請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60048完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧述諄(Shu-Chun Teng) | |
| dc.contributor.author | Chia-Ming Chen | en |
| dc.contributor.author | 陳家民 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:52:46Z | - |
| dc.date.available | 2022-01-10 | |
| dc.date.copyright | 2017-02-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-12 | |
| dc.identifier.citation | 1. Zakian, V. A. (1996). Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet. 30, 141–172
2. McEachern, M. J., Krauskopf, A., and Blackburn, E. H. (2000). Telomeres and their control.Annu. Rev. Genet. 34, 331–358 3. Shay, J. W., Zou, Y., Hiyama, E., and Wright, W. E. (2001). Telomerase and cancer.Hum. Mol. Genet. 10, 677–685 4. Fourel, G., Lebrun, E., and Gilson, E. (2002). Protosilencers as building blocks for heterochromatin. BioEssays 24, 828–835 5. Enomoto, S., McCune-Zierath, P. D., Gerami-Nejad, M., Sanders, M. A., and Berman, J. (1997). RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev. 11, 358–370 6. Levy, D. L., and Blackburn, E. H. (2004).Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Mol. Cell. Biol. 24, 10857–10867 7. Marcand, S., Gilson, E., and Shore, D. (1997).A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 8. Wotton, D., and Shore, D. (1997). A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760 9. Greider, C. W., and Blackburn, E. H. (1985). Identification of a specific telomere terminal transferase activity in Tetra hymenaextracts. Cell 43, 405–413 10. de Lange, T. (2002). Protection of mammalian telomeres. Oncogene 21, 532–540 11. Vega, L. R., Mateyak, M. K., and Zakian, V. A. (2003).Getting to the end: telomerase access in yeast and humans. Nat. Rev. Mol. Cell. Biol. 4, 948–959 12. McEachern, M. J., and Blackburn, E. H. (1996). Cap-prevented recombination between terminal telomeric repeat arrays (telomere CPR) maintains telomeres in Kluyveromyces lactis lacking telomerase. Genes Dev. 10, 1822–1834 13. Lundblad, V., and Blackburn, E. H. (1993). An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73, 347–360 14. Singer, M. S., and Gottschling, D. E. (1994). TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266, 404–409 15. Nakamura, T. M., Morin, G. B., Chapman, K. B., Weinrich, S. L., Andrews, W. H., Lingner, J., Harley, C. B., and Cech, T. R. (1997).Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 16. Teng, S. C., and Zakian, V. A. (1999). Telomere-telomere recombination is an efficient bypass pathway for telomere maintenance in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 8083–8093 17. Bryan, T. M., Englezou, A., Dalla-Pozza, L., Dunham, M. A., and Reddel, R. R. (1997).Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271–1274 18. Dunham, M. A., Neumann, A. A., Fasching, C. L., and Reddel, R. R. (2000). Telomere maintenance by recombination in human cells. Nat. Genet.26, 447–450 19. Reddel, R. R., Bryan, T. M., Colgin, L. M., Perrem, K. T., and Yeager, T. R. (2001). Alternative lengthening of telomeres in human cells. Radiat. Res. 155, 194–200 20. Teng, S. C., Chang, J., McCowan, B., and Zakian, V. A. (2000). Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6, 947–952 21. Johnson, F. B., Marciniak, R. A., McVey, M., Stewart, S. A., Hahn, W. C., and Guarente, L. (2001). The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J. 20, 905–913 22 . Chen, Q., Ijpma, A., and Greider, C. W. (2001). Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol.Cell. Biol. 21, 1819–1827 23. Cohen, H., and Sinclair, D. A. (2001). Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc. Natl. Acad. Sci. U. S. A. 98, 3174–3179 24. Huang, P., Pryde, F. E., Lester, D., Maddison, R. L., Borts, R. H., Hickson, I. D., and Louis, E. J. (2001). SGS1 is required for telomere elongation in the absence of telomerase. Curr. Biol. 11, 125–129 25. Liti, G., and Louis, E. J. (2003). NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell 11, 1373–1378 26. Bupp, J.M., Martin, A.E., Stensrud, E.S., and Jaspersen, S.L.2007. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1–UNC-84 domain protein Mps3. J. Cell Biol. 179, 845–854. 27. Andrulis, E.D., Zappulla, D.C., Ansari, A., Perrod, S., Laiosa,C.V., Gartenberg, M.R., and Sternglanz, R. 2002. Esc1,a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Mol. Cell. Biol. 22, 8292–8301. 28. Zaman, S., Lippman, S.I., Zhao, X., and Broach, J.R. (2008). How Saccharomyces responds to nutrients. Annual review of genetics 42, 27-81. 29. Partridge, L., and Mangel, M. (1999). Messages from mortality: the evolution of death rates in the old. Trends in ecology & evolution 14, 438-442. 30. Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217. 31. Kenyon, C.J. (2010). The genetics of ageing. Nature 464, 504-512. 32. Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513-519. 33. Mortimer, R.K., and Johnston, J.R. (1959). Life span of individual yeast cells. Nature 183, 1751-1752. 34. Fabrizio, P., and Longo, V.D. (2003). The chronological life span of Saccharomyces cerevisiae. Aging cell 2, 73-81. 35. Masoro, E.J. (2005). Overview of caloric restriction and ageing. Mechanisms of ageing and development 126, 913-922. 36. McCay, C.M., Crowell, M.F., and Maynard, L.A. (1935). The Effect of Retarded Growth Upon the Length of Life Span and Upon the Ultimate Body Size: One Figure. The Journal of nutrition 10, 63-79. 37. Mattson, M.P., and Wan, R. (2005). Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. The Journal of nutritional biochemistry 16, 129-137. 38. Roth, G.S., Ingram, D.K., and Lane, M.A. (2001). Caloric restriction in primates and relevance to humans. Annals of the New York Academy of Sciences 928, 305-315. 39. Lin, S.J., Defossez, P.A., and Guarente, L. (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128. 40. Dilova, I., Easlon, E., and Lin, S.J. (2007). Calorie restriction and the nutrient sensing signaling pathways. Cellular and molecular life sciences : CMLS 64, 752-767. 41. Kaeberlein, M., Powers, R.W., 3rd, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193-1196. 42. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901-906. 43. Lin, S.S., Manchester, J.K., and Gordon, J.I. (2003). Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem 278, 13390-13397. 44. Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., and Longo, V.D. (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor, and Sch9. PLoS genetics 4, e13. 45.Ullrich, A., and Schlessinger, J. (1990). Signal transduction by receptors with b tyrosine kinase activity. Cell 61, 203-212. 46. Kettner, K., Krause, U., Mosler, S., Bodenstein, C., Kriegel, T.M., and Rodel, G. (2012).Saccharomyces cerevisiae gene YMR291W/TDA1 mediates the in vivo phosphorylation of hexokinase isoenzyme 2 at serine-15. FEBS Lett. 586, 455-458 47. Kriegel, T.M., Rush, J., Vojtek, A.B., Clifton, D., and Fraenkel, D.G. (1994). In vivo phosphorylation site of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 33, 148-152. 48. Budhwar, R., Fang, G., and Hirsch, J.P. (2011). Kelch repeat proteins control yeast PKA activity in response to nutrient availability. Cell cycle 10, 767-770. 49. Chen Wang, Craig Skinner, Erin Easlon and Su-Ju Lin. (2009). Deleting the 14-3-3 Protein Bmh1 Extends Life Span in Saccharomyces cerevisiae by Increasing Stress Response.Genetics 183, 1373-1384. 50. einberger M, Sampaio-Marques B, Ludovico P, Burhans WC. (2013). DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction. Cell Cycle 12, 1189-1200. 51.Hanzén S, Vielfort K, Yang J, Roger F, Andersson V, Zamarbide-ForésS, Andersson R, Malm L, Palais G, Biteau B, Liu B, Toledano MB, Molin M, Nyström T.(2016). Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins.Cell 166, 140-151. 52. Hediger, F., Neumann, F.R., Van Houwe, G., Dubrana, K., and Gasser, S.M. 2002. Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr. Biol. 12, 2076–2089. 53. Schober H, Ferreira H, Kalck V, Gehlen LR, Gasser SM (2009). Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes Dev 23, 928-938 54. Amberg, D.C., Burke, D.J., and Strathern, J.N. (2005). Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, 2005 Edition (Cold Spring). 55. Hung-Ji Tsai,Wei-Hsiang Huang, Tsai-Kun L, Yun-Luen Tsai, Kou-Juey Wu, Shun-Fu Tseng, and Shu-Chun Teng (2006). Involvement of Topoisomerase III in Telomere–Telomere Recombination. J Biol Chem 281, 13717-13723. 56. Florence Hediger, Angela Taddei, Frank R. Neumann, and Susan M. Gasser (2004). Methods for Visualizing Chromatin Dynamics in Living Yeast. Methods Enzymol 375, 345-365. 57. Rines DR, Thomann D, Dorn JF, Goodwin P, Sorger PK.(2011). Live cell imaging of yeast. Cold Spring Harb Protoc. 56. Han, C.L., Chien, C.W., Chen, W.C., Chen, Y.R., Wu, C.P., Li, H., and Chen, Y.J. (2008). A multiplexed quantitative strategy for membrane proteomics: opportunities for mining therapeutic targets for autosomal dominant polycystic kidney disease. Mol Cell Proteomics 7, 1983-1997. 57. Lu, X., and Zhu, H. (2005). Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics 4, 1948-1958. 58. Tsai, C.F., Wang, Y.T., Chen, Y.R., Lai, C.Y., Lin, P.Y., Pan, K.T., Chen, J.Y., Khoo, K.H., and Chen, Y.J. (2008). Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics. J Proteome Res 7, 4058-4069. 59. Wang, Y.T., Tsai, C.F., Hong, T.C., Tsou, C.C., Lin, P.Y., Pan, S.H., Hong, T.M., Yang, P.C., Sung, T.Y., Hsu, W.L., et al. (2010). An informatics-assisted label-free quantitation strategy that depicts phosphoproteomic profiles in lung cancer cell invasion. J Proteome Res 9, 5582-5597. 60. Tsou, C.C., Tsai, C.F., Tsui, Y.H., Sudhir, P.R., Wang, Y.T., Chen, Y.J., Chen, J.Y., Sung, T.Y., and Hsu, W.L. (2010). IDEAL-Q, an automated tool for label-free quantitation analysis using an efficient peptide alignment approach and spectral data validation. Mol Cell Proteomics 9, 131-144. 61. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25-29. 62. Dennis, G., Jr., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., and Lempicki, R.A. (2003). DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4, P3. 63. Engel, S.R., Balakrishnan, R., Binkley, G., Christie, K.R., Costanzo, M.C., Dwight, S.S., Fisk, D.G., Hirschman, J.E., Hitz, B.C., Hong, E.L., et al. (2010). Saccharomyces Genome Database provides mutant phenotype data. Nucleic Acids Res 38, D433-436. 64. Wong, J.M., Kusdra, L., and Collins, K. 2002. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat. Cell Biol. 4, 731–736. 65. Tomlinson, R.L., Ziegler, T.D., Supakorndej, T., Terns, R.M., andTerns, M.P. 2006.Cell cycle-regulated trafficking of human telomerase to telomeres. Mol. Biol. Cell 17, 955–965. 66. Cristofari, G., Adolf, E., Reichenbach, P., Sikora, K., Terns, R.M.,Terns, M.P., and Lingner, J. 2007. Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol. Cell 27, 882–889. 67. Cesare AJ, Reddel RR (2010) .Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet 11, 319–330. 68. Nabetani A, Ishikawa F (2011). Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem 149, 5–14. 69. Meng-Hsun Hsieh ,Cheng-Hui Tsai ,Chuan-Chuan Lin ,Tsai-Kun Li ,Ting-Wei Hung ,Li-Te Chang ,Ling-Wei Hsin, Shu-Chun Teng (2015). Topoisomerase II inhibition suppresses the proliferation of telomerase-negative cancers. Cell. Mol. Life Sci72, 1825–1837. 70. Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2013). Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp Gerontol 48, 1455-1468. 71. Fujioka, Y., Suzuki, S.W., Yamamoto, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Akada, R., Inagaki, F., Ohsumi, Y., and Noda, N.N. (2014). Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21, 513-521. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60048 | - |
| dc.description.abstract | 細胞至產生後會經歷一連串複雜的原因而逐漸走向喪失生理功能的過程,此過程稱之為老化。為了維持基因的穩定性,酵母菌Saccharomyces cerevisiae藉由將端粒連接在細胞核膜上,以避免進行不正常的telomere-telomere recombination。過去的研究指出當酵母菌中的tlc1缺失時,端粒的縮短會促使細胞啟動telomere-telomere recombination來維持端粒的正常長度,並產生type I 和II survivors。所以我從兩個錨定(anchorage)作用途徑(telomearse-Mps3-Ku80和Sir4-Esc1)去探討影響 telomere 與細胞膜結合。其中我透過螢光共軛焦顯微鏡去觀察並評估過量表現Mps3的N端truncated蛋白在wild type及tlc1的酵母菌中,端粒連接在細胞核膜的程度與比例。此外再透過solid plate assay檢查esc1是否會影響telomere-telomere recombination。另一方面,之前的研究也發現藉由熱量限制調控老化相關的訊息傳遞路徑能有效地延長各物種的平均壽命和延緩老化。但是對於細胞為了適應外在環境改變來延長細胞壽命的確切調控機制目前仍有待探討。因此分別將酵母菌培養在含有不同葡萄糖濃度(2%,0.5%)的培養基中,並透過液相層析串聯式質譜儀和蛋白質體學來分析在熱量限制調控下蛋白的磷酸化位點及磷酸化狀態的變異。接著利用Gene ontology和SGD phenotype資料庫的分析,我們一共選擇了15個蛋白磷酸化位點做後續的研究和分析,並透過單一磷酸化位點或雙磷酸化位點點突變來模擬蛋白磷酸化狀態的改變,且觀察在不同的壓力下酵母菌的生長情形是否會被影響。上述研究的結果顯示皆無明顯差異和影響,然而細胞內可能還存在著其他調控老化相關的途徑,因此我們未來還需要做更進一步的探討和分析。 | zh_TW |
| dc.description.abstract | Cell from born to death may face aging which was characterized by progressive loss of physiological functions. To avoid abnormal change of genome and telomere-telomere recombination, telomeres are usually anchored at the nuclear envelope in budding yeast. Previous studies indicated that once telomeres become critically short, telomere - telomere recombination is promoted to maintain the normal length of telomere and generate the type I or type II survivors in the telomerase-negative yeast. To investigate the influence of the anchorage between telomere and nuclear envelope, we use fluorescence and confocal microscope to examine that the influence of Mps3-N’ on telomere anchorage when yeast loses telomerase. Moreover, we also use the solid plate assay to examine whether Esc1 suppresses telomere-telomere recombination in telomerase-negative yeast. On the other hand, early studies indicated that the influence of calorie restriction (CR) on some transduction signaling pathways which are associated with mechanisms of aging could effectively extend the lifespan in many organisms but the precise mechanism is not well-known as yet. In this study, yeast cells which were treated with YPAD medium containing 2% or 0.5% glucose grown at 30℃. Then we employed the quantitative proteomics, LC–MS / MS, Gene ontology, and the SGD phenotype to analyze phosphorylation state of protein which may be modulated. In total, the phospho-mimic or phospho-abolishing mutants are generated from 15 candidates to test the growth of yeast under different sorts of stress. However, the results showed that no obvious difference. There may be some alternative pathways that regulate the mechanisms of aging which existing in yeast. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:52:46Z (GMT). No. of bitstreams: 1 ntu-106-R02445205-1.pdf: 3880252 bytes, checksum: c3a2eb1c1e2251a9cb31c637027dc6e9 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .iii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . iv INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 MATERIALS & METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 The preparation of yeast strain and constructions The preparation and operation of yeast culture, genomic DNA, enzyme digestion, gel electrophoresis, and analysis of Southern blot The analysis of telomere restriction fragment (TRF) The preparation and operation of fluorescence and confocal microscope Sample Preparation for analysis of LC-MS/MS and quantitative proteomics The analysis of Gene Ontology The analysis of PhosphoGRID The analysis of functional test RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Fig.1 Analysis of anchorage between telomere and nuclear envelope in telomerase-negative yeast. Fig.2 Analysis of the influence ofesc1 on telomere-telomere recombination in telomerase-negative yeast. Fig.3 The functional flow diagram of analysis of cell cycle and the stress response under CR Fig.4 There is no obvious difference between phospho-mimic or phospho- abolishing mutants from identified candidates and wild type by the functional test TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table.1 Yeast strains and construction used in this study Table.2 Primers used in this study Table.3 Point mutation site of pop-out strains Table.4 Cell cycle associated deletion mutants and the results of functional test Table.5 Cell cycle associated phospho-mimic or phospho-abolishing mutant and the results of functional test Table.6 The stress response associated candidates and the results of functional test Table.7 The stress response associated phospho-mimic or phospho-abolishing mutant candidates and the results of functional test REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 APPENDIXS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 (1) The influence of calorie restriction on S. cerevisiae by analyzation of quantitative proteomics and LC–MS/MS (2) Analysis of Gene Ontology (GO) terms under calorie restriction (3) The analysis of functional test and tandem affinity purification followed by mass spectrometry from Ids2. (4) The candidates for functional analysis. | |
| dc.language.iso | en | |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 突變 | zh_TW |
| dc.subject | 端粒 | zh_TW |
| dc.subject | 錨定 | zh_TW |
| dc.subject | 熱量限制 | zh_TW |
| dc.subject | phosphorylation | en |
| dc.subject | telomere | en |
| dc.subject | anchorage | en |
| dc.subject | mutation | en |
| dc.subject | calorie restriction | en |
| dc.title | 探討端粒錨定作用和熱量限制調控的相關性路徑 | zh_TW |
| dc.title | Analysis of telomere anchorage and calorie restriction
pathways | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲(Jing-Jer Lin),劉雅雯(Ya-Wen Liu) | |
| dc.subject.keyword | 端粒,錨定,磷酸化,突變,熱量限制, | zh_TW |
| dc.subject.keyword | telomere,anchorage,mutation,calorie restriction,phosphorylation, | en |
| dc.relation.page | 60 | |
| dc.identifier.doi | 10.6342/NTU201700055 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-01-12 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
