請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60072完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張國鎮(Kuo-Chun Chang) | |
| dc.contributor.author | Yu-Hsuan Lee | en |
| dc.contributor.author | 李宇軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:54:18Z | - |
| dc.date.available | 2020-08-20 | |
| dc.date.copyright | 2020-08-20 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | [1] Oiles Corporation., FPS Sliding Pendulum Type Seismic Isolation Device Friction Pendulum System, http://www.oiles.co.jp/en/menshin/building/menshin/products/fps/ [2] Taiwan Pillar Industry Co. Ltd., Lead Rubber Bearing, http://www.taiwanpillar.com.tw/en/about12c4.html?mode=3 id=14 [3] Freyssinet Products Company Italia. High Damping Rubber Bearings Isosism HDRB, http://www.fpcitalia.it/freyssinet/fpc-italia_en.nsf/sb/products-and-solutions.seismic-protection..high-damping-rubber-bearings-isosism-hdrb [4] K.C. Tsai, H.W. Chen, C.P. Hong, and Y.F. Su, “Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction,” Earthquake Spectra, vol. 9,no. 3, pp. 505 - 528, 1993. [5] K.C. Tsai, J.W. Lai, Y.C. Hwang, S.L. Lin, and C.H. Weng, “Research and Application of Double-Core Buckling Restrained Braces in Taiwan,” World Conference on Earthquake Engineering, no. 2179, 2004. [6] J.S. Hwang, “Seismic Design of Structures with Viscous Dampers,” International Training Programs for Seismic Design of Building Structures Hosted by National Center for Research on Earthquake Engineering, 2002. [7] K.C. Chang, T.T. Soong, M.L. Lai, and E.J. Nielsen, “ Viscoelastic Dampers as Energy Dissipation Devices for Seismic Applications,” Earthquake Spectra, vol. 9, no. 3, pp.371 – 387, 1993. [8] V.G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Soviet Physics Uspekhi, vol. 10, no. 4, pp. 509-514 , 1968. [9] J.B. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical Review Letters, vol. 76, no. 25, pp. 4773-4776, 1996. [10] J.B. Pendry, A.J. Holden, D.J. Robbins, and W. Stewart, “Magnetism from. conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075-2084, 1999. [11] J.B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966-3969, 2000. [12] Z. Liu et al., 'Locally resonant sonic materials,' vol. 289, no. 5485, pp. 1734-1736, 2000. [13] S. Krödel, N. Thomé, and C. Daraio, 'Wide band-gap seismic metastructures,' Extreme Mechanics Letters, vol. 4, pp. 111-117, 2015. [14] 簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,新型態外部隔減震技術-地震超材料之設計與分析,中國土木水利工程學刊,31卷4期,pp. 395-410, 2019. [15] 吳逸軒、汪向榮、張國鎮、陳東陽,多類型複合地震超結構之寬頻帶設計與分析,中國土木水利工程學刊,31卷1期,pp. 103-118, 2019. [16] R.M. Walser, “Electromagnetic metamaterials,” International Society for Optics and Photonics, vol. 4467, pp. 1-15, 2001. [17] F. Meseguer et al., 'Rayleigh-wave attenuation by a semi-infinite two- dimensional elastic-band-gap crystal,' Physical Review B, vol. 59, no. 19, p. 12169, 1999. [18] W. Witarto et al., 'Analysis and Design of One Dimensional Periodic Foundations for Seismic Base Isolation of Structures,' International Journal of Engineering Research and Applications, vol. 6, no. 1, pp. 5-15, 2016. [19] Q. Du, Y. Zeng, G. Huang, and H. Yang, 'Elastic metamaterial-based seismic shield for both Lamb and surface waves,' AIP Advances, vol. 7, no. 7, pp. 075015, 2017. [20] M. Miniaci, A. Krushynska, F. Bosia, and N. M. Pugno, 'Large scale mechanical metamaterials as seismic shields,' New Journal of Physics, vol. 18, no. 8, p. 083041, 2016. [21] Y. Achaoui, B. Ungureanu, S. Enoch, S. Brûlé, and S. Guenneau, 'Seismic waves damping with arrays of inertial resonators,' Extreme Mechanics Letters, vol. 8, pp. 30-37, 2016. [22] Y. Achaoui, T. Antonakakis, S. Brule, R. Craster, S. Enoch, and S. Guenneau, 'Clamped seismic metamaterials: ultra-low frequency stop bands,' New Journal of Physics, vol. 19, no. 6, p. 063022, 2017. [23] Y. Chen, F. Qian, F. Scarpa, L. Zuo, X. Zhuang, 'Harnessing multi-layered soil. to design seismic metamaterials with ultralow frequency band gaps, 'Materials and Design, vol. 175, no. 107813, 2019. [24] S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, 'Experiments on seismic metamaterials: molding surface waves,' Physical review letters, vol. 112, no. 13, p. 133901, 2014. [25] S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, 'Flat lens effect on seismic waves propagation in the subsoil,' Scientific Reports, vol. 7, p.18066, 2017. [26] H. Huang, C. Sun, and G. Huang., 'On the negative effective mass density in acoustic metamaterials, ' International Journal of Engineering Science, vol. 47, no. 4, pp. 610-617, 2009. [27] F. Bloch, 'Über die quantenmechanik der elektronen in kristallgittern, 'Zeitschrift Für Physik, vol. 52, no. 7, pp. 555-600, 1929. [28] R. Hill, “Elastic properties of reinforced solids: Some theoretical principles,” Journal of the Mechanics and Physics of Solids, vol. 11, no. 5, pp. 357-372, 1963. [29] C. Bradly, and A. Cracknell, The Mathematical Theory of Symmetry in Solids, Oxford Classic Texts in the Physical Sciences, 1972. [30] Y. Liu, X. Sun, and S. Chen, “Band gap structures in two-dimensional super porous phononic crystals,” Ultrasonics, vol. 53, no. 2, pp. 518-524, 2013. [31] J. Huang, and Z. Shi, “Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves,” Journal of Sound and Vibration, vol. 332, no. 19, pp. 4423-4439, 2013. [32] G. Manger, Porosity and Bulk Density of Sedimentary Rocks, United States Geological Survey, 1963. [33] Geotechdata.info, Soil elastic Young's modulus, http://www.geotesting.info/parameter/soil-young%27s-modulus.html, 2013. [34] NPTEL, Physico-Mechanical Properties of Rocks, Module 2 Lecture 4, https://nptel.ac.in/courses/105106055/, 2016. [35] MatWeb, Overview of materials for Silicone Rubber, http://www.matweb.com/search/DataSheet.aspx?MatGUID=cbe7a469897a47eda563816c86a73520 ckck=1 [36] CNL SEALS CO.,LTD., Rubber Characteristics Are Used, https://www.cnl.com.tw/uploads/files/rubber_char_6.pdf, 2019. [37] 小栗富士雄、小栗達男,標準機械設計圖表便覽,眾文圖書股份有限公司,2012. [38] Dassault Systemes Simulia Corp.,ABAQUS 最新實務入門引導,全華圖書股份有限公司,2013. [39] 士盟科技股份有限公司,ABAQUS基礎訓練,課程講義,http://gofile.me/2MDb7/OvqCG9OoG, 2018. [40] 朱亭,免開挖中地表振動問題之數值分析研究,中興大學土木工程學系碩士論文,2015. [41] Dassault Systemes Simulia Corp., Abaqus 6.14 Documentation Collection, http://ivt-abaqusdoc.ivt.ntnu.no:2080/v6.14/index.html [42] 李冠慧,地震超材料設計之減震模擬及效益評估,成功大學土木工程學系學位論文,2019. [43] 許皓程、胡宣德、吳俊霖,馬鞍山核電廠圍阻體土壤結構互制之動力分析,SIMULIA Taiwan Regional User Meeting, 2018. [44] 內政部營建署,建築物耐震設計規範及解說,內政部100.1.19台內營字第0990810250號令修正,2011. [45] 翁作新、陳家漢、彭立先、李偉誠,「大型振動台剪力盒土壤液化試驗(II) -大型砂試體之準備與振動台初期試驗」,國家地震工程研究中心研究報告(報告編號:NCREE-03-042),2003. [46] 周贊翔,樁基礎沖刷橋梁模型之樁土互制行為研究,臺灣大學土木工程學系碩士論文,2012. [47] 曾子俊,橋梁含功能性支承與直接基礎之振動台試驗研究,臺灣大學土木工程學系碩士論文,2014. [48] M.P. Nicoreac, B.R. Pârv, M. Petrina, T. Petrina, “Similitude theory and applications,” Acta Technica Napocensis: Civil Engineering Architecture, vol. 53, no. 1, 2010. [49] 國家地震工程研究中心,NCREE 244.41 ACTUATOR PERFORMANCE, 1995. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60072 | - |
| dc.description.abstract | 近年來隔減震系統已為成熟之抗震技術,透過將隔減震裝置安裝於建築物內部以改變其耐震行為,並應用於許多建築結構中。地震超材料為一研發中之概念性材料,其由波傳角度出發,藉由超材料在帶隙範圍內發生局部共振產生濾波機制,將帶隙涵蓋地震主頻或結構物自然頻率,可避免地表與結構物間產生共振行為,進而降低結構物之反應。本文針對基樁形式之地震超材料進行分析,其透過單元結構以週期性排列構成地震超材料,將其設置於建築物外圍,可用於保護範圍內之結構體。 本文利用有限元素分析軟體ABAQUS進行數值模擬,在二維模型中假設為平面應變進行分析,由三種對應不同帶隙頻率所組成之多類型複合模型,透過地震歷時分析結果發現,其可有效降低加速度反應,對於近斷層之速度脈衝也具有折減效果,且因帶隙內之濾波機制使反應譜中對應頻率之譜加速度下降。在三維實尺模型分析發現,由於超材料發生局部共振而造成較大之反應,因此超材料前方會產生放大的結果,並從模擬結果圖看出濾波機制僅發生於包含超材料之深度範圍,因此在相同深度模型下,超材料長度較深者其折減效果較佳。接著進行土壤結構互制分析,發現地震主頻位於帶隙內時,在峰值範圍內結構物之絕對加速度顯著降低,此時對應之頂層相對位移與基底剪力、柱底軸力與彎矩皆呈下降趨勢,且結構體層間變位並無明顯上升,相比隔震系統藉由延長建築物的週期,使建築物因地震而產生的加速度反應下降而導致位移反應上升,地震超材料可在不增加位移反應情況下降低帶隙頻率範圍內之加速度反應。最後透過縮尺試驗模型之單元結構掃頻分析發現,當模型縮小十倍則帶隙頻率放大十倍,由整體模型通過超材料後之不同深度結果,與同尺寸土體模型相比發現於表面反應的衰減情形最為明顯。 | zh_TW |
| dc.description.abstract | Recently, the application of seismic isolation and energy dissipation systems had become more and more developed. The seismic behavior of structure could be modified through installing the passive control systems to the structure. Until now, seismic metamaterials were known as a conceptual material still in development. From the perspective of wave propagation. The resonance between the ground and the structure could be prevented, and also, reduce the structure response by blocking seismic waves with local resonance of metamaterials in the band gap that covers the frequency content of ground motions or the natural frequency of the structure. This study focused on the pile-type seismic metamaterials, which consists of periodic cell units. Buildings surrounded by the seismic metamaterials could be protected from seismic wave. In this research, the finite element analysis software ABAQUS was used for numerical simulation, and the plane strain state was assumed in the two-dimensional model. The ABAQUS model consists of three types of cell units with broad band gap. Through the time history analysis, it was found that the metamaterials could not only effectively reduce the acceleration response, but also reduce the effects of near-fault pulse-like ground motions. The spectral acceleration of the corresponding frequency in the response spectrum is decreased due to the wave mitigation in the band gap. The analysis result of the three-dimensional full-scale model showed that a larger reaction will occur in front of the metamaterials caused by the local resonance. Furthermore, the degradation of wave only took place at the corresponding depth with metamaterials. Therefore, by observing the models with identical total depth, the deeper the length of metamaterials is, the better attenuation characteristics shows. Through the analysis of cell units, it was found that when the model was scaled down by ten times, the frequency would amplify by ten times. After the analysis of metamaterials models with different depth, most of the difference occur at the surface compared with the soil model. Last but not least, the analysis result of the soil-structure interaction indicated that when the frequency content of ground motions was within the attenuation zone, the peak of roof absolute acceleration would significantly be reduced. Likewise, the peak of roof relative displacements, base shears, column axial forces and bending moments of the structure all tended to decrease, besides, there was no conspicuous increase in the interlayer displacement of the structure. Though seismic isolation system could decrease the acceleration response through extending the natural period of the structure. It may increase the displacement response of structure at the same time. Based on these drawbacks of seismic isolation system, seismic metamaterials could decrease the acceleration response within the attenuation zone without increasing the displacement response. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:54:18Z (GMT). No. of bitstreams: 1 U0001-1308202014450200.pdf: 12607137 bytes, checksum: 9139ea8de3f45fcc8cbda509a6c30eb3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 vi 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1 前言及研究動機 1 1.2 研究目標 3 1.3 本文架構 3 第二章 文獻回顧 4 2.1 地震超材料的發展 4 2.2 離散模型分析 7 2.2.1 二維彈簧質量模型[15] 7 2.2.2 頻散方程式分析 10 2.2.3 模型配置與討論 12 2.2.3.1 材料配置[14] 13 2.2.3.2 層數配置[15] 14 2.3 連體模型分析 16 2.3.1 幾何種類選擇[15] 17 2.3.2 幾何尺寸影響[15] 19 2.3.3 材料性質影響[15] 23 2.3.4 模型配置與討論 27 2.3.4.1 設計概念 27 2.3.4.2 單元結構設計 28 第三章 二維數值模擬 32 3.1 ABAQUS模型 32 3.1.1 使用軟體及求解方法介紹[38] 32 3.1.2 動態分析的邊界條件[40] 34 3.1.3 幾何條件與邊界條件 36 3.1.4 元素種類與網格尺寸 38 3.1.5 掃頻試驗之比較 41 3.1.6 多類型複合模型建立 45 3.2 結果與討論 47 3.2.1 掃頻試驗結果 48 3.2.2 地震歷時分析 50 3.3 小結 64 第四章 三維數值模擬 65 4.1 實尺模型 65 4.1.1 幾何條件與邊界條件 65 4.1.2 元素種類與網格尺寸 68 4.1.3 實尺模型建立 71 4.1.4 雷利阻尼係數與自然頻率求取 73 4.1.5 掃頻試驗結果 78 4.1.5.1 深度影響 79 4.1.5.2 結果討論 86 4.1.6 地震歷時分析 94 4.2 土壤結構互制分析 100 4.2.1 幾何條件與邊界條件 101 4.2.2 元素種類與網格尺寸 104 4.2.3 土壤結構互制模型建立 107 4.2.4 土壤地應力平衡 114 4.2.5 掃頻試驗結果 118 4.2.6 地震歷時分析 120 4.3 縮尺試驗模型 133 4.3.1 試驗設備 133 4.3.2 幾何、邊界條件與元素種類 138 4.3.3 縮尺試驗模型建立 140 4.3.4 掃頻試驗結果 144 4.4 小結 155 第五章 結論與未來展望 156 5.1 結論 156 5.2 建議與未來展望 157 參考文獻 159 | |
| dc.language.iso | zh-TW | |
| dc.subject | 地震超材料 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 土壤結構互制 | zh_TW |
| dc.subject | 縮尺試驗 | zh_TW |
| dc.subject | Lab-Scale Experiment | en |
| dc.subject | Finite Element Method | en |
| dc.subject | Numerical Simulation | en |
| dc.subject | Soil-Structure Interaction | en |
| dc.subject | Seismic Metamaterials | en |
| dc.title | 有限元素法於樁型地震超材料之數值模擬 | zh_TW |
| dc.title | Numerical Simulations on Pile-type Seismic Metamaterials using Finite Element Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳東諭(Tung-Yu Wu),汪向榮(Shiang-Jung Wang),林子剛(Tzu-Kang Lin) | |
| dc.subject.keyword | 地震超材料,有限元素法,數值模擬,土壤結構互制,縮尺試驗, | zh_TW |
| dc.subject.keyword | Seismic Metamaterials,Finite Element Method,Numerical Simulation,Soil-Structure Interaction,Lab-Scale Experiment, | en |
| dc.relation.page | 163 | |
| dc.identifier.doi | 10.6342/NTU202003254 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1308202014450200.pdf 未授權公開取用 | 12.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
