Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60036
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高振宏
dc.contributor.authorZi-Xuan Zhuen
dc.contributor.author朱子軒zh_TW
dc.date.accessioned2021-06-16T09:52:01Z-
dc.date.available2027-10-21
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-13
dc.identifier.citation[1] “Electric Car Demand Growing, Global Market Hits 740,000 Units”, in cleantechnica March 28th, 2015.
[2] http://www.ey.gov.tw/policy8/cp.aspx?n=96CDF983B714FCC9.
[3] T. Kanata, K. Nishiwaki, and K. Hamada, Power Electronics Conference (IPEC), 2010 International. IEEE, Jun. (2010) 778-782.
[4] S. W. Yoon, M. D. Glover, and K. Shiozaki, IEEE Transactions on Power Electronics, 28(5) (2013) 2448-2456.
[5] S. W. Yoon, M. D. Glover, H. A. Mantooth, K. Shiozaki, Journal of Micromechanics and Microengineering, 23(1) (2012) 015017.
[6] “IGBT power module packaging technique”, Journal of Industrial Materials, ITRI 291 2011.
[7] C. Buttay , D. Planson , B. Allard , D. Bergogne , P. Bevilacqua , C. Joubert , M. Lazar , C. Martin , H. Morel , D. Tournier, C. Raynaud, Materials Science and Engineering: B, 176 (2011) 283-288.
[8] R. Bayerer, Microelectronics Reliability, 50 (2010) 1715-1719.
[9] H. Lu, C. Bailey and C. Yin, Microelectronics Reliability, 49 (2009) 1250-1255.
[10] S. Nozawa, T. Maekawa, E. Yagi, Y. Terao and H. Kohno, In: 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD), IEEE (2010) 43-45.
[11] R. W. Johnson, C. Wang, Y. Liu, J. D. Scofield, IEEE Transactions on Electronics Packaging Manufacturing, 30(3) (2007) 182-193.
[12] T. A. Tollefsen, A. Larsson, O. M. L?vvik, K. Aasmundtveit, Metallurgical and Materials Transactions B, 43(2) (2012), 397-405.
[13] T. A. Tollefsen, M. M. V. Taklo, K. E. Aasmundtveit, A. Larsson, In: Electronic System-Integration Technology Conference (ESTC), 2012 4th. IEEE (2012) 1-6.
[14] Z.J. Shen, B. Grummel, R. McClure, A. Gordon, and A. Hefner, iMAPS HiTEC, Albuquerque, NM, 2008.
[15] A. R Powell, L. B. Rowland, Proceedings of the IEEE, 90(6) (2002) 942-955.
[16] T. Kanata, K. Nishiwaki, K. Hamada, In: Power Electronics Conference (IPEC), 2010 International. IEEE (2010) 778-782.
[17] H. Lu, C. Bailey, C. Yin, Microelectronics Reliability 49 (2009) 1250-1255.
[18] B. C. Charboneau, F. Wang, van J. D. Wyk, D. Boroyevich, Z. Liang, E. P. Scott, and C. W. Tipton, IEEE Transactions on Industry Applications, 44 (2008) 1644-1655.
[19] C. Gillot, C. Schaeffer, C. Massit, L. Meysenc, IEEE Transactions on Components and Packaging Technologies, 24 (2001) 698-704.
[20] B. Ozmat, C. S. Korman, P. McConnelee, M. Kheraluwala, E. Delgado, R. Pillion, In: Thermal and Thermomechanical Phenomena in Electronic Systems, 2000. ITHERM 2000. The Seventh Intersociety Conference on. IEEE, (2000) 287-296.
[21] C. M. Johnson, C. Buttay, S. J. Rashid, F. Udrea, G. A. J. Amaratunga, P. Ireland, and R. K. Malhan, Proceedings of the 19th International Symposium on Power Semiconductor Devices and IC's. IEEE (2007) 53-56.
[22] P. Ning, T. G. Lei, F. Wang, G. Q. Lu, K. D. T. Ngo, K. Rajashekara, IEEE Transactions on power Electronics, 25 (2010) 2059-2067.
[23] M.S. El-Genk, H.H. Saber and T. Caillat, Energy Conversion and Management, 44 (2003) 1755-1772.
[24] A. Singh, S. Bhattacharya, C. Thinaharan, D. K. Aswal, S. K. Gupta, J. V. Yakhmi, K. Bhanumurthy, Journal of Physics D: Applied Physics, 42 (2009) 015502.
[25] Y. Hori, T. Ito, In: 2006 25th International Conference on Thermoelectrics, IEEE (2006) 642-645.
[26] K. T. Wojciechowski, R. Zybala, R. Mania, Microelectronics Reliability, 51 (7) (2011) 1198-1220.
[27] J. G. Bai, Z. Z. Zhang, J. Calata, N. Lu, and Q. Guo-Quan, IEEE Transactions on Components and Packaging Technologies, 29 (3) (2006) 589-593.
[28] C. R. Chang, J. H. Jean, Journal of the American Ceramic Society, 81 (11) (1998) 2805-2814.
[29] P. Zheng, P. Henson, R. W. Johnson, L. Chen, Additional Papers and Presentations 2010 HITEC (2010) 8-17.
[30] S. A. Yang, A. Christou, IEEE Transactions on Device and Materials Reliability, 7 (1) (2007) 188-196.
[31] A. Munding, H. Hübner, A. Kaiser, S. Penka, P. Benkart, E. Kohn, and L. R. Reif, Wafer Level (2008) 149-151.
[32] L. Bernstein, Journal of the Electrochemical Society, 113 (12) (1966) 1282-1288.
[33] L. Bernstein, H. Bartholomew, Transactions of the Metallurgical Society of AIME, 236 (3) (1966) 405-411.
[34] D. S. Duvall, W. A. Owczarshi, D. F. Paulonis, Welding Journal, 53 (4) (1974) 203-214.
[35] W. D. Macdonald, T. W. Eagar, Annual Review of Materials Science, 22 (1) (1992) 23-46.
[36] W. P. Lin, P. J. Wang, C. C. Lee, In: 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). (2010).
[37] T. A. Tollefsen, A. Larsson, O. M. L?vvik, K. Aasmundtveit: Components, Packaging and Manufacturing Technology, IEEE Transactions, 3 (6) (2013) 904-914.
[38] T. A. Tollefsen, A. Larsson, M.M.V. Taklo, A. Neels, X. Maeder, K. Hoydalsvik, D.W. Breiby, K. Aasmundtveit, Metallurgical and Materials Transactions B, 44 (2013) 406-413.
[39] H. A. Mustain, W. D. Brown, and S. S. Ang, IEEE Transactions on Components and Packaging Technologies, 33 (3) (2010) 563–570.
[40] B. Grummel, H. A. Mustain, Z. J. Shen, and A. R. Hefner, In: 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. IEEE, (2011) 260-263.
[41] B. Gollas, J.H. Albering, K. Schmut, V. Pointner, R. Herber, J. Etzkorn, Intermetallics, 16 (2008) 962-968.
[42] J. F. Li, P.A. Agyakwa, C.M. Johnson, Journal of Electronic Materials, 43 (2014) 983-995.
[43] A. Lis, C. Leinenbach, Journal of Electronic Materials, 44 (2015) 4576-4588.
[44] D. Gur, M. Bamberger, Acta Materialia, 46 (1998) 4917-4923.
[45] S. Bader, W. Gust, H. Hieber, Acta Metallurgica et Materialia, 43 (1995) 329-337.
[46] S. Marauska, M. Claus, T. Lisec, B. Wagner, Microsystem Technologies, 19 (2013) 1119-1130.
[47] N.S. Bosco, F.W. Zok, Acta Materialia, 52 (2004) 2965-2972.
[48] N.S. Bosco, F.W. Zok, Acta Materialia, 53 (2005) 2019-2027
[49] S. Yang, A. Christou, IEEE Transactions on Device and Materials Reliability, 7 (1) (2007) 188-196.
[50] K. Guth, D. Siepe, J. Görlich, H. Torwesten, R. Roth, F. Hille and F. Umbach, In: Proceedings of PCIM (2010) 232-237.
[51] C. C. Li, C. K. Chung, W. L. Shih, C. R. Kao, Metallurgical and Materials Transactions A, 45A (2014) 2343-2346.
[52] C. C. Li, J. H. Ke, C. A. Yang, C. R. Kao, Materials Letters, 156 (2015) 150-152.
[53] H. Okamoto, Journal of Phase Equilibria and Diffusion, 28 (5) (2007), 490-490.
[54] K. Osada, S. Yamaguchi, and M. Hirabayashi, Transactions of the Japan Institute of Metals, 15 (4) (1974) 256-260.
[55] F.G. Yost, M.M. Karnowsky, W.D. Drotning, and J.H. Gieske, Metallurgical Transactions A, 21A (1990) 1885-1889.
[56] R. R. Chromik, D.-N. Wanga, A. Shugara, L. Limataa, M. R. Notisa, and R. P. Vincia, Journal of Materials Research, 20 (8) (2005) 2161-2172.
[57] T. A. Tollefsen, A. Larsson, M.M.V. Taklo, A. Neels, X. Maeder, K. Hoydalsvik, D.W. Breiby, K. Aasmundtveit, Metallurgical and Materials Transactions B, 44 (2013) 406-413.
[58] J. Y. Tsai, C. W. Chang, Y. C. Shieh, Y. C. Hu, C. R. Kao, Journal of Electronic Materials, 34 (2) (2005), 182-187.
[59] X. J.Liu, M. Kinaka, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Journal of Electronic Materials, 34 (5) (2005), 670-679.
[60] H. Q. Dong, V. Vuorinen, T. Laurila, M. Paulasto-Kröckel, Calphad, 43 (2013) 61-70.
[61] Y. W. Lin, K. L. Lin, Journal of Applied Physics, 108(6) (2010) 063536.
[62] A. Lis, M. S. Park, R. Arroyave, C. Leinenbach, Journal of Alloys and Compounds, 617 (2014) 763-773.
[63] Othen, P. J., M. L. Jenkins, and G. D. W. Smith, Philosophical Magazine A, 70 (1) (1994) 1-24.
[64] Monzen, R., M. Iguchi, and M. L. Jenkins. Philosophical Magazine Letters, 80 (3) (2000) 137-148.
[65] H.Y. You, Y.S. Lee, S.K. Lee, and J.S. Kang, In: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE. (2011) 608-611.
[66] K. Yoneta, R. Sato, Y. Iwata, K. Atsumi, K. Okamoto, Y. Satio, T. Shigemoto, In: 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). IEEE, (2014) 2227-2230.
[67] K. Nogita, C. M. Gourlay, T. Nishimura. JOM, 61 (6) (2009) 45-51.
[68] T. B. Massalski, H. W. King. Acta Metallurgica, 8 (10) (1960) 677-683.
[69] Q. Tan, C. Deng, Y. Mao, G. He, Gold Bulletin, 44(1) (2011) 27-35.
[70] Y. W. Wang, Y. W. Lin, C. R. Kao, Microelectronics Reliability, 49 (3) (2009) 248-252.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60036-
dc.description.abstractIGBT功率模組能有效增加電動車中電能轉換動能之效率,因此學、業界相當重視此元件之接合與製造技術。同時隨著電動車的快速發展,越來越高的電流密度,導致了IGBT工作溫度的快速上升。從而更高效率和工作溫度的SiC基IGBT越來越受到大家的關注。然而,長時間的高工作溫度,也對銲點質量要求更加苛刻。因此,對於高性能IGBT來說,一個具有良好高溫熱穩定性和高可靠度的銲點是現在研究的重點。
本研究通過固液擴散接合技術成功的將Au-20Sn (wt. %)銲料應用於高功率車用IGBT 電子元件與DBC基板的組裝,改善接合良率與降低生產成本。研究發現Ni/Au-20Sn/Ni的結構在組裝完成後就能忍受278 ℃以內的高溫,同時經過高溫熱儲藏一段時間後,當銲點中殘留的AuSn被完全消耗,銲點可以耐受的溫度會升高到522 ℃。經過針對三組不同熱處理溫度下銲點微觀結構發展和界金屬成長動力學的討論,以確定最佳的工業製程。我們發現在300 ℃,60 s的組裝條件後追加240 ℃,100 h熱處理的製程有很好的應用前景以達成低溫接合高溫使用的目的。
同時本研究也對Ni/Au-20Sn/Ni界面反應進行了深入探討,研究發現Ni原子趨向沿著初生的(Ni,Au)3Sn2晶界處擴散進入銲點與AuSn反應生成(Ni,Au)3Sn2,當銲點中AuSn完全被消耗後,沿(Ni,Au)3Sn2晶界擴散的Ni原子則會佔據晶界處(Ni,Au)3Sn2中Au原子位置生成低溶Au量的(Ni,Au)3Sn2。通過穿透式電子顯微鏡的分析,這兩種Au含量不同的(Ni,Au)3Sn2的化學組成和晶體結構被準確鑑定。同時,更進一步應用高解析穿透式電子顯微鏡分析,被取代的Au原子會先析出在(Ni,Au)3Sn2的晶界處然後會在(Ni,Au)3Sn2內部聚集以大塊的純Au相形式析出。此外,經過240 ℃長時間的熱處理,極少量的Ni3Sn出現在(Ni,Au)3Sn2與Ni的界面處。
在銲點機械性質方面,雖然Au5Sn在190 ℃(IGBT工作溫度約200 ℃)發生高低溫相轉變時會引入2.04 %的體積改變。但研究發現在經過300 ℃,60 s的組裝條件後,銲點中較脆的Au5Sn低溫相會完全轉化為高溫相並且一直以高溫相形式存在於銲點中。通過微奈米硬度機對銲點在三組不同溫度下介金屬機械性質進行量測,討論了Ni濃度對於介金屬造成之影響。最後對不同熱處理時間試片進行剪力測試及破壞金相分析。
zh_TW
dc.description.abstractIGBT (Insulated Gate Bipolar Transistor) power IC module can efficiently increase the conversion efficiency of transforming electricity to kinetic energy, and consequently has attracted increasing amount of attentions. For electrical vehicle applications, the power density is relatively high, and consequently an IGBT has to be operated at a high service temperature. Therefore, silicon carbide-based IGBT has attracted increasing amount of attentions. However, long-term high-temperature operations require quality bonding interfaces that exhibit high temperature stability and reliability. Accordingly, searching for alternative bonding materials that can withstand high service temperatures is an urgent priority in order to realize the full potential of SiC IGBT technology.
In this study, the eutectic Au-Sn (20 wt. % Sn) is successfully used to assemble IGBT chips and direct-bond-copper substrates by using solid liquid interdiffusion (SLID) bonding in order to improve production yield and lower production cost. It is found that the Ni/Au-20Sn/Ni structures can withstand the highest service temperature of 278 ℃ after bonding. As the aging time increases, once the AuSn was nearly exhausted, the whole joint itself can theoretically withstand a highest service temperature of 522 ℃. During the subsequent isothermal aging at 150, 200, and 240 ℃, the microstructure evolution and growth kinetics of intermetallic compounds are investigated. It is found that 300 ℃ bonding for 60 s followed by aging at 240 ℃ for 100 h is a highly promising recipe to realize the objective of low-temperature bonding for high-temperature applications.
Interfacial reactions of Ni/Au-20Sn/Ni are investigated. It is found that Ni would diffuse along the grain boundary of the original (Ni,Au)3Sn2 to form a new (Ni,Au)3Sn2 at the interface of (Ni,Au)3Sn2 and AuSn. After the residue AuSn had been consumed, Ni diffusion along the grain boundary of (Ni,Au)3Sn2 to form a thin layer of Au-lean Ni3Sn2 at grain boundaries. The exact composition and crystal structure for these two kinds of (Ni,Au)3Sn2 are identified by using transmission electron microscopy. According to HRTEM analysis, the occupied Au atoms precipitates within the interface of (Ni,Au)3Sn2 grain then form a large pure Au in the matrix of (Ni,Au)3Sn2. In addition, Ni3Sn formed at the interface of (Ni,Au)3Sn2 and Ni after long time aging at 240 ℃.
It was pointed out Au5Sn exists in two crystal structures with an isomeric transformation from ζ to ζ' at the 190 ℃ (IGBT working temperature closed to 200 ℃). This isomeric transformation in Au5Sn would result in 2.04 % of volume shrinkage. The results of this study show that all the brittle ζ' phase of the Au-Sn eutectic alloy has transformed into ζ phase after bonding. Thereafter the mechanical properties of intermetallic compounds in this system were investigated by nanoindentation. The influence of Ni concentration on the mechanical properties of Au-Sn IMC ware investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:52:01Z (GMT). No. of bitstreams: 1
ntu-106-F00527064-1.pdf: 6291890 bytes, checksum: bc9d15b8ea0198ffd8c95eb85ac3c80f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract V
Contents VIII
List of figures X
List of tables XV
Chapter 1 Background Introduction 1
1.1 Power modules and insulated gate bipolar transistors (IGBT) 3
1.2 HT electronic packaging and solid-liquid interdiffusion (SLID) 11
1.3 Au-Sn solder alloy and applications in electronics packaging 21
1.4 Interfacial reactions in Ni/Au-20Sn/Ni Diffusion Couples 27
1.5 Aim of this thesis 35
Chapter 2 Experimental Details 37
2.1 Sample Preparation and Experimental Procedures 37
Chapter 3 Results and Discussion 44
3.1 Multiphase IMCs growth in Ni/Au-20Sn (wt. %)/Ni diffusion couple 44
3.1.1 SLID bonding and thermal aging 44
3.1.2 Compound growth kinetics 56
3.2 Growth mechanism of Ni-Sn IMCs during solid state aging 62
3.2.1 TEM observation of (Ni,Au)3Sn2 IMC 62
3.2.2 TEM observation of precipitated Au phase 68
3.3 Mechanical property variations during aging 73
3.3.1 Volume shrinkage of Au-rich Au-Sn eutectic Solder 73
3.3.2 Influence of Ni concentration on the mechanical properties 77
3.3.3 Die shear test 82
Chapter 4 Summary 84
Reference 86
Curriculum Vitae 93
dc.language.isoen
dc.title以Au-Sn為銲料的功率集成模塊接合技術之開發zh_TW
dc.titleDevelopment of Interconnection Technology for Power
Integrated Circuit Module by using Au-Sn Bonding Material
en
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee顏怡文,吳子嘉,何政恩,陳志銘
dc.subject.keyword固液擴散接合,絕緣柵雙極電晶體,Au-Sn共晶銲料,界面反應,擴散,微奈米壓痕測試,zh_TW
dc.subject.keywordSolid liquid interdiffusion,IGBT,eutectic Au-Sn,interfacial reaction,diffusion,nanoindentation,en
dc.relation.page97
dc.identifier.doi10.6342/NTU201700074
dc.rights.note有償授權
dc.date.accepted2017-01-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
6.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved