
| dc.contributor.author | Nien-Ting Chiang | en |
| dc.contributor.author | 江念庭 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:55:28Z | - |
| dc.date.available | 2019-02-08 | |
| dc.date.copyright | 2017-02-08 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2016-12-28 | |
| dc.identifier.citation | 陳靜怡、李昆達、劉祖惠、劉文雄 (2004) 八角蓮癒傷組織之誘導與鬼臼素之檢測。臺灣農業化學與食品科學 42: 412-420。
簡世昌 (2004) 臺灣杉皮部與臺灣扁柏心材之成分研究。國立臺灣大學化學研究所博士論文。437 頁。 Adlercreutz, H. (2007) Lignans and human health. Critical Reviews in Clinical Laboratory Sciences 44: 483-525. Bayindir, U., A. W. Alfermann and E. Fuss (2008) Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant Journal 55: 810-820. Bugos, R. C., V. L. Chiang, X. H. Zhang, E. R. Campbell, G. K. Podila and W. H. Campbell (1995) RNA isolation from plant-tissues recalcitrant to extraction in guanidine. Biotechniques 19: 734-737. Chang, S., J. Puryear and J. Cairney (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116. Chang, S. T., D. S. Wang, C. L. Wu, S. G. Shiah, Y. H. Kuo and C. J. Chang (2000) Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55: 227-232. Chang, S. T., S. Y. Wang and Y. H. Kuo (2003) Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). Journal of Wood Science 49: 1-4. Chang, S. T., S. Y. Wang, Y. C. Su, S. L. Huang and Y. H. Kuo (1999a) Chemical constituents and mechanisms of discoloration of Taiwania (Taiwania cryptomerioides Hayata) heartwood - 1. The structure reconfirmation and conversion mechanism of taiwanin A. Holzforschung 53: 142-146. Chang, S. T., S. Y. Wang, C. L. Wu, Y. C. Su and Y. H. Kuo (1999b) Antifungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 53: 487-490. Chen, R., Q. Li, H. Tan, J. Chen, Y. Xiao, R. Ma, S. Gao, P. Zerbe, W. Chen and L. Zhang (2015) Gene-to-metabolite network for biosynthesis of lignans in MeJA-elicited Isatis indigotica hairy root cultures. Frontiers in Plant Science 6: 952. Cheng, W. H., A. Endo, L. Zhou, J. Penney, H. C. Chen, A. Arroyo, P. Leon, E. Nambara, T. Asami, M. Seo, T. Koshiba and J. Sheen (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723-2743. Chou, Y. W., P. I. Thomas, X. J. Ge, B. A. LePage and C. N. Wang (2011) Refugia and phylogeography of Taiwania in East Asia. Journal of Biogeography 38: 1992-2005. Chyu, C. F. and Y. H. Kuo (2007) New lignans from the roots of Taiwania cryptomerioides Hayata. Helvetica Chimica Acta 90: 738-747. Corbin, C., S. Renouard, T. Lopez, F. Lamblin, E. Laine and C. Hano (2013) Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures. Journal of Plant Physiology 170: 516-522. Delong, A., A. Calderonurrea and S. L. Dellaporta (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74: 757-768. Dima, O., K. Morreel, B. Vanholme, H. Kim, J. Ralph and W. Boerjan (2015) Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell 27: 695-710. DinkovaKostova, A. T., D. R. Gang, L. B. Davin, D. L. Bedgar, A. Chu and N. G. Lewis (1996) (+)-Pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia - protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. Journal of Biological Chemistry 271: 29473-29482. Fujita, M., D. R. Gang, L. B. Davin and N. G. Lewis (1999) Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. Journal of Biological Chemistry 274: 618-627. Gonzalez-Guzman, M., N. Apostolova, J. M. Belles, J. M. Barrero, P. Piqueras, M. R. Ponce, J. L. Micol, R. Serrano and P. L. Rodriguez (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14: 1833-1846. Hano, C., I. Martin, O. Fliniaux, B. Legrand, L. Gutierrez, R. R. J. Arroo, F. Mesnard, F. Lamblin and E. Laine (2006) Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224: 1291-1301. Harn, H. J., H. M. Chuang, L. F. Chang, A. Huang, S. T. Hsieh, S. Z. Lin, C. W. Chou, Y. H. Kuo and T. W. Chiou (2014) Taiwanin A targets non-steroidal anti-inflammatory drug-activated gene-1 in human lung carcinoma. Fitoterapia 99: 227-235. Hemmati, S., T. J. Schmidt and E. Fuss (2007) (+)- Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Letters 581: 603-610. Hemmati, S., C. B. I. von Heimendahl, M. Klaes, A. W. Alfermann, T. J. Schmidt and E. Fuss (2010) Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Medica 76: 928-934. Ho, P. J., C. K. Chou, Y. H. Kuo, L. C. Tu and S. F. Yeh (2007) Taiwanin A induced cell cycle arrest and p53-dependent apoptosis in human hepatocellular carcinoma HepG2 cells. Life Sciences 80: 493-503. Huang, Z. L., R. Meilan and K. Woeste (2009) A KNAT3-like homeobox gene from Juglans nigra L., JnKNAT3-like, highly expressed during heartwood formation. Plant Cell Reports 28: 1717-1724. Huis, R., K. Morreel, O. Fliniaux, A. Lucau-Danila, S. Fenart, S. Grec, G. Neutelings, B. Chabbert, F. Mesnard, W. Boerjan and S. Hawkins (2012) Natural hypolignification is associated with extensive oligolignol accumulation in flax stems. Plant Physiology 158: 1893-1915. Karuppaiya, P. and H. S. Tsay (2015) Therapeutic values, chemical constituents and toxicity of Taiwanese Dysosma pleiantha - a review. Toxicology Letters 236: 90-97. Kavanagh, K. L., H. Jörnvall, B. Persson and U. Oppermann (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cellular and Molecular Life Sciences 65: 3895-3906. Kuo, H. J., Z. Y. Wei, P. C. Lu, P. L. Huang and K. T. Lee (2014) Bioconversion of pinoresinol into matairesinol by use of recombinant Escherichia coli. Applied and Environmental Microbiology 80: 2687-2692. Lau, W. and E. S. Sattely (2015) Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349: 1224-1228. LebelHardenack, S., D. Ye, H. Koutnikova, H. Saedler and S. R. Grant (1997) Conserved expression of a TASSELSEED2 homolog in the tapetum of the dioecious Silene latifolia and Arabidopsis thaliana. Plant Journal 12: 515-526. Love, M. I., W. Huber and S. Anders (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550. Marques, J. V., K. W. Kim, C. Lee, M. A. Costa, G. D. May, J. A. Crow, L. B. Davin and N. G. Lewis (2013) Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis. Journal of Biological Chemistry 288: 466-479. Min, T. P., H. Kasahara, D. L. Bedgar, B. Y. Youn, P. K. Lawrence, D. R. Gang, S. C. Halls, H. J. Park, J. L. Hilsenbeck, L. B. Davin, N. G. Lewis and C. Kang (2003) Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. Journal of Biological Chemistry 278: 50714-50723. Mishima, K., T. Fujiwara, T. Iki, K. Kuroda, K. Yamashita, M. Tamura, Y. Fujisawa and A. Watanabe (2014) Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics 15: 219. Moinuddin, S. G. A., B. Youn, D. L. Bedgar, M. A. Costa, G. L. Helms, C. Kang, L. B. Davin and N. G. Lewis (2006) Secoisolariciresinol dehydrogenase: mode of catalysis and stereospecificity of hydride transfer in Podophyllum peltatum. Organic & Biomolecular Chemistry 4: 808-816. Moummou, H., Y. Kallberg, L. B. Tonfack, B. Persson and B. van der Rest (2012) The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BMC Plant Biology 12: 219. Murata, J., E. Matsumoto, K. Morimoto, T. Koyama and H. Satake (2015) Generation of triple-transgenic Forsythia cell cultures as a platform for the efficient, stable, and sustainable production of lignans. Plos One 10: e0144519. Nakatsubo, T., M. Mizutani, S. Suzuki, T. Hattori and T. Umezawa (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. Journal of Biological Chemistry 283: 15550-15557. Okunishi, T., N. Sakakibara, S. Suzuki, T. Umezawa and M. Shimada (2004) Stereochemistry of matairesinol formation by Daphne secoisolariciresinol dehydrogenase. Journal of Wood Science 50: 77-81. Ono, E., M. Nakai, Y. Fukui, N. Tomimori, M. Fukuchi-Mizutani, M. Saito, H. Satake, T. Tanaka, M. Katsuta, T. Umezawa and Y. Tanaka (2006) Formation of two methylenedioxy bridges by a Sesamum CYP81Q protein yielding a furofuran lignan, (+)-sesamin. Proceedings of the National Academy of Sciences of the United States of America 103: 10116-10121. Patten, A. M., L. B. Davin and N. G. Lewis (2008) Relationship of dirigent protein and 18s RNA transcript localization to heartwood formation in western red cedar. Phytochemistry 69: 3032-3037. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin (2004) UCSF chimera - a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25: 1605-1612. Qiu, Z. B., L. C. Wan, T. Chen, Y. L. Wan, X. Q. He, S. F. Lu, Y. W. Wang and J. X. Lin (2013) The regulation of cambial activity in Chinese fir (Cunninghamia lanceolata) involves extensive transcriptome remodeling. New Phytologist 199: 708-719. Renouard, S., C. Corbin, T. Lopez, J. Montguillon, L. Gutierrez, F. Lamblin, E. Laine and C. Hano (2012) Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. Planta 235: 85-98. Ringer, K. L., E. M. Davis and R. Croteau (2005) Monoterpene metabolism. Cloning, expression, and characterization of (-)-isopiperitenol/(-)-carveol dehydrogenase of peppermint and spearmint. Plant Physiology 137: 863-872. Ruprecht, C., M. Mutwil, F. Saxe, M. Eder, Z. Nikoloski and S. Persson (2011) Large-scale co-expression approach to dissect secondary cell wall formation across plant species. Frontiers in Plant Science 2: 23. Satake, H., T. Koyama, S. E. Bahabadi, E. Matsumoto, E. Ono and J. Murata (2015) Essences in metabolic engineering of lignan biosynthesis. Metabolites 5: 270-290. Schulz, J. M., A. L. Watson, R. Sanders, K. L. Ross, J. B. Thoden, H. M. Holden and J. L. Fridovich-Keil (2004) Determinants of function and substrate specificity in human UDP-galactose 4'-epimerase. Journal of Biological Chemistry 279: 32796-32803. Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498-2504. Shimura, K., A. Okada, K. Okada, Y. Jikumaru, K. W. Ko, T. Toyomasu, T. Sassa, M. Hasegawa, O. Kodama, N. Shibuya, J. Koga, H. Nojiri and H. Yamane (2007) Identification of a biosynthetic gene cluster in rice for momilactones. Journal of Biological Chemistry 282: 34013-34018. Shyur, L. F., S. H. Lee, S. T. Chang, C. P. Lo, Y. H. Kuo and S. Y. Wang (2010) Taiwanin A inhibits MCF-7 cancer cell activity through induction of oxidative stress, upregulation of DNA damage checkpoint kinases, and activation of p53 and FasL/Fas signaling pathways. Phytomedicine 18: 16-24. Suzuki, S. and T. Umezawa (2007) Biosynthesis of lignans and norlignans. Journal of Wood Science 53: 273-284. Suzuki, S., T. Umezawa and M. Shimada (2002) tereochemical diversity in lignan biosynthesis of Arctium lappa L. Bioscience Biotechnology and Biochemistry 66: 1262-1269. Tsao, N.-W., Y.-H. Sun, S.-C. Chien, F.-H. Chu, S.-T. Chang, Y.-H. Kuo and S.-Y. Wang, 2015. Content and distribution of lignans in Taiwania cryptomerioides Hayata. Holzforschung 70: 511-518. Tseng, Y. P., Y. H. Kuo, C. P. Hu, K. S. Jeng, D. Janmanchi, C. H. Lin, C. K. Chou and S. F. Yeh (2008) The role of helioxanthin in inhibiting human hepatitis B viral replication and gene expression by interfering with the host transcriptional machinery of viral promoters. Antiviral Research 77: 206-214. Umezawa, T., L. B. Davin and N. G. Lewis (1991) Formation of lignans (-)-secoisolariciresinol and (-)-matairesinol with Forsythia Intermedia cell-free extracts. Journal of Biological Chemistry 266: 10210-10217. Umezawa, T., L. B. Davin, E. Yamamoto, D. G. I. Kingston and N. G. Lewis (1990) Lignan biosynthesis in Forsythia Species. Journal of the Chemical Society-Chemical Communications: 1405-1408. Vanholme, R., B. Demedts, K. Morreel, J. Ralph and W. Boerjan (2010) Lignin biosynthesis and structure. Plant Physiology 153: 895-905. Vassão, D. G., K.-W. Kim, L. B. Davin and N. G. Lewis, 2010. 1.23 - Lignans (neolignans) and allyl/propenyl phenols: biogenesis, structural biology, and biological/human health considerations. pp.815-928 In H. W. Liu and L. Mander, eds. Comprehensive Natural Products II. Elsevier, Oxford. 7388pp. von Heimendahl, C. B. I., K. M. Schafer, P. Eklund, R. Sjoholm, T. J. Schmidt and E. Fuss (2005) Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66: 1254-1263. Wang, Y., M. Chantreau, R. Sibout and S. Hawkins (2013) Plant cell wall lignification and monolignol metabolism. Frontiers in Plant Science 4: 1-14. Wu, X. Q., S. Knapp, A. Stamp, D. K. Stammers, H. Jornvall, S. L. Dellaporta and U. Oppermann (2007) Biochemical characterization of TASSELSEED 2, an essential plant short-chain dehydrogenase/reductase with broad spectrum activities. FEBS Journal 274: 1172-1182. Xia, Z. Q., M. A. Costa, H. C. Pelissier, L. B. Davin and N. G. Lewis (2001) Secoisolariciresinol dehydrogenase purification, cloning, and functional expression - implications for human health protection. Journal of Biological Chemistry 276: 12614-12623. Xia, Z. Q., M. A. Costa, J. Proctor, L. B. Davin and N. G. Lewis (2000) Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum. Phytochemistry 55: 537-549. Xiao, Y., Q. Ji, S. H. Gao, H. X. Tan, R. B. Chen, Q. Li, J. F. Chen, Y. B. Yang, L. Zhang, Z. T. Wang, W. S. Chen and Z. B. Hu (2015) Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. Journal of Experimental Botany 66: 6259-6271. Yang, J. M., D. P. Kamdem, D. E. Keathley and K. H. Han (2004) Seasonal changes in gene expression at the sapwood-heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiology 24: 461-474. Yoshida, K., M. Nishiguchi, N. Futamura and T. Nanjo (2007) Expressed sequence tags from Cryptomeria japonica sapwood during the drying process. Tree Physiology 27: 1-9. Youn, B. Y., S. G. A. Moinuddin, L. B. Davin, N. G. Lewis and C. H. Kang (2005) Crystal structures of apo-form and binary/ternary complexes of Podophyllum secoisolariciresinol dehydrogenase, an enzyme involved in formation of health-protecting and plant defense lignans. Journal of Biological Chemistry 280: 12917-12926. Yousefzadi, M., M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano and J. Palazon (2012) The effect of light on gene expression and podophyllotoxin biosynthesis in Linum album cell culture. Plant Physiology and Biochemistry 56: 41-46. Zhao, Q., Y. N. Zeng, Y. B. Yin, Y. Q. Pu, L. A. Jackson, N. L. Engle, M. Z. Martin, T. J. Tschaplinski, S. Y. Ding, A. J. Ragauskas and R. A. Dixon (2015) Pinoresinol reductase 1 impacts lignin distribution during secondary cell wall biosynthesis in Arabidopsis. Phytochemistry 112: 170-178. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60091 | - |
| dc.description.abstract | 木酚素 (lignan) 為2個C6-C3單元結合為骨架之植物酚類化合物,具有多樣的生物活性,如臺灣杉 (Taiwania cyptomerioides Hayata) 木材中之dimethylmatairesinol、taiwanin A及taiwanin E 等,即具有顯著毒殺腫瘤細胞之生物活性,可望發展為新的抗癌藥物。Pinoresinol-lariciresinol reductase (PLR) 為木酚素生合成途徑上游酵素,可催化pinoresinol還原成lariciresinol,再將lariciresinol還原成secoisolariciresinol。Secoisolariciresinol經secoisolariciresinol dehydrogenase (SDH) 氧化,生成之產物matairesinol,一般認為是下游木酚素生合成之前驅物。為了解臺灣杉木酚素生合成酵素,本研究建立臺灣杉木材形成層、邊材、移行帶及心材等木材組織轉錄體資料庫,透過分析基因在此4個組織中之表現量相關性,選取3個臺灣杉PLR及6個SDH候選基因,並以cDNA末端快速擴增實驗獲得基因全長。將臺灣杉PLR及SDH基因於大腸桿菌中異源表現,萃取粗蛋白進行酵素反應實驗,其中TcPLR1可催化 (+)-pinoresinol還原為lariciresinol,TcPLR2.2及TcPLR3可催化 (+)-pinoresinol及lariciresinol之還原反應,產生 secoisolariciresinol。RT-PCR結果顯示TcPLR1之表現量於形成層最高,其次為心材,TcPLR2.2及TcPLR3則皆只於形成層及邊材表現,又前者在形成層表現量較高,後者主要於邊材表現。本研究完成臺灣杉PLR之鑑定,未來透過臺灣杉PLR基因之表現趨勢,期望有助於找尋下游木酚素生合成酵素,以建立臺灣杉木酚素之生合成途徑。 | zh_TW |
| dc.description.abstract | Lignans, which are synthesized by dimerization of two C6-C3 units, exist abundantly in the wood of Taiwania cryptomerioides Hayata. Lignans in Taiwania, such as dimethylmatairesinol, taiwanin A and taiwanin E, were reported to have siginificant cytotoxic activity against tumor cells. As the key enzyme of lignan biosynthesis, pinoresinol-lariciresinol reductase (PLR) catalyzes the two-step reduction of pinoresinol to form lariciresinol and then to secoisolariciresinol. Secoisolariciresinol would next be oxidized by secoisolariciresinol dehydrogenase (SDH), and the product matairesinol is suggested to be the precursor for other downstream ignans. In this study, three PLR and six SDH candidate genes of T. cryptomerioides were identified by analysing the transcriptome of wood cambium, sapwood, transition zone and heartwood. The complete coding sequences (CDS) of each gene were obtained by rapid amplification of cDNA ends (RACE). Using Escherichia coli as the host, the heterologously expressed TcPLRs exhibited PLR activity, but the TcSDHs did not exhibited SDH activity. Among the three TcPLRs, TcPLR1 reduced pinoresinol to lariciresinol, while TcPLR2.2 and TcPLR3 reduced both pinoresinol and lariciresinol. The results of RT-PCR revealed that TcPLR1 most highly expressed in the wood cambium, and next in the heartwood. TcPLR2.2 and TcPLR3 both expressed in the wood cambium and the sapwood, while TcPLR2.2 showed slightly higher expression level in the cambium, and TcPLR3 mostly expressed in the sapwood. This study characterizes three PLRs of T. cryptomerioides, which involve in the biosynthesis of upstream lignans, and the expression pattern of TcPLR genes may provide information for identifying downstream lignan biosynthetic genes in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:55:28Z (GMT). No. of bitstreams: 1 ntu-105-R03625010-1.pdf: 10159142 bytes, checksum: dafd8097e45bd0654f5c87ec79e5aab7 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書
誌謝 I 摘要 III Abstract IV 縮寫表 VI 目錄 VII 圖目錄 XIII 表目錄 XVI 第一章 前言 1 第二章 文獻回顧 3 2.1 木酚素 3 2.1.1 木酚素之結構 3 2.1.2 木酚素之功能 3 2.1.3 木酚素之生合成途徑 4 2.1.4 Pinoresinol-lariciresinol reductase之介紹 7 2.1.4.1 受質鏡像選擇性 (enantioselectivity) 7 2.1.4.2 PLR之蛋白質結構 10 2.1.4.3 PLR之蛋白質家族 10 2.1.5 Secoisolariciresinol dehydrogenase之介紹 11 2.1.5.1 受質鏡像選擇性 11 2.1.5.2 SDH之蛋白質結構 12 2.1.5.3 SDH之蛋白質家族 13 2.1.6 木酚素生合成之誘導 14 2.2 臺灣杉 15 2.2.1 臺灣杉簡介 15 2.2.2 臺灣杉木酚素成分及活性研究 15 第三章 材料與方法 18 3.1 實驗試材 18 3.1.1 試材 18 3.1.2 載體之選用 19 3.1.3 菌株之選用 19 3.1.4 藥品與試劑 19 3.2 總量RNA萃取 21 3.3 臺灣杉轉錄體資料庫之建立與基因表現量倍數變化分析 22 3.4 木酚素生合成基因比對 23 3.5 基因表現相關性分析 24 3.6 臺灣杉TcPLRs及TcSDHs基因之選殖 25 3.7 基因與蛋白質序列比對及演化樹分析 27 3.8 蛋白質結構預測 28 3.9 重組蛋白表現 28 3.9.1 表現載體之構築 28 3.9.2 誘導重組蛋白表現與西方墨點試驗 29 3.10 重組蛋白純化 30 3.11 酵素反應 30 3.11.1 粗蛋白反應 30 3.11.2 純化蛋白反應 32 3.12 反應產物分析 32 3.13 木材組織之基因表現量 33 第四章 結果與討論 34 4.1 轉錄體資料庫全新組裝與註解 34 4.2 轉錄體資料庫分析 35 4.2.1 註解為基因之片段重疊群表現於各組織之數目 35 4.2.2 基因表現量倍數變化 39 4.2.3 木酚素生合成酵素所屬之蛋白質超家族 52 4.3 木酚素生合成途徑基因比對與表現量分析 56 4.3.1木質醇 (monolignol) 生合成途徑 56 4.3.2 木酚素生合成途徑 58 4.3.3 基因表現相關性分析 64 4.4 基因序列比對 68 4.4.1 TcPLRs序列比對 68 4.4.2 TcSDHs序列比對 71 4.5 蛋白質序列比對 71 4.5.1 TcPLRs序列比對 71 4.5.2 TcSDHs序列比對 74 4.6 演化樹分析 77 4.6.1 PLR演化樹 77 4.6.2 SDH演化樹 78 4.7 重組蛋白表現 80 4.7.1 重組PLRs表現 80 4.7.2 重組SDHs表現 81 4.8 SDHs重組蛋白純化 82 4.9 酵素反應 83 4.9.1 PLRs酵素反應 83 4.9.2 SDHs酵素反應 83 4.10 蛋白質結構預測 91 4.10.1 TcPLRs結構預測 91 4.10.2 TcSDHs結構預測 93 4.11 木材組織基因表現情形 97 4.11.1 TcPLRs表現情形 97 4.11.2 TcSDHs表現情形 98 第五章 結論 100 引用文獻 101 附錄 111 附錄表1. 表現量於木材形成層及邊材呈現倍數變化之基因於各組織之表現量。 111 附錄表2. 表現量於邊材及移行帶呈現倍數變化之基因於各組織之表現量。 112 附錄表3. 表現量於移行帶及心材呈現倍數變化之基因於各組織之表現量。 114 附錄表4. 註解功能為NAD(P)-binding Rossmann-fold superfamily protein之基因表現量。 116 附錄表5. 註解功能為cytochrome P450之基因表現量。 119 附錄表6. 註解功能為2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein之基因表現量。 122 附錄表7. 用已知的木質醇生合成途徑酵素基因作為模版,比對臺灣杉相應之基因序列。 125 附錄表8. 已知的DP、PLR與SDH基因相對應之臺灣杉基因表現量。 127 附錄表9. 已知的其他木酚素生合成酵素基因相對應之臺灣杉基因表現量。 128 附錄表10. 已知的AtSND1與AtMYB46基因對應之臺灣杉基因表現量。 129 附錄表11. 引子序列表。 130 | |
| dc.language.iso | zh-TW | |
| dc.subject | 木酚素 | zh_TW |
| dc.subject | 臺灣杉 | zh_TW |
| dc.subject | 木材轉錄體 | zh_TW |
| dc.subject | 松脂醇-落葉松脂醇還原? | zh_TW |
| dc.subject | 閉聯異落葉松脂醇脫氫? | zh_TW |
| dc.subject | pinoresinol-lariciresinol reductase | en |
| dc.subject | Taiwania cryptomerioides Hayata | en |
| dc.subject | wood transcriptome | en |
| dc.subject | lignan | en |
| dc.subject | secoisolariciresinol dehydrogenase | en |
| dc.title | 臺灣杉 Pinoresinol-Lariciresinol Reductase之選殖與特性分析 | zh_TW |
| dc.title | Cloning and Characterization of Pinoresinol-Lariciresinol
Reductase from Taiwania cryptomerioides Hayata | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王升陽(Sheng-Yang Wang),何政坤(Cheng-Kuen Ho),孫英玄(Ying-Hsuan Sun),葉汀峰(Ting-Feng Yeh) | |
| dc.subject.keyword | 木酚素,臺灣杉,木材轉錄體,松脂醇-落葉松脂醇還原?,閉聯異落葉松脂醇脫氫?, | zh_TW |
| dc.subject.keyword | lignan,Taiwania cryptomerioides Hayata,wood transcriptome,pinoresinol-lariciresinol reductase,secoisolariciresinol dehydrogenase, | en |
| dc.relation.page | 134 | |
| dc.identifier.doi | 10.6342/NTU201603842 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2016-12-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 9.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
