請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60019完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳中平 | |
| dc.contributor.author | Pei-Chun Lin | en |
| dc.contributor.author | 林沛諄 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:50:58Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2016 | |
| dc.date.submitted | 2017-01-17 | |
| dc.identifier.citation | [1] Burn J. Lin., 'Lithography till end of Moore's law.' Keynote speech in 2012 ACM International Symposium on Physical Design.
[2] Chris A. Mack, “Lithographic Simulation: A Review,” in Proc. SPIE, Vol. 4440 Lithographic and Micro-machining Techniques for Optical Component Fabrication, No. 59, p. 53-72, (2001). [3] M. J.Wieland, H. Derks, H. Gupta, T. van de Peut, F.M. Postma, A. H. V. van Veen, and Y. Zhang, “Throughput enhancement technique for MAPPER maskless lithography,” in Proc. SPIE, vol. 7637, Alternative Lithographic Technologies II,(Apr. 2010). [4] P. Petric, C. Bevis, A. Brodie, A. Carroll, A. Cheung, L. Grella, M. McCord, H. Percy, K. Standiford, and M. Zywno, “REBL nanowriter: Reflective electron beam lithography,” Proc. SPIE, vol. 7271, Alternative Lithographic Technologies, 727107, (Mar. 2009). [5] Nicolas B. Cobb, 'Fast Optical and Process Proximity Correction Algorithms for Integrated Circuit Manufacturing,' the University of Berkeley, (1998). [6] Ming-Fong Tsai, 'Abbe-PCA: Compact Abbe’s Kernel Generation for Micro lithography Aerial Image Simulation using Principal Components Analysis.' Master Thesis, National Taiwan University, (2009). [7] Chris A. Mack, 'Fundamental Principles of Optical Lithography:The Science of Microfabrication ,' John Wiley & Sons, (2007). [8] Kevin Lucas, Chris Cork, Bei Yu, David Pan, Gerry Luk-Pat, Alex Miloslavsky and Ben Painter, ' Triple patterning in 10nm node metal lithography, ' Micro/Nano Lithography, SPIE Newsroom,(November 2012). [9] Kiichi Sakamoto; Aki Fujimura. Making E-beam direct write faster. Available: http://electroiq.com/blog/2009/11/making-e-beam_direct/ [10] Burn Lin, ' Multiple-electron-beam direct-write comes of age, ' Micro/Nano Lithography, SPIE Newsroom, (January 2013). [11] Szu-Kai Lin, 'An Efficient Contour Generation Algorithm for Micro-lithography Aerial Image.', M.S. Thesis, National Taiwan University, (2009). [12] Michael L. Rieger, 'Communication theory in optical lithography.' J. Micro/Nanolith. MEMS MOEMS. 11(1), 013003 (Mar 01, 2012). [13] B. J. Lin. “Phase-shifting masks gain an edge.” IEEE Circuits and Systems Society, (1993). [14] Alfred Kwok-Kit Wong, 'Resolution Enhancement Techniques in Optical Lithography.' SPIE Press,(2001). [15] Nicolas B. Cobb, 'Fast Optical and Process Proximity Correction Algorithms for In-tegrated Circuit Manufacturing.' the University of Berkeley, (1998). [16] Jang Fung Chen, Kurt Wampler, Thomas L. Laidig, “Optical proximity correction method for intermediate-pitch features using sub-resolution scattering bars on a mask,” U.S. patent 5,821,014 (1998) [17] Xu Ma , Bingliang Wu , Zhiyang Song , Shangliang Jiang , Yanqiu Li, ' Fast pixel-based optical proximity correction based on nonparametric kernel regression ' J. Micro/Nanolith. MEMS MOEMS. 13(4), 043007 , (Nov 03, 2014). [18] Tsung-Yu Li, Jason Hsih-Chie Chang, Shin-Pin Hung, and Charlie Chung- Ping Chen,“Provably All-Convex Optimal Minimum-Error Convex Fitting Algorithm Using Linear Programming,” International Symposium on VLSI Design, Automation and Test(VLSI-DAT), p. T54, (Apr. 2010). [19] Jue-Chin Yu, Peichen Yu, ' Gradient-based fast source mask optimization (SMO). ' Proc. SPIE 7973, Optical Microlithography XXIV, 797320, (March 22, 2011); [20] Heinrich Kirchauer, 'Photo-lithography Simulation.' PhD thesis, TU Vienna, (1998). [21] Damian T. Murphy, Alex Southern, Lauri Savioja, ' Source excitation strategies for obtaining impulse responses in finite difference time domain room acoustics simulation, ' Applied Acoustics, Volume 82, (August 2014). [22] Matthew Harker, Paul O'Leary, ' Sylvester Equations and the numerical solution of partial fractional differential equations, ' Journal of Computational Physics, Volume 293, (July 15, 2015). [23] Hsih-Chie Chang, 'Microlithography Hierarchical Source and Mask Optimization using Abbe-PCA.' Master Thesis, National Taiwan University, (2010). [24] Scott M. Mansfield, Hopewell Junction; Lars W. Liebmann, Poughquag; Shahid Butt, Ossining; Hening Haffner, Fishkill, “ Semiconductor Device Fab- rication using A Photomask with Assist Features”, US Pattent No. 6,421,820 B1(2002) [25] Yi-Chuan Lou, ' The Application and Analysis of Microlithography Image Simulation and Sub Resolution Assist Feature with HSMO. ' Master Thesis, National Taiwan University, (2011). [26] Walker, E.J., 'Reduction of photoresist standing-wave effects by post-exposure bake', IEEE Transactions on Electron Devices, ED-22, 464–466, (1975). [27] Y.K.Lee and Kelvin Hoon, ' Brown Motion :The Research Goes on...' http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl/report.html [28] IBM: Lithography Materials: Chemically Amplified Resists http://researcher.watson.ibm.com/researcher/view_project_subpage.php?id=3662 [29] H. Ito' chemical amplified resists history and development in IBM ' IBM J. RES. DEVELOP., VOL. 44 ,(2000). [30] S. Tagawa et al. 'Radiation and photochemistry of onium salt acid generators in chemically amplified resists'. Proc. SPIE, (2000). [31] Wang, Xue-Bin. Ferris, Kim; Wang, Lai-Sheng. 'Photodetachment of Gaseous Multiply Charged Anions, Copper Phthalocyanine Tetrasulfonate Tetraanion: Tuning Molecular Electronic Energy Levels by Charging and Negative Electron Binding'. The Journal of Physical Chemistry A, (2000). [32] Crank, J. Nicolson, P. 'A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type'. Proc. Camb. Phil. Soc. 43, (1947). [33] Courant, R.;Friedrichs, K.; Lewy, H. ' Über die partiellen Differenzengleichungen der mathematischen Physik ' ( in German ), Mathematische Annalen,(1928). [34] J. Sylvester, 'Sur l’equations en matrices px=xq', C.R. Acad. Sci. Paris, 99 ,(1884). [35] R. H. Bartels and G. W. Stewart, ' Solution of the Matrix Equation AX + XB = C ', Comm. ACM, 15 ,(1972). [36] G. BICKLEY and J. McNAMEE ,'MATRIX AND OTHER DIRECT METHODS FOR THE SOLUTION OF SYSTEMS OF LINEAR DIFFERENCE EQUATIONS ' Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, (1958). [37] Yong Zhan and Sachin S. Sapatnekar, 'A High Efficiency Full-Chip Thermal Simulation Algorithm ' ICCAD '05 Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design ,(2005). [38] Tsung-Lung Li, ' Simulation of the Postexposure Bake Process of Chemically Amplified Resists by Reaction–Diffusion Equations. ' Journal of Computational Physics 173, 348–363, (2001). [39] Alfred Kwok Kit Wong, 'Optical Imaging in Projection Micro-lithography.' SPIE Press, (2005). [40] Jin-Back PARK, Sung-Hyuck KIM, Sung-Jin KIM, Jung-Hyuk CHO, and Hye-Keun OH, 'Acid Diffusion Length Corresponding to Post Exposure Bake Time and Temperature .' Japanese Journal of Applied Physics, (2007). [41] Ronald N. Bracewell, ' The Fourier Transform & Its Applications , ' McGraw-Hill International Editions Electrical Engineering Series, (1999). [42] Frederick H. DILL, William P. Hornberger, Peter S. Hauge and Jane M. Shaw, 'Characterization of Positive Photoresist,' IEEE Trans. Electr. Dev., ED-22(7), p.445, (1975). [43] D. J. Kim, W. G. Oldham and A. R. Neureuther, 'Development of Positive Photoresist,' IEEE Trans. Electr. Dev., ED-31(12), p. 1730, (1984). [44] C. A. Mack, 'Development of Positive Photoresists.' J. The Electrochem Society. Soc.: Solid-State Sci. and Tech., 134(1), p. 148, (1987). [45] C. A. Mack, 'New Kinetic Model for Resist Dissolution,' J. The Electrochem Society. Soc., 139(4), p. L35, (1992). [46] Vikram Singh , Vardhineedi Sri Venkata Satyanarayana , Nikola Batina , Israel Morales Reyes , Satinder K. Sharma , Felipe Kessler ,; Francine R. Scheffer , Daniel E. Weibel , Subrata Ghosh , Kenneth E. Gonsalves, ' Performance evaluation of nonchemically amplified negative tone photoresists for e-beam and EUV lithography. ' J. Micro/Nanolith. MEMS MOEMS. 13(4), 043002 (Oct 16, 2014). [47] 2013 International Technology Roadmap for Semiconductors: http://www.itrs.net/ [48] ResistHiroki Yamamoto , Takahiro Kozawa , Seiichi Tagawa , HirotoYukawa , Mitsuru Sato and Hiroji Komano, ' Effect of Fluorine Atom on Acid Generation in Chemically Amplifiled EUV Resist. ' 2007 International Microprocesses and Nanotechnology Conference (MNC), 10.1109/IMNC.2007.4456112, (Nov , 2007 ). [49] Takahiro Kozawa, Yoichi Yoshida, Mitsuru Uesaka and Seiichi Tagawa, ' Radiation-Induced Acid Generation Reactions in Chemically Amplified Resists for Electron Beam and X-Ray Lithography. ' Japanese Journal of Applied Physics (JJAP), Volume 31 (1992) 4301, Part 1, Number 12B [50] Takahiro Kozawa and Seiichi Tagawa, ' Sensitization Mechanisms of Chemically Amplified EUV Resists and Resist Design for 22 nm node. ' 2008 International Workshop on EUV Lithography, (2008). [51] Takahiro Kozawa, Seiichi Tagawa, Julius Joseph Santillan, Minoru Toriumi and Toshiro Itani, ' Image contrast slope and line edge roughness of chemically amplified resists for postoptical lithography. ' J. Vac. Sci. Technol. B (JVST B) 25, 2295 (2007). [52] Takahiro Kozawa and Seiichi Tagawa, ' Radiation Chemistry in Chemically Amplified Resists. ' Japanese Journal of Applied Physics (JJAP), Volume 49 , Number 3R, (2010). [53] Chun-Hung Liu, Philip C. W. Ng, Yu-Tian Shen, Sheng-Wei Chien, and Kuen-Yu Tsai, “Impacts of point spread function accuracy on patterning prediction and proximity effect correction in low-voltage electron-beam-direct-write lithography,” Journal of Vacuum Science & Technology B (JVST B), Volume 31, Issue 2, 021605, (Feb. 2013). [54] Peter Hudek, Ulrich Denker , Dirk Beyer , Nikola Belic , Hans Eisenmann , ' Fogging effect correction method in high-resolution electron beam lithography. ' Microelectronic Engineering, Volume 84, p. 814–817, (2007). [55] Peter Hudek, ' Fogging & Heating Effects in e-Beam Lithography. ' Invited Lecture at the BEAMeeting 2011. [56] Araldo van de Kraats, Raghunath Murali , ' Proximity Effect in E-beam Lithography .' http://nanolithography.gatech.edu/proximity.htm [57] Chun-Hung Liu, Hoi-Tou Ng, Philip C. W. Ng, Kuen-Yu Tsai, Shy-Jay Lin, and Jeng-Homg Chen ,' A novel curve-fitting procedure for determining proximity effect parameters in electron beam lithography. ' in Proc. SPIE 7140, Lithography Asia 2008, 71401I (December 04, 2008). [58] Drouin, Dominique, Alexandre R´eal couture, Dany Joly, Xavier Tastet, Vincent Aimez and Raynald Gauvin, ' CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,' in J. Scanning 29, 92-101, (2007). [59] T. H. P. Chang, 'Proximity effect in electron-beam lithography,' Journal of Vacuum Science Technology, Volume 12(6), p.1271-1275, (1975) [60] M.G. Rosenfield, S.J. Wind, W.W. Molzen, P.D. Gerber, ' Determination of proximity effect correction parameters for 0.1 μm electron-beam lithography, ' Microelectronic Engineering, Volume 11, Issues 1–4,P. 617-623, (April 1990). [61] Fumihiro KOBA, Hiroshi YAMASHITA and Hiroshi ARIMOTO, ' Highly Accurate Proximity Effect Correction for 100 kV Electron Projection Lithography, ' Japanese Journal of Applied Physics, Volume 44, No. 7B, pp. 5590–5594, (2005). [62] Chun-Hung Liu, Hoi-Tou Ng, Kuen-Yu Tsai, ' New parametric point spread function calibration methodology for improving the accuracy of patterning prediction in electron-beam lithography, ' J. Micro/Nanolith. MEMS MOEMS. (JM3), Volume 11(1), 013009, (Mar 13, 2012). [63] Cheng-Hung Chen, Tsung-Chih Chien, P.Y. Liu, W.C. Wang, J.J. Shin, S.J. Lin, and Burn J. Lin, ' Impact of Proximity Model Inaccuracy on Patterning in Electron Beam Lithography, ' Proc. SPIE 8880, Photomask Technology 2013, 888014, (September 9, 2013). [64] Jürgen H. Gross, ' Mass Spectrometry: A Textbook, ' Second Edition(2010), Springer Heidelberg Dordrecht London New York, Springer Berlin Heidelberg. [65] Takahiro Kozawa and Seiichi Tagawa, ' Acid distribution in chemically amplified extreme ultraviolet resist, ' J. Vac. Sci. Technol. B (JVST B) 25, 2481 (2007). [66] Takahiro Kozawa and Seiichi Tagawa, ' Resist design for 22 nm node.,' IEUVI TWGs 2007, from http://ieuvi.org/index.html, http://ieuvi.org/TWG/Resist/2007/070301/ResistTWGTKozawaMtg20_070302.pdf . [67] Takahiro Kozawa, Julius Joseph Santillan, and Toshiro Itani, ' Modeling and Simulation of Acid Diffusion in Chemically Amplified Resists with Polymer-Bound Acid Generator, ' Applied Physics Express, Volume 5, (Number 7, 2012). [68] Takahiro Kozawa, Takumi Shigaki, Kazumasa Okamoto, Akinori Saeki, Seiichi Tagawa, Toshiyuki Kai, and Tsutomu Shimokawa, ' Analysis of acid yield generated in chemically amplified electron beam resist, ' J. Vac. Sci. Technol. B (JVST B) 24, 3055 (2006). [69] G. C. Abell and K. Funabashi, ' The simple exponential distribution for initial electron‐positive ion separation distances as seen in the γ radiolysis of alkanes, ' J. Chem. Phys. 58, 1079, (1973). [70] Sergey V. Babin, S. Borisov, E. Cheremukhin, Eugene Grachev, V. Korol, L. E. Ocola, ' Software tool for advanced Monte Carlo simulation of electron scattering in EBL and SEM: CHARIOT, ' in Proc. SPIE 5037, Emerging Lithographic Technologies VII, (June 16, 2003). [71] Shy-Jay Lin, Pei-Yi Liu, Cheng-Hung Chen, Wen-Chuan Wang, Jaw-Jung Shin, Burn Jeng Lin, Mark A. McCord, Sameet K. Shriyan, ' Influence of Data Volume and EPC on Process Window in Massively Parallel E-Beam Direct Write, ' in Proc. SPIE 8680, Alternative Lithographic Technologies V, 86801C (March 26, 2013). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60019 | - |
| dc.description.abstract | 曝光後烘烤是現今超大型積體電路製造中不可或缺之重要製程,其幫助光阻有效減少微影紫外光所造成之駐波效應的影響。除此之外,因為模擬之時間以及大量記憶體之需求,把一個有效及完整的三維之光阻影響考慮至電路布局之最佳化目前是非常之缺乏,我們提出一高效之方法來模擬曝光以及曝光後烘烤兩道製程,分別為阿貝主成分分析系統以及希兒薇亞方程式,並且使用至光源光罩最佳化和次解析輔助特徵來實做電路布局之最佳化。另外在實驗結果中可以得到,我們在曝光後烘烤之模擬速度比傳統之高斯卷積之方法快上二十倍以上。
電子束微影以及傳統之光學微影因為曝光之行為不同,另外對於下一代曝光之製程模擬的解析度要求更為精細,我們提出一套針對於新製程之電子束直寫曝的模擬系統,在考慮不同光酸擴散長度之下,當光酸擴散長度比最小之臨界尺寸的一半還要長時,不同模擬方法會呈現不同之模擬結果,而兩種方法所得之結果已遠超過相應製程所容需之誤差,可能造成之影響必須審慎考量。 | zh_TW |
| dc.description.abstract | As one of the critical stages of a very large scale integration fabrication process, post-exposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the post-layout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and sub-resolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.
Resist modeling for electron beam lithography is relatively scarce compared to the traditional optical lithography photoresist modeling. Besides, the sub-nanometer modeling accuracy requirement for single digital node technology differs drastically from the conventional empirical modeling method. We proposed a simulator to simulate the E-beam lithography. And consider about the effect from the photo-acid when the acid diffusion length is longer than the half of the critical dimension. The result shows these differences of these two methods are larger than the allowed lithography process deviation for the advanced technology nodes. These differences increase with acid diffusion length, reach the lithography CD control error specification 10% CD proposed by ITRS when the acid diffusion length is larger than half of the CD, which would significantly reduce the process window and CD error budget. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:50:58Z (GMT). No. of bitstreams: 1 ntu-105-D01943031-1.pdf: 11497676 bytes, checksum: 0c288e5627ce07b82c54e4dc00e43830 (MD5) Previous issue date: 2016 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
Acknowlegements iv Abstract(Chinese) vi Abstract viii CONTENTS x LIST OF FIGURES xiv LIST OF TABLES xx Chapter 1 Introduction 1 1.1 Microlithography Simulation Process 2 1.2 The Process Flow of DUV Lithography 3 1.2.1 Design for Manufacturability 3 1.2.1 Type of Optical Lithography 4 1.2.2 Post Exposure Bake 5 1.3 Next Generation Lithography 6 1.3.1 Multiple Patterning Lithography 6 1.3.2 Extreme Ultraviolet Lithography 7 1.3.3 Electron Beam Lithography 8 1.4 Resolution Enhancement Techniques 10 1.4.1 Off Axis Illumination 11 1.4.2 Phase Shifting Mask 12 1.4.3 Optical Proximity Correction 13 1.4.4 Sub-Resolution Assist Feature 15 1.4.5 Inverse Lithography Technique 16 1.4.6 Source Mask Optimization 17 1.5 Dissertation Organization 18 Chapter 2 Optical Lithography Processes 19 2.1 The Numerical Aperture and the Evaluation Factor of the Imaging System 19 2.2 Photoresist 21 2.3 Chemically Amplified Resists 22 2.4 Partial Coherent Illumination 24 2.4.1 Coherency 24 2.4.2 Image Formulation 25 2.4.3 Abbe's Image Formulation 26 2.4.4 Abbe-PCA Method 27 2.5 Resolution Enhancement Techniques 29 2.5.1 Source and Mask Optimization 29 2.5.2 Sub-Resolution Assist Features 32 2.6 Summary 33 Chapter 3 The Post Exposure Bake Process Simulation. 34 3.1 Post Exposure Bake Diffusion 34 3.2 Diffusion System 37 3.2.1 Diffusion Flux 38 3.2.2 Fick's Law 38 3.3 Fast Fourier Transform(FFT) Method 39 3.4 Simulate the Post Exposure Bake Process by using Numerical Methods 40 3.5 Diffusion Equation in One Dimension 44 3.6 Stability Analysis 45 3.7 Crank Nicolson Method 47 3.8 The Truncation Error of the Crank Nicolson Method 49 3.9 Diffusion Equation in Two Dimensions 52 3.10 Sylvester Equation 54 3.10.1 The Proven of the Sylvester Equation[36] 55 3.10.2 Solution of the Sylvester Equation 56 3.11 Three Dimensional Formulation with Sylvester Equation 57 3.12 Short Summary 59 Chapter 4 The Simulation Results for the DUV Processes 61 4.1 Process Parameters and the Simulation Results 61 4.2 Simulation Results with PEB Process into the RETs 70 4.3 Summary 79 Chapter 5 The High Energy Lithography for Next-Generation Lithography 81 5.1 CAR Resolution and Performance 82 5.2 The Acid Generation Mechanisms 84 5.3 Electron-Beam Lithography Processes Simulator 87 5.3.1 The Defects in Electron-Beam Lithography 88 5.3.2 Electron-Beam Energy Intensity Profile Simulation 89 5.4 The Secondary Electron 93 5.5 The Characters and the Behavior of the Ionization、Excitation and the G-value 96 5.6 Thermalization 97 Chapter 6 E-beam Lithography Simulation Result for the Advanced Lithography 100 6.1 Verification of the G-value and the 7-Gaussion Parameters 101 6.2 The Simulation Results of the E-beam Lithography 105 6.3 Summary 112 Bibliography 114 Vita 123 Publication List 124 | |
| dc.language.iso | en | |
| dc.subject | 微影系統模擬 | zh_TW |
| dc.subject | 曝光後烘烤 | zh_TW |
| dc.subject | 希兒薇亞方程式 | zh_TW |
| dc.subject | 電子束微影技術 | zh_TW |
| dc.subject | 光酸擴散 | zh_TW |
| dc.subject | Post-Exposure Bake | en |
| dc.subject | Sylvester Equation | en |
| dc.subject | E-beam Lithography | en |
| dc.subject | Acid Diffusion. | en |
| dc.subject | Lithography Simulation | en |
| dc.title | 考慮曝光後烘烤之微影最佳化以及光酸效應對10奈米及更先進之節點的影響 | zh_TW |
| dc.title | Lithography Optimization considering Post-Exposure Bake and the Photo-Acid Effect for 10-nm Node and Beyond | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林本堅,張耀文,吳瑞北,王惠貞,蔡啟銘 | |
| dc.subject.keyword | 微影系統模擬,曝光後烘烤,希兒薇亞方程式,電子束微影技術,光酸擴散, | zh_TW |
| dc.subject.keyword | Lithography Simulation,Post-Exposure Bake,Sylvester Equation,E-beam Lithography,Acid Diffusion., | en |
| dc.relation.page | 124 | |
| dc.identifier.doi | 10.6342/NTU201700106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-01-17 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-105-1.pdf 未授權公開取用 | 11.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
