Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60079
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳漪紋(Yi-Wen Chen)
dc.contributor.authorKuang-Shao Shihen
dc.contributor.author石光劭zh_TW
dc.date.accessioned2021-06-16T09:54:44Z-
dc.date.available2019-02-24
dc.date.copyright2017-02-24
dc.date.issued2017
dc.date.submitted2017-01-05
dc.identifier.citation[1] Vuddhakanok S, Solt ST, Mitchell JC, Foreman DW, Alger FA. Histologic evaluation of periodontal attachment apparatus following the insertion of a biodegradable copolymer barrier in humans. Journal of Periodontology 1993; 64(3): 202-210.
[2] Lee CT, Chen YW, Starr JR, Chuang SK. Survival analysis of wide dental implant: systematic review and meta-analysis. Clinical Oral Implants Research 2015; 27(10): 1251-1264.
[3] Zarb GA, Branemark P-I, Albrektsson T. Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence Publishing Company. Chicago; 1985: 26.
[4] Fraunhofer JAV. Dental materials at a glance. 2nd edition. Wiley-Blackwell. Oxford; 2013: 115.
[5] Shulman LB, Driskell TD, Block MS. Dental implants: a historical perspective. In : Implants in dentistry. Block MS, Kent JN, Guerra LR, ed. W.B. Saunders. Philadelphia; 1997: 2
[6] Zarb GA, Branemark P-I, Albrektsson T. Tissue-integrated prostheses: osseointegration in clinical dentistry. Quintessence Publishing Company. Chicago; 1985: 211-232.
[7] Sinn DP, Bedrossian E, Vest AK. Craniofacial Implant Surgery. Oral and Maxillofacial Surgery Clinics of North America 2011; 23(2): 321-335
[8] Zitzmann NU, Margolin MD, Filippi A, Weiger R, Krastl G. Patient assessment and diagnosis in implant treatment. Australian Dental Journal 2008; Suppl 1:S3-S10.
[9] Renouard F, Nisand D. Impact of implant length and diameter on survival rates. Clinical Oral Implants Research 2006; Suppl 2: 35-51.
[10] Nisand D, Renouard F. Short implant in limited bone volume. Periodontology 2000 2014; 66(1): 72-96
[11] Malo P, de Araujo Nobre M, Lopes A, Francischone C, Rigolizzo M. 'All-on-4' immediate-function concept for completely edentulous maxillae: a clinical report on the medium (3 years) and long-term (5 years) outcomes. Clinical Implant Dentistry Related Research 2012; 14: e139-e150
[12] ten Bruggenkate CM, Asikainen P, Foitzik C, Krekeler G, Sutter F. Short (6-mm) nonsubmerged dental implants: results of a multicenter clinical trial of 1 to 7 years. The International Journal of Oral & Maxillofacial Implant 1998; 13(6): 791-798.
[13] Terheyden H, Lang NP, Bieraum S, Stadlinger B. Osseointegration-communication of cells. Clinical Oral Implant Research 2013; 23(10): 1127-1135.
[14] Willams JC, Lütjering G. Titanium. 2nd edition. Springer Science & Business Media. Berlin; 2013.
[15] Elias CN, Fernandes DJ, Resende CR, Roestel J. Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Dental Materials 2015; 31(2): e1-e13.
[16] Saini M, Singh Y, Arora P, Arora V, Jain K. Implant biomaterials: a comprehensive review. World Journal of Clinical Cases 2015; 3(1): 52-57.
[17] Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002; 23(2): 491-501.
[18] Lin H, Xu Z, Wang X, Long J, Su W, Fu X, Lin Q. Photocatalytic and antibacterial properties of medical-grade PVC material coated with TiO2 film. Journal of Biomedical Materials Research. Part B. Applied Biomaterials 2008; 87(2): 425-431.
[19] Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Applied Microbiology Biotechnology 2011; 90(6): 1847-1868.
[20] Ramazanoglu M, Oshida Y. Osseointegration and bioscience of implant surfaces-current concept at bone-implant surface. In: Implant dentistry- a rapid evolving practice. Turkyilmaz I, ed. InTech. Croatia; 2011.
[21] Long M, Rack HJ. Titanium aloys in total joint replacement--a materials science perspective. Biomaterials 1998; 19(18): 1621-1639.
[22] Morais LS, Serra GG, Muller CA, Andrade LR, Palermo EF, Elias CN, Meyers M. Titanium alloy mini-implants for orthodontic anchorage: immediate loading and metal ion release. Acta Biomaterials 2007; 3(3): 331-339.
[23] Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials 2007; 23(7): 844-854.
[24] Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998; 19(23): 2219-2232.
[25] Schwartz Z, Raz P, Zhao G, Barak Y, Tauber M, Yao H, Boyan BD. Effect of micrometer-scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. Journal of Bone and Joint Surgery: American volume 2008; 90(11): 2485-2498.
[26] Kwok CT, Wong PK, Cheng FT, Man HC. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied Surface Science 2009; 255:6736-6744.
[27] Nielsen K. Corrosion of metallic implants. British Corrosion Journal 1987; 22: 272-278.
[28] Chu PK, Liu XY, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering R-Report 2004; 47: 49-121.
[29] Vercaigne S, Wolke JG, Naert I, Jansen JA. Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants. Clinical Oral Implants Research 1998; 9(4): 261-271.
[30] King S, Klineberg I, Levinger I, Brennan-Speranza TC. The effect of hyperglycaemia on osseointegration: a review of animal models of diabetes mellitus and titanium implant placement. Archives of Osteoporosis 2016; 11(1): 29.
[31] Anderson DM. Mosby’s dictionary of medicine, nursing and health professions. 10th edition. Elsevier. St.Louis; 2009.
[32] Rudy RJ, Levi PA, Bonacci FJ, Weisgold AS, Engler-Hamm D. Intraosseous anchorage of dental prostheses: an early 20th century contribution. Compendium of Continuing Education in Dentistry 2008; 29: 220-224, 226-228.
[33] Patil R, Bharadwaj D. Is primary stability a predictable parameter for loading implant? Journal of the International Clinical Dental Research Organization 2016; 8(1): 84-88.
[34] Werner S, Huck O, Frisch B, Vautier D, Elkaim R, Voegel JC, Brunel G, Tenenbaum H. The effect of microstructured surfaces and laminin-derived peptide coatings on soft tissue interactions with titanium dental implants. Biomaterials 2009; 30(12): 2291-2301.
[35] Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials 2004; 25(18): 4087-4103.
[36] Puleo DA, Bizios R. Mechanisms of fibronectin-mediated attachment of osteoblasts to substrates in vitro. Bone and Mineral 1992; 18(3): 215-226.
[37] Wennerberg A. On surface and implant incorporation. Ph.D thesis. Goteborg University 1996.
[38] Menezes GC, Elias CN, Attias M, Silva-Filho FC. Osteoblast adhesion onto titanium dental implants. Acta Microscopia 2003; 12: 13-19.
[39] Elias CN. Factors affecting the success of dental implants. In: Implant dentistry - a rapidly evolving practice. Turkyilmaz I, ed. InTech. Croatia; 2011.
[40] Baier RE, Meyer AE. Implant surface preparation. The International Journal of Oral & Maxillofacial Implants 1988; 3(1): 9-20.
[41] Wennerberg A, Hallgren C, Johansson C, Danelli S. A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clinical Oral Implants Research 1998; 9(1): 11-19.
[42] Hayakawa T, Yoshinari M, Nemoto K, Wolke JG, Jansen JA. Effect of surface roughness and calcium phosphate coating on the implant/bone response. Clinical Oral Implants Research 2000; 11(4): 296-304.
[43] Kim HM, Kokubo T, Kawashita M, Nakamura T. What kinds of materials exhibit bone-binding?, In: Bone Engineering. Davies JE, ed. Em Squared Incorporated. Toronto; 2000: 190-194.
[44] Bieling K, Schwarz F, Bonsmann M, Latz T, Becker J. Non-surgical treatment of moderate and advanced periimplantitis lesions: a controlled clinical study. Clinical Oral Investigations 2006; 10: 279-288.
[45] Schwarz F, Sahm N, Iglhaut G, Becker J. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: a randomized controlled clinical study. Journal of Clinical Periodontology 2011; 38(3): 276-284.
[46] Schwarz F, Sculean A, Rothamel D, Schwenzer K, Georg T, Becker J. Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clinical Oral Implants Research 2005; 16(1): 44-52.
[47] Aghazadeh A, Persson GR, Renvert S. A single-centre randomized controlled clinical trial on the adjunct treatment of intra-bony defects with autogenous bone or a xenograft: results after 12 months. Journal of Clinical Periodontology 2012; 39(7): 666-673.
[48] Persson GR, Samuelsson E, Lindahl C, Renvert S. Mechanical non-surgical treatment of peri-implantitis: a single-blinded randomized longitudinal clinical study. II. Microbiological results. Journal of Clinical Periodontology 2010; 37(6): 563-573.
[49] Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clinical Oral Implants Research 2005; 16(1): 26-35.
[50] Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and risk indicators, Journal of Clinical Periodontology 2008; 35(8 Suppl): 292-304.
[51] Tomasi C, Derks J. Clinical research of peri-implant diseases--quality of reporting, case definitions and methods to study incidence, prevalence and risk factors of peri-implant diseases. Journal of Clinical Periodontology 2012; 39(Suppl 12): 207-223.
[52] Uribe R, Penarrocha M, Sanchis JM, Garcia O. Marginal peri-implantitis due to occlusal overload. A case report. Medicina Oral 2004; 9(2): 159-162.
[53] Brunski JB, Hoshaw SJ, Cochran GVB. Mechanical loading of Branemark implants affects interfacial bone modeling and remodeling. The International Journal of Oral & Maxillofacial Implants 1994; 9: 345-360.
[54] Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clinical Oral Implants Research 1997; 8(1): 1-9.
[55] Miyata T, Kobayashi Y, Araki H, Ohto T, Shin K. The influence of controlled occlusal overload on peri-implant tissue. Part 3: A histologic study in monkeys, The International Journal of Oral & Maxillofacial Implants 2000; 15(3): 425-431.
[56] Mombelli A, Decaillet F. The characteristics of biofilms in peri-implant disease. Journal of Clinical Periodontology 2011; 38(Suppl 11): 203-213.
[57] Renvert S, Lessem J, Lindahl C, Svensson M. Treatment of incipient peri-implant infections using topical minocycline microspheres versus topical chlorhexidine gel as an adjunct to mechanical debridement. Journal of the Internationoal Academy of Periodontology 2004; 6(Suppl 4): 154-159.
[58] Kumar PS, Mason MR, Brooker MR, O'Brien K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. Journal of Clinical Periodontology 2012; 39(5): 425-433.
[59] Koyanagi T, Sakamoto M, Takeuchi Y, Maruyama N, Ohkuma M, Izumi Y. Comprehensive microbiological findings in peri-implantitis and periodontitis. Journal of Clinical Periodontology 2013; 40(3): 218-226.
[60] Dhir S. Biofilm and dental implant: the microbial link. Journal of Indian Society Peiodontology 2013; 17(1): 5-11.
[61] Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ,Jr. Communication among oral bacteria. Microbiology and Molecular Biology Review 2002; 66(3): 486-505.
[62] Mombelli A, van Oosten MA, Schurch E,Jr, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oralal Microbiology and Immunology 1987; 2(4): 145-151.
[63] Harris LG, Foster SJ, Richard RG. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. European Cell and Materials 2002; 4: 39-60.
[64] Renvert S, Lindahl C, Renvert H, Persson GR. Clinical and microbiological analysis of subjects treated with Branemark or AstraTech implants: a 7-year follow-up study. Clinical Oral Implants Research 2008; 19(4): 342-347.
[65] Ram TE, Feik D, Slots J. Staphylococci in human periodontal diseases. Oral Microbiology and Immunology 1990; 5(1): 29-32.
[66] Gallo J, Kaminek P, Ticha V, Rihakova P, Ditmar R. Particle disease. A comprehensive theory of periprosthetic osteolysis: a review. Biomedical Papers 2002; 146(2): 21-28.
[67] Merkel KD, Erdmann JM, McHugh KP, Abu-Amer Y, Ross FP, Teitelbaum SL. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. American Jounral of Pathology 1999; 154(1): 203-210.
[68] Carvalho-Filho PC, Gomes-Filho IS, Meyer R, Olczak T, Xavier MT, Trindade SC. Role of porphyromonas gingivalis HmuY in immunopathogenesis of chronic periodontitis. Mediators of Inflammation 2016; 2016: 1-9.
[69] Consensus report. Periodontal diseases: pathogenesis and microbial factors. Annals of Periodontology 1996; 1(1): 926-932.
[70] Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL,Jr. Microbial complexes in subgingival plaque. Journal of Clinical Periodontology 1998; 25(2): 134-144.
[71] Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nature Reviews Microbiology 2012; 10(10): 717-725.
[72] Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinberg A. Porphyromonas gingivalis invasion of gingival epithelial cells. Infection and Immunity 1995; 63(10): 3878-3885.
[73] Yilmaz O, Verbeke P, Lamont RJ, Ojcius DM. Intercellular spreading of porphyromonas gingivalis infection in primary gingival epithelial cells. Infection and Immunity 2006; 74(1): 703-710.
[74] Guyodo H, Meuric V, Le Pottier L, Martin B, Faili A, Pers JO, Bonnaure-Mallet M. Colocalization of porphyromonas gingivalis with CD4+ T cells in periodontal disease. FEMS Immunology and Medical Microbiology 2012; 64(2): 175-183.
[75] Dorn BR, Dunn WA,Jr, Progulske-Fox A. Bacterial interactions with the autophagic pathway. Cell Microbiology 2002; 4(1): 1-10.
[76] Belanger M, Rodrigues PH, Dunn WA,Jr, Progulske-Fox A. Autophagy: a highway for porphyromonas gingivalis in endothelial cells. Autophagy 2006; 2(3): 165-170.
[77] Potempa J, Sroka A, Imamura T, Travis J. Gingipains, the major cysteine proteinases and virulence factors of porphyromonas gingivalis: structure, function and assembly of multidomain protein complexes. Current Protein and Peptide Science 2003; 4(6): 397-407.
[78] Ishak MA, Zablit KV, Dumas J. Endogenous endophthalmitis caused by actinobacillus actinomycetemcomitans. Canadian Jounal of Ophthalmology 1986; 21(7): 284-286.
[79] Kononen E, Muller HP. Endogenous endophthalmitis caused by actinobacillus actinomycetemcomitans. Canadian Journal of Ophthalmology 2014; 65(1): 46-78.
[80] Haubek D, Ennibi OK, Poulsen K, Vaeth M, Poulsen S, Kilian M. Risk of aggressive periodontitis in adolescent carriers of the JP2 clone of aggregatibacter (actinobacillus) actinomycetemcomitans in morocco: a prospective longitudinal cohort study. The Lancet 2008; 371(9608): 237-242.
[81] HoglundAberg C, Kwamin F, Claesson R, Dahlen G, Johansson A, Haubek D. Progression of attachment loss is strongly associated with presence of the JP2 genotype of aggregatibacter actinomycetemcomitans: a prospective cohort study of a young adolescent population. Journal of Clinical Periodontology 2014; 41(3): 232-241.
[82] Henderson B, Ward JM, Ready D. Aggregatibacter (actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen?, Periodontology 2000 2010; 54(1): 78-105.
[83] Belibasakis GN, Johansson A, Wang Y, Chen C, Kalfas S, Lerner UH. The cytolethal distending toxin induces receptor activator of NF-kappaB ligand expression in human gingival fibroblasts and periodontal ligament cells. Infection and Immunity 2005; 73(1): 342-351.
[84] Gao A, Wang X, Yu H, Li N, Hou Y, Yu W. Effect of porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteoclasts. In Vitro Cellular and Developmental Biology- Animal 2016; 52(2): 228-234.
[85] Maderia MF, Queiroz,Jr, Cisalpino D, Werneck SM, Kikuchi H, Fujise O, Ryffel B, Silva TA, Teixeira MM, Souza DG. MyD88 is essential for alveolar bone loss induced by aggregatibacter actinomycetemcomitans lipopolysaccharide in mice. Molecular Oral Microbiology 2013; 28(6): 415-424.
[86] Li X, Gu Y, Dong H, Wang W, Dong C. Trapped lipopolysaccharide and LptD intermediates reveal lipopolysaccharide translocation steps across the Elscherichia coli outer membrane. Scientific Reports 2015; 5:11883.
[87] Fiquero E, Graziani F, Sanz I, Herrera D, Sanz M. Management of peri-implant mucositis and peri-implantitis. Periodontology 2000; 66(1): 255-273.
[88] Renvert S, Polyzois I, Claffey N. How do implant surface characteristics influence peri-implant disease? Journal of Clinical Periodontology 2011; 38 (Suppl 11): 214-222.
[89] Petersilka GJ, Steinmann D, Haberlein I, Heinecke A, Flemmig TF. Subgingival plaque removal in buccal and lingual sites using a novel low abrasive air-polishing powder. Journal of Clinical Periodontology 2003; 30(4): 328-333.
[90] Takasaki AA, Aoki A, Mizutani K, Kikuchi S, Oda S, Ishikawa I. Er:YAG laser therapy for peri-implant infection: a histological study. Lasers in Medical Science 2007; 22(3): 143-157.
[91] Renvert S, Roos-Jansaker AM, Lindahl C, Renvert H, Persson GR. Infection at titanium implants with or without a clinical diagnosis of inflammation. Clinical Oral Implants Research 2007; 18(4): 509-516.
[92] Sahm N, Becker J, Santel T, Schwarz F. Non-surgical tr2eatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: a prospective, randomized, controlled clinical study. Journal of Clinical Periodontology 2011; 38(9): 872-878.
[93] Renvert S, Lessem J, Dahlen G, Renvert H, Lindahl C. Mechanical and repeated antimicrobial therapy using a local drug delivery system in the treatment of peri-implantitis: a randomized clinical trial. Journal of Periodontology 2008; 79(5): 836-844.
[94] Renvert S, Samuelsson E, Lindahl C, Persson GR. Mechanical non-surgical treatment of peri-implantitis: a double-blind randomized longitudinal clinical study. I: clinical results. Journal of Clinical Periodontology 2009; 36(7): 604-609.
[95] Romeo E, Ghisolfi M, Murgolo N, Chiapasco M, Lops D, Vogel G. Therapy of peri-implantitis with resective surgery. A 3-year clinical trial on rough screw-shaped oral implants. Part I: clinical outcome. Clinical Oral Implants Research 2005; 16(1): 9-18.
[96] Khoury F, Buchmann R. Surgical therapy of peri-implant disease: a 3-year follow-up study of cases treated with 3 different techniques of bone regeneration. Journal of Periodontology 2001; 72(11): 1498-1508.
[97] Schou S, Berglundh T, Lang NP. Surgical treatment of peri-implantitis. The International journal of oral & maxillofacial implants 2004; 19 Suppl: 140-149.
[98] Schwarz F, John G, Mainusch S, Sahm N, Becker J. Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination. A two-year clinical follow up report. Journal of Clinical Periodontology 2012; 39(8): 789-797.
[99] Akca EA, Akca G, Topçu FT, Macit E, Pikdöken L, Özgen IŞ. The comparative evaluation of the antimicrobial effect of propolis with chlorhexidine against oral pathogens: an in vitro study. Biomed Research International 2016; 2016: 8 pages.
[100] Perez-Tanoira R, Han X, Soininen A, Aarnisalo AA, Tiainen VM, Eklund KK, Esteban J, Kinnari TJ. Competitive colonization of prosthetic surfaces by staphylococcus aureus and human cells. Journal of Biomedical Materials Research 2016; 105(1): 62-72.
[101] Epstein AK, Pokroy B, Seminara A, Aizenberg J. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proceedings of the National Academy of Sciences of the United States of America 2011; 108(3): 995-1000.
[102] Chen CJ, Chen CC, Ding SJ. Effectiveness of hypochlorous acid to reduce the biofilms on titanium alloy surfaces in vitro. International Journal of Molecular Science 2016; 17(7): 1161.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60079-
dc.description.abstract本研究在第四級純鈦金屬板 (直徑15 m,厚度2 mm,粗糙度Ra=1.3 μm)上接種牙周病菌A .actinomycetemcomitans及P. gingivalis培養生物薄膜,並模擬臨床移除生物薄膜的方式分為五組,第一組不接種細菌也不進行清創,第二組接種細菌但不進行清創,第三組以鈦金屬刮匙進行清創配合PBS沖洗,第四組以鈦金屬刮匙進行清創配合PBS沖洗後進行超音波震盪,第五組以鈦金屬刮匙進行清創配合PBS沖洗後浸泡Chlorhexidine。之後以掃描式電子顯微鏡觀察A .actinomycetemcomitans及P. gingivalis是否能在鈦板形成生物薄膜,並觀察清創處理之後的細菌殘留情形,我們發現經由超音波震盪的方式可將細菌完全移除。在細胞貼附測試結果部分發現即使經由超音波震盪將細菌完全移除後細胞的貼附數目仍不如未接種細菌之鈦板,推測是表面性質有所改變或是有殘留細菌之分泌物如:內毒素等阻礙細胞之貼附。接下來進行表面分析,在粗糙度部分我們發現P. gingivalis所產生的生物薄膜會使粗糙度降低,而A. actinomycetemcomitans則不會,而經由鈦金屬刮匙進行清創會使粗糙度有下降的情形,超音波震盪與浸泡Chlorhexidine則不會。在親疏水部份我們發現即使經由超音波震盪亦無法將鈦板之親水性恢復到未感染的狀態。由於文獻指出P. gingivalis及A.actinomycetemomitans之內毒素會使骨母細胞之分化能力及增生能力下降,也對細胞之貼附性有影響。我們在鈦板上coating內毒素發現接觸角增加,因此我們推測即使以超音波震盪完全移除細菌之後其上仍殘留內毒素,是導致骨母細胞在先前的實驗中無法順利貼附的原因。因此對表面進行化學分析,而使用傅立葉轉換紅外線光譜儀及X射線光電子能譜儀都無法測得。但經由LAL試驗在超音波震盪後的鈦板測量到內毒素的殘留。因此我們認為在臨床植體周圍炎發生後之re-osseointegration效率不佳或是無法進行的原因是因植體表面殘有內毒素。zh_TW
dc.description.abstractPeriodontal bacteria A. actinomycetemcomitans and P. gingivalis were inoculated on commercialy grade 4 pure titanium discs (15 mm in diameter, 2 mm in thickness, and Ra=1.3) respectively to form in vitro biofilm. They were divided into five groups, Group 1 received no treatment and served as control. Group 2 received bacteria inoculation without treatment. Group 3 received bacterial inoculation, curette debridement and PBS irrigation. Group 4 received bacterial inoculation, curette debridement, PBS irrigation and ultrasonication. Group 5 received bacterial inoculation, curette debridement, PBS irrigation and chlorhexidine treatment. SEM result indicated that ultrasonication was noted to eliminate all bacteria on the titanium disc and was thought to be the most effective way to remove bacteria in this study. The result of HEPM cells adhesion assay indicated that attached cells were decreased even bacteria were completely removed by ultrasonication when compared with the titanium disc without bacteria inoculation. We thus coating endotoxin on titanium disc and showed increased in contact angle. However, endotoxin couldn’t be detected using FTIR and XPS. Limulus ameboycte lysate result showed presence of endotoxin after ultrasonication. We concluded that re-osseointegration failure after peri-implantitis is due to endotoxin residues on the implant.en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:54:44Z (GMT). No. of bitstreams: 1
ntu-106-R03450019-1.pdf: 4472772 bytes, checksum: f4c014436180b47b0eca1e6c2f625a39 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xi
第一章 前言 1
第二章 文獻回顧 2
2.1人工植體 2
2.1.1 歷史沿革及使用時機 2
2.1.2鈦金屬之性質及應用 4
2.1.3 人工植體之表面改質 5
2.2 骨整合 7
2.2.1 骨整合之過程 7
2.2.2 材料性質與骨整合之關係 10
2.3 植體周圍炎 (Peri-implantitis) 12
2.3.1 致病因素及病徵與生物群落之關係 12
2.3.2 P. gingivalis及A. actinomycetemcomitans之特性 14
2.3.3 植體周圍炎之治療 17
2.4 文獻回顧結論 22
第三章 實驗動機與目的 23
3.1 研究動機 23
3.2研究目的 23
第四章 實驗材料與方法 24
4.1實驗材料 24
4.2 實驗儀器 32
4.3 實驗流程圖 33
4.4 鈦金屬板之處理 34
4.5 細菌實驗 35
4.6 模擬臨床移除生物薄膜之處理 38
4.7 細胞實驗 40
4.8 表面粗糙度分析 45
4.9 表面親疏水性分析 47
4.10 表面內毒素殘留分析 48
第五章 實驗結果 53
5.1 SEM觀察不同清創處理後之鈦板表面 53
5.2細胞貼附狀態及數目之觀察 57
5.3鈦板上之HEPM cells移除試驗 60
5.4 模擬臨床移除生物薄膜處理後之細胞貼附定量試驗 62
5.5 表面粗糙度分析 64
5.6 表面親疏水性分析 73
5.7表面內毒素殘留分析 77
第六章 討論 83
6.1 SEM觀察不同清創處理後之鈦板表面 83
6.2 細胞貼附狀態及數目之觀察 83
6.3 鈦板上之HEPM cells移除試驗 84
6.4 細胞貼附定量試驗與生物薄膜之關係 84
6.5 生物薄膜經模擬臨床處理後與表面粗糙度之關係 85
6.6 生物薄膜經模擬臨床處理後與表面親疏水性之關係 86
6.7 表面內毒素殘留分析 87
第七章 結論 88
第八章 參考文獻 89
dc.language.isozh-TW
dc.subject植體周圍炎zh_TW
dc.subject植體zh_TW
dc.subject骨母細胞zh_TW
dc.subject表面性質zh_TW
dc.subject牙周病菌zh_TW
dc.subject鈦板zh_TW
dc.subjectperi-implantitisen
dc.subjectperiodontal bacteriaen
dc.subjecttitanium discen
dc.subjectimplanten
dc.subjectosteoblasten
dc.subjectsurface propertyen
dc.title以不同清潔方式處理牙周病菌感染後之鈦金屬板其表面性質變化和細胞貼附情形zh_TW
dc.titleSurface Properties and Osteoblast Attachment of Periodontal Bacteria Infected Titanium Disc after Different Treatmentsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李伯訓(Bor-Shiunn Lee),黃何雄(Her-Hsiung Huang)
dc.subject.keyword植體,植體周圍炎,鈦板,牙周病菌,表面性質,骨母細胞,zh_TW
dc.subject.keywordimplant,peri-implantitis,titanium disc,periodontal bacteria,surface property,osteoblast,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201700012
dc.rights.note有償授權
dc.date.accepted2017-01-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.37 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved