請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60016
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉瑞芬(Ruey-Fen Liou) | |
dc.contributor.author | CHUN-YAO WU | en |
dc.contributor.author | 吳俊耀 | zh_TW |
dc.date.accessioned | 2021-06-16T09:50:47Z | - |
dc.date.available | 2020-08-24 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-17 | |
dc.identifier.citation | 安寶貞、蔡志濃。2009。植物疫病菌之診斷技術開發。農業生技產業季刊。AgBIO, 44。 安寶貞。2001。植物病害的非農藥防治品-亞磷酸。植物病理學會刊。10:147-154。 吳雅芳、林志鴻、王肇芬、鄭安秀。2011。馬鈴薯青枯病菌 (Ralstonia solanacearum phylotype II/race 3/biovar 2) 於雲林縣斗南地區田間之族群密度與馬鈴薯罹病率調查。植物病理學會刊。20:68-77。 林柳澤、張松壽、呂理燊。1971。薑軟腐病。植物保護學會刊。13:54-67。 林靜宜、林慧如。2018。利用中和亞磷酸溶液防治馬鈴薯青枯病。台灣農業研究。67:377-386。 黃㯖昌。1987。薑軟腐病之研究。台東區農業專刊。1:97-109。 黃晉興。2013。台灣產亞腐霉菌之分類與其生物特性之研究。中興大學植物病理學系所學位論文。1-150。 陳俊位、高德錚、蔡宜峰。2005。介質耕薑連作障礙原因之探討。臺中區農業改良場特刊。85-86。 鄧汀欽、陳啟予、許秀惠、陳殿義。2015。本世紀台灣新發生的植物病害紀錄─[台灣植物病害名彙] 增補篇。台灣新浮現之重要作物病害及其防治研討會專刊。 蔡志濃、安寶貞、王姻婷、王馨媛、胡瓊月。2009。利用中和後之亞磷酸溶液防治馬鈴薯與番茄晚疫病。台灣農業研究。58:185-195。 蔡正宏、蕭政弘。2011。臺灣生薑產業現況。臺中區農情月刊。140:2-2。 蔡正宏、劉興隆、陳俊位、蔡宜峰、張致盛。2013。薑連作病害與催芽技術之研究。植物種苗。15:57-67。 Benhamou, N., and Bélanger, R. R., 1998. Induction of systemic resistance to Pythium damping‐off in cucumber plants by benzothiadiazole: ultrastructure and cytochemistry of the host response. The Plant Journal, 14:13-21. Bektas, Y., and Eulgem, T. 2015. Synthetic plant defense elicitors. Front. Plant Sci. 5: 804. Borza, T., Peters, R. D., Wu, Y., Schofield, A., Rand, J., Ganga, Z., Al-Mughrabi, K. I., Coffin, R. H., and Wang‐Pruski, G. 2017. Phosphite uptake and distribution in potato tubers following foliar and postharvest applications of phosphite‐based fungicides for late blight control. Ann. Appl. Biol. 170:127-139. Bovie, C., Ongena, M., Thonart, P., and Dommes, J. 2004. Cloning and expression analysis of cDNAs corresponding to genes activated in cucumber showing systemic acquired resistance after BTH treatment. BMC Plant Biol. 4:15-26. Brantner, J. R., and Windels, C. E. 1998. Variability in sensitivity to metalaxyl in vitro, pathogenicity, and control of Pythium spp. on sugar beet. Plant Dis. 82:896-899. Chalfoun, N., Durman, S., Budeguer, F., Caro, M., Bertani, R., Peto, P., Stenglein, S., Filippone, M., Moretti, E., Ricci, J., Welin, B., and Castagnaro, A. 2018. Development of PSP1, a biostimulant based on the elicitor AsES for disease management in monocot and dicot crops. Front Plant Sci. 9:844-405. Cohen, Y., and Coffey, M. D. 1986. Systemic fungicides and the control of oomycetes. Annu. Rev. Phytopathol. 24:311-338. Conrath, U., Beckers, G. J., Langenbach, C. J., and Jaskiewicz, M. R. 2015. Priming for enhanced defense. Annu. Rev. Phytopathol. 53:97-119. Cook, P. J., Landschoot, P. J., and Schlossberg, M. J. 2009. Inhibition of Pythium spp. and suppression of Pythium blight of turfgrasses with phosphonate fungicides. Plant Dis. 93:809-814. Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., Subila, K. P., and Aravind, R. 2015. Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol. Res. 173:34-43. Fegan, M., and Prior, P. 2005. How complex is the Ralstonia solanacearum species complex. Bacterial wilt disease and the Ralstonia solanacearum species complex 1:449-461. Feng, Y., Dernoeden, P., and Grybauskas, A. 1999. A simple Pythium aphanidermatum field inoculation technique for perennial ryegrass. Hort. Science 34:301-304. Görlach, J., Volrath, S., Knauf-Beiter, G., Hengy, G., Beckhove, U., Kogel, K., Oostendorp, M., Staub, T., Ward, E., Kessmann, H., and Ryals, J. 1996. Benzothiadiazole, a nove1 class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629-643. Gozzo, F., and Faoro, F. 2013. Systemic acquired resistance (50 years after discovery): moving from the lab to the field. J. Agri. Food Chem. 61:12473-12491. Grozinger, C., Fischer, P., and Hampton, J. 2007. Uncoupling primer and releaser responses to pheromone in honey bees. Naturwissenschaften. 94:375-379. Guo, Q., Major, I. T., and Howe, G. A. 2018. Resolution of growth–defense conflict: mechanistic insights from jasmonate signaling. Curr Opin Plant Biol. 44:72-81. Gupta, M., and Kaushal, M. 2017. Diseases infecting ginger (Zingiber officinale Roscoe): A review. Agri. Rev. 38:15-28. Harvey, P., and Lawrence, L. 2008. Managing Pythium root disease complexes to improve productivity of crop rotations. Outlooks Pest Manag. 19:127-130. Hendrix, F. F., and Campbell, W. A. 1973. Pythiums as plant pathogens. Annu. Rev. Phytopathol. 11:77-98. Hepperly, P., Zee, F., Kai, R., Arakawa, C., Meisner, M., Kratky, B., Hamamoto , K., and Sato, D. 2004. Producing bacterial wilt-free ginger in greenhouse culture. Soil Crop Manag. Scm-8. Hepperly, P., and Zee, F. 2017. Boron/calcium deficiency causes ginger Zingiber officinale Roscoe diebackin Hawaii. Agricultural Research and Technology 9:1-3. Hoppe, P. E. 1966. Pythium species still viable after 1 2 years in air dried muck soil. Phytopathol. 56: 14 1 1 Huang, C. H., and Vallad, G. E. 2018. Soil applications of acibenzolar-S-methyl induce defense gene expression in tomato plants against bacterial spot. European Journal of Plant Pathol. 150:971-981. Hwang, S. F., Gossen, B. D., Chang, K. F., Turnbull, G. D. and Howard, R. J. 2001. Effect of seed damage and metalaxyl seed treatment on Pythium seedling blight and seed yield of field pea. Can. J. Plant Sci. 81: 509–517. Johnson, K. B., Smith, T. J., Temple, T. N., Gutierrez, E., Elkins, R. B., and Castagnoli, S. P. 2016. Integration of acibenzolar-S-methyl with antibiotics for protection of pear and apple from fire blight caused by Erwinia amylovora. Crop Prot. 88:149-154. Kageyama, K. 2014. Molecular taxonomy and its application to ecological studies of Pythium species. J. Gen. Plant Pathol. 80:314-326. Karmakar, N. C., Ghosh, R., and Purkayastha, R. P. 2003. Plant defence activators inducing systemic resistance in Zingiber officinale Rose against Pythium aphanidermatum (Edson) Fitz. Indian J. Biotechnol. 2:591-595. Katan, J. 2017. Diseases caused by soilborne pathogens: biology, management and challenges. J. Plant Pathol. 99:305-315. Kavitha, P., and Thomas, G. 2008. Expression analysis of defense-related genes in Zingiber (Zingiberaceae) species with different levels of compatibility to the soft rot pathogen Pythium aphanidermatum. Plant Cell Rep. 27:1767-1776. Khatso, K., and Tiameren, N. 2013. Biocontrol of rhizome rot disease of ginger (Zingiber officinale Rosc.). International journal of Bio-resource and Stress Management 4:317-321. King, M., Reeve, W., Hoek, M., and Williams, N. 2010. Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Mol. Genet. Genomics 284:425-435. Ko, W. H., Chang, H. S., and Su, H. J. 1978. Isolates of Phytophthora cinnamomi from Taiwan as evidence for an Asian origin of the species. Trans. Br. Mycol. Soc. 72:496-499. Krasnow, C., and Hausbeck, M. 2017. Influence of pH and Etridiazole on Pythium species. HortTechnology, 27:367-374. Labuschagne, A. H. 2013. Efficacy and crop tolerance of Stamina (pyraclostrobin) and Flite (triticonazole) seed treatment formulations against Fusarium, Pythium and Rhizoctonia soilborne diseases of maize. PhD Thesis. University of Pretoria, Pretoria, Republic of South Africa. Lamichhane, J. R., Durr, C., Schwanck, A., Robin, M-H., Sarthou, J-P., Cellier, V., Messean, A., and Aubertot, J-N. 2017. Integrated management of damping-off diseases. A review. Agronomy for Sustainable Development, 37:10. Le, D. P., Smith, M., Hudler, G. W., and Aitken, E. 2014. Pythium soft rot of ginger: detection and identification of the causal pathogens, and their control. Crop Prot. 65:153-167. Le, D. P., Smith, M. K., and Aitken, E. A. 2015. Pythiogeton ramosum, a new pathogen of soft rot disease of ginger (Zingiber officinale) at high temperatures in Australia. Crop Prot. 77:9-17. Lee, D. P., Smith, M., and Aitken, E. 2016. An assessment of Pythium spp. associated with soft rot disease of ginger (Zingiber officinale) in Queensland, Australia. Australasian Plant Pathol. 45:377-387. Li, Y., Chi, L. D., Mao, L. G., Yan, D. D., Wu, Z. F., Ma, T. T., Guo, M. X., Wang, Q. Z., Ouyang, C., and Cao, A. C. 2013. Control of soilborne pathogens of Zingiber officinale by methyl iodide and chloropicrin in China. Plant Dis. 98:384-388. Lin, T. C., Ishizaka, M., and Ishii, H. 2009. Acibenzolar-s-methyl-induced systemic resistance against anthracnose and powdery mildew diseases on cucumber plants without accumulation of phytoalexins. J. Phytopathology 157:40-50. Lookabaugh, E. C., Kerns, J. P., Cubeta, M. A., and Shew, B. B. 2018. Fitness Attributes of Pythium aphanidermatum with Dual Resistance to Mefenoxam and Fenamidone. Plant Dis. 102:1938-1943. Lumsden, R., Ayers, W., Adams, P., Dow, R., Lewis, J., Papavizas, G., and Kantzes, J. 1976. Ecology and epidemiology of Pythium species in field soil. Phytopathology 66:1203-1209. Luong, T. M., Huynh, L. M., Hoang, H. M., Tesoriero, L. A., Burgess, L. W., Phan, H. T., and Davies, P. 2010. First report of Pythium root rot of chrysanthemum in Vietnam and control with metalaxyl drench. Australas. Plant Dis. Notes 5:51-54. Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., and Andreu, A. B. 2012. Potassium phosphite primes defense responses in potato against Phytophthora infestans. Plant Physiol. 169:1417-1424. Marolleau, B., Gaucher, M., Heintz, C., Degrave, A., Warneys, R., Orain, G., Lemarquand, A., and Brisset, M. N. 2017. When a plant resistance inducer leaves the lab for the field: integrating ASM into routine apple protection practices. Front Plant Sci. 8:1938-1948.. Massoud, K., Barchietto, T., Rudulier, T., Pallandre, L., Didierlaurent, L., Garmier, M., Ambard-Bretteville, F., Seng, J., and Saindrenan, P. 2012. Dissecting phosphite-Induced Priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiol. 159:286-298. Mathur, K., and Ram, D. 2012. Integration of soil solarization and pesticides for management of rhizome rot of ginger. Indian Phytopathol. 55:345-347. Matić, S., Gilardi, G., Gisi, U., Gullino, M., and Garibaldi, A. 2019. Differentiation of Pythium spp. from vegetable crops with molecular markers and sensitivity to azoxystrobin and mefenoxam. Pest Manag Sci. 75:356-365. Mauch-Mani, B., Baccelli, I., Luna, E., and Flors, V. 2017. Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68:485-512. Meenu, G., and Kaushal, M. 2017. Diseases infecting ginger (Zingiber officinale Roscoe): A review. Agric. Rev. 38:15-28. Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., and Tanović, B. 2017. Methods for management of soilborne plant pathogens. Pestic. Phytomed. 32:9–24. Nair, K. P. 2013. The agronomy and economy of turmeric and ginger: the invaluable medicinal spice crops. Newnes. Nelson, S. 2013. Bacterial wilt of edible ginger in Hawaii. University of Hawaii-College of Tropical Agriculture and Human resources, 8p. Opina, N., Tavner, F., Hollway, G., Wang, J. F., Li, T. H., Maghirang, R., Fegan, M., Hayward, A., Krishnapilla, V., Hong, W. F., Holloway, B., and Timmis, J. 1997. A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanaceürum (formerly Pseudomonas solanacearum). Asia Pacific Journal of Molecular Biology and Biotechnology 5:19-30. Paret, M. L., de Silva, A. S., Criley, R. A., and Alvarez, A. M. 2008. Ralstonia solanacearum race 4: risk assessment for edible ginger and floricultural ginger industries in Hawaii. HortTechnology 18:90-96. Paret, M. L., Cabos, R., Kratky, B. A., and Alvarez, A. M. 2010. Effect of plant essential oils on Ralstonia solanacearum race 4 and bacterial wilt of edible ginger. Plant Dis. 94:521-527. Prameela, T., and Bhai, R. 2020. Bacterial wilt of ginger (Zingiber officinale Rosc.) incited by Ralstonia pseudosolanacearum - A review based on pathogen diversity, diagnostics and management. Int. J. Plant Pathol. https://doi.org/10.1007/s42161-020-00487-5. Pringshem, N. 1858. Uber das Austreten der sporen Sphaeria scirpi aus ihren schlanchcn Jahrb. Wiss. Bot. 1: 189-192 Radhakrishnan, N., Alphonse, A., and Balasubramanian, R. 2011. Effect of Acibenzolar S-methyl (ASM) pre-treatment in inducing resistanc against Pythium aphanidermatum infection in Curcuma longa. J. Crop Prot. 30:24-32. Radmer, L., Anderson, G., Malvick, D. M., Kurle, J. E., Rendahl, A., and Mallik, A. 2017. Pythium, Phytophthora, and Phytopythium spp. associated with soybean in Minnesota, their relative aggressiveness on soybean and corn, and their sensitivity to seed treatment fungicides. Plant Dis. 101:62-72. Rai, M., Ingle, A., Paralikar, P., Anasane, N., Gade, R., and Ingle, P. 2018. Effective management of soft rot of ginger caused by Pythium spp. and Fusarium spp.: emerging role of nanotechnology. Appl Microbiol Biotechnol 102:6827–6839. Rebollar-Alviter, A., Madden, L. V., and Ellis, M. A. 2007. Pre-and post-infection activity of azoxystrobin, pyraclostrobin, mefenoxam, and phosphite against leather rot of strawberry, caused by Phytophthora cactorum. Plant Dis. 91:559-564. Reuveni, M. 2000. Activity of trifloxystrobin against powdery and downy mildew diseases of grapevines. Can. J. Plant Pathol. 23:52-59. Schneegurt, M., Dore, S., and Kulpa, C. 2003. Direct extraction of DNA from soils for studies in microbial ecology. Curr Issues Mol Biol. 5:1-8. Shanmugam, V., Dohroo, N. P., Gupta, M., Gangta, V., and Dohroo, A. 2010. First report of Pythium splendens on ginger. J. Plant Physiol. 92:S109. Shanmugam, V., Gupta, S., and Dohroo, N. P. 2013. Selection of a compatible biocontrol strain mixture based on co-cultivation to control rhizome rot of ginger. Crop Prot. 43:119-127. Shine, M. B., Xiao, X., Kachroo, P., and Kachroo, A. 2019. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci. 279:81-86. Smith, M., and Abbas, R. 2011. Controlling Pythium and associated pests in ginger. RIRDC Publication No. 11/128, Canberra. Smith, M. K., Smith, J. P., and Stirling, G. R. 2011. Integration of minimum tillage, crop rotation and organic amendments into a ginger farming system: impacts on yield and soilborne diseases. Soil Till Res. 114:108-116. Stiles, C. M., Datnoff, L. E., and Cisar, J. L. 2005. Evaluation of fungicides for control of Pythium blight in overseeded turfgrasses using a simple field inoculation technique. Plant Health Prog. 6:13. Stirling, G. R., Turaganivalu, U., Stirling, A. M., Lomavatu, M. F., and Smith, M. K. 2009. Rhizome rot of ginger (Zingiber officinale) caused by Pythium myriotylum in Fiji and Australia. Australas Plant Pathol. 38:453-460. Stirling, G. R., Smith, M. K., Smith, J. P., Stirling, A. M., and Hamill, S. D. 2012. Organic inputs, tillage and rotation practices influence soil health and suppressiveness to soilborne pests and pathogens of ginger. Australas. Plant Pathol. 41:99-112. Thammakijjawat, P., Thaveechai, N., Kositratana, W., Chunwongse, J., Frederick, R., and Schaad, N. 2006. Detection of Ralstonia solanacearum in ginger rhizomes by real-time PCR. Can. J. Plant Pathol. 28:391-400. Thao, H. T. B., and Yamakawa, T. 2009. Phosphite (phosphorous acid): fungicide, fertilizer or bio-stimulator?. Soil Sci. Plant Nutr. 55:228-234. Thakur, M., and Sohal, B. S. 2013. Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem. Article ID 762412. Wang, P. H., and White, J. G. 1997. Molecular characterization of Pythium species based on RFLP analysis of the internal transcribed spacer region of ribosomal DNA. Physiol. Mol. Plant P. 51:129-143. Wang, P. H., and Chang, C. W. 2003. Detection of the low-germination-rate resting oospores of Pythium myriotylum from soil by PCR. Lett. Appl. Microbiol. 36:157-161. Wang, P. H., Chung, C. Y., Lin, Y. S., and Yeh, Y. 2003. Use of polymerase chain reaction to detect the soft rot pathogen, Pythium myriotylum, in infected ginger rhizomes. Lett. Appl Microbiol. 36:116-120. Weiland, J. E., Santamaria, L., and Grünwald, N. J. 2014. Sensitivity of Pythium irregulare, P. sylvaticum, and P. ultimum from forest nurseries to mefenoxam and fosetyl-Al, and control of Pythium damping-off. Plant Dis. 98:937-942. West, P., Appiah, A., and Gow, N. 2003. Advances in research on oomycete root pathogens. Physio. Mol. Plant P. 62:99-113. White, T., Bruns, T., Lee, S., Taylor, J., Innis, M., Gelfand, D., and Sninsky, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols pp. 315-320. Academic Press. Wulandari, Y., Yulandi, A., and Audira, G. 2016. Evaluation of genetic diversity relationships in oranges varieties using random amplified polymorphic DNA. J Biol. Nature 5:158-166. Yang, W., Xu, Q., Liu, H. X., Wang, Y. P., Yang, H. T., and Guo, J. H. 2012. Evaluation of biological control agents against Ralstonia wilt on ginger. Biol. Control 62:144-151. Yu, Q., Alvarez, A. M., Moore, P. H., Zee, F., Kim, M. S., De Silva, A., Hepperly , P. R., and Ming, R. 2003. Molecular diversity of Ralstonia solanacearum isolated from ginger in Hawaii. Phytopathology. 93:1124-1130. Zhou, M., and Wang, W. 2018. Recent advances in synthetic chemical inducers of plant immunity. Front Plant Sci. 9:1613. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60016 | - |
dc.description.abstract | 薑 (Zingiber officinale Rosc.) 為多年生宿根性單子葉植物,是重要香辛類佐料蔬菜,主要產區包括臺東、南投、苗栗及花蓮等。目前臺灣薑產業遇到的最大瓶頸為連作障礙,且以Pythium myriotylum Dreschler所引發的薑軟腐病為最主要因子。臺灣多年來鮮少關於薑軟腐病的田間病因調查資料,為探討造成薑軟腐病的其他可能成因,本研究自臺東知本、龍田、銅礦、臺東區農業改良場、初鹿牧場及南投集集等地區的薑田採集罹病植株和土壤樣本進行菌株分離及PCR檢測,鑑定結果發現所分離的菌株有主要為P. myriotylum,但也包括一些Pythium splendens Braun和一株Pythiogeton ramosum Minden。進一步以菌絲塊接種,發現僅P. myriotylum可以在薑植株造成黃化萎凋及塊莖褐化水浸狀等病徵,但P. splendens和Py. ramosum都無法成功侵染。針對罹病薑塊莖,以Pmy5/ITS2引子對進行PCR,在樣本LT-2、TG-1、YC-1、TC-2、TC-3和TC-4皆可檢測到P. myriotylum;附著在塊莖的土塊 (bulk soil, Bs) 和薑塊莖表面取下的土壤 (rhizome soil, Rs) 樣本LT-1Bs、LT-1Rs、LT-2Bs和LT-2Rs也可以檢測到P. myriotylum。這些結果顯示,以薑塊莖或是土壤可以直接檢測薑軟腐病是否由P. myriotylum引起。另關於薑軟腐病的防治,臺灣目前的推薦藥劑只有依得利,為瞭解田間的P. myriotylum菌株是否已發展依得利的抗藥性,本研究自台東龍田、台東市和台東銅礦等地區的P. myriotylum菌株進行敏感性分析,發現依得利的半效應濃度 (EC50) 約為0.02 ppm,明顯低於目前推薦之田間施用濃度。除此之外,以培養基試驗測試發現滅達樂、三氟敏及百克敏對於P. myriotylum菌絲生長的抑制效果與依得利相似,氟比拔克抑制菌絲生長能力較差,但實際適用情形還需後續以盆栽及田間試驗加以驗證。另外,也測試中和後亞磷酸的防治效果,發現施用濃度為1,000 ppm時即可有效防治薑軟腐病,將施用濃度提升至5,000 ppm的防治效果更佳。這些結果顯示在臺東田間引起薑軟腐病的病源仍以P. myriotylum為主,滅達樂、三氟敏、百克敏和中和後亞磷酸具有防治薑軟腐病的潛力。 | zh_TW |
dc.description.abstract | Ginger (Zingiber officinale Rosc.) is an important perennial monocot species, with its rhizome widely used as a spice worldwide. The annual cultivated area of ginger is about 1,000 hectares in Taiwan, including Taitung, Nantou, Miaoli and Hualien counties. The biggest challenge for cultivation of ginger in Taiwan is ginger soft rot caused by Pythium myriotylum. It’s been a long time since last survey of ginger soft rot in the field of Taiwan. This study aims to exploreadditional pathogens of ginger soft rot. The ginger rhizomes and soil samples were collected from Nantou Jiji and different areas of Taitung, including Zhiben, Longtian, Tonggong, Taitung District Agriculture and Research Extension Station (TTDARES) and Chulu Ranch, and were used for pathogen isolation and PCR detection. Most of the isolates were found to be P. myriotylum, while some were Pythium splendens and one strain was Pythiogeton ramosum. In this study, P. myriotylum causes leaf yellowing in the ginger leaves and watery dark brown lesion in the rhizomes of ginger, whereas neither P. splendens or Py. ramosum infect the ginger plants. P. myriotylum was detectable in the ginger rhizome samples LT-2, TG-1, YC-1, TC-2, TC-3 and TC-4 as well as in the soil samples LT-1Bs, LT-1Rs, LT-2Bs and LT-2Rs using PCR. These results indicate that PCR can distinguish whether the soft rot symptoms were caused by P. myriotylum. Currently, etridiazole is the only recommended chemical fungicide in Taiwan for controlling ginger soft rot. To know the possibility that field isolates of P. myriotylum might have developed fungicide resistance, P. myriotylum isolates from Taitung Longtian, TTDARES and Tonggong were analyzed for their sensitivity toward etridiazole. The results showed that the EC50 values of etridiazole was approximately 0.02 µg/mL, much lower than the concentration recommended by the government. According to the results of fungicides amended assay, metalaxyl, trifloxystrobin and pyraclostrobin were found to have hyphal growth inhibitionactivity similar to etridiazole and better than flupicolide plus propamocarb hydrochloride. Furthermore, the application of 1,000 mg/L neutralized phosphorous acid (NPA) effectively prevented the occurrence ginger soft rot, and 5,000 mg/L NPA gave even better prevention. These results demonstrate that P. myriotylum is still the main pathogen causing ginger soft rot in the Taitung area, and provide alternative strategies for the control of the disease. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:50:47Z (GMT). No. of bitstreams: 1 U0001-1308202015015100.pdf: 3304426 bytes, checksum: 8801b1b9a6a967b698a6b54423056256 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………i
致謝……………………………………………………………………………………...ii 中文摘要………………………………………………………………………………..iii 英文摘要………………………………………………………………………………...v 壹、 前言………………………………………………………………………………...1 1. 薑簡介………………………………………………………………….............1 1.1 薑特性…………………………………………………………………….1 1.2 經濟重要性…………………………………………………………….....1 1.3 營養價值………………………………………………………………….2 1.4 生長條件………………………………………………………………….2 1.5 病蟲害………………………………………………………………….....2 2. 薑軟腐病…………………............................................................ 3 2.1 腐霉病菌簡介…………………………………………………………….3 2.2 腐霉病菌生活史………………………………………………………….4 2.3 腐霉菌型態與顯微構造………………………………………………….5 2.4 薑軟腐病之病原生態…………………………………………………….5 2.5 物理防治方法…………………………………………………………….6 2.6 生物防治方法…………………………………………………………….6 2.7 化學防治方法…………………………………………………………….7 3. 連作障礙……………………………………………………………………….7 4. 誘導抗性…………………………………………………………………….....7 4.1 定義……………………………………………………………………….7 4.2 中和後亞磷酸 (neutralized phosphorous acid, NPA)…………………….8 4.3 誘導抗性應用於防治Pythium spp……………………………………….8 5. 農藥篩選…………………………………………………….............................9 6. 研究動機……………………………………………………………………...10 貳、 材料與方法……………………………………………………………………….11 1. 植物材料及菌種來源………………………………………………………...11 1.1 植物材料及生長條件…………………………………………………...11 1.2 薑軟腐病Pythium myriotylum來源及保存…………………………….11 2. 薑軟腐病菌病原性測試……………………………………………………...11 3. 中和亞磷酸 (Neutralized phosphorous acid, NPA) 處理……………………12 4. 藥劑試驗…………………………………………………………...................12 4.1 P. myriotylum對依得利抗藥性試驗……………………………………12 4.2 其他藥劑篩選……………………………………………………...........12 5. 核酸製備……………………………………………………………………...13 5.1 菌株核酸………………………………………………………………...13 5.2 植物核酸………………………………………………………………...13 5.3 土壤核酸………………………………………………………………...14 5.4 聚合酶連鎖反應 (polymerase chain reaction, PCR)……………………15 參、 結果……………………………………………………………………………….16 1. 薑軟腐病植物樣本的採集及檢測…………………………………………...16 1.1 樣本採集………………………………………………………………....16 1.2 樣本組織分離與鑑定……………………………………………………16 1.3 薑塊莖與根圈土壤P. myriotylum的偵測………………………………17 2. 抗藥性測試…………………………….......................................................19 3. 防治藥機篩選………………………………………………………………...19 4. 病原性測試…………………………………………………………………...20 5. 亞磷酸防治試驗……………………………………………………………...20 肆、 討論……………………………………………………………………………….22 1. 薑軟腐病病因調查…………………………………………………………...22 2. Pythium myriotylum對依得利敏感度測試…………………………………..23 3. 藥劑篩選測試…………………………………...............................................23 4. 中和後亞磷酸 (NPA) 防治Pythium myriotylum引起之薑軟腐病…………24 5. 結語…………………………………………………………………………...25 伍、引用文獻…………………………………………………………………………..27 陸、附表………………………………………………………………………………...38 柒、附圖………………………………………………………………………………...44 | |
dc.language.iso | zh-TW | |
dc.title | 以亞磷酸防治薑軟腐病及防治藥劑篩選 | zh_TW |
dc.title | Disease control of ginger soft rot by using NPA and screening of fungicides | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張皓巽(Hao-Xun Chang),黃晉興(Jin-Hsing Huang),倪蕙芳(Hui-Fang Ni) | |
dc.subject.keyword | 薑,Pythium myriotylum,依得利,藥劑敏感性,中和後亞磷酸, | zh_TW |
dc.subject.keyword | etridiazle,fungicides sensitivity,ginger,neutralized phosphorous acid (NPA),Pythium myriotylum, | en |
dc.relation.page | 54 | |
dc.identifier.doi | 10.6342/NTU202003262 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物醫學碩士學位學程 | zh_TW |
顯示於系所單位: | 植物醫學碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202015015100.pdf 目前未授權公開取用 | 3.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。