請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60013
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉開溫 | |
dc.contributor.author | Jia-jyun Chen | en |
dc.contributor.author | 陳佳君 | zh_TW |
dc.date.accessioned | 2021-06-16T09:50:36Z | - |
dc.date.available | 2022-02-16 | |
dc.date.copyright | 2017-02-16 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-01-17 | |
dc.identifier.citation | 杜建勳。 2015。文心蘭SPLs (SQUAMOSAPROMOTER BINDING PROTEIN- LIKE 參與高室溫誘導開花之調控機制。國立台灣大學植物科學研究所碩士論文。
林瑞松、徐懷恩、賴淑芬、陳加忠。1998。光度與光期對文心蘭開花率與開花品質之影響。中華農業氣象 5, 193-202。 張允瓊。 1996。 溫度、光度及肥料濃度對文心蘭生長與開花之影響。碩士論文。台灣大學園藝研究所。台北。 張允瓊、李哖。 1998。 光度對文心蘭。宜蘭技術學報, 39-51。 張朝晏。 2009。 文心蘭之健康管理。 2009 花卉健康管理研討會專刊。pp:195-202。 許榮華。 2010。 假球莖於著生蘭生育上所扮演的角色。 臺中區農業改良場特刊。105:154-162。 許榮華、 吳省寬、 游婷媛、 林于倫、 徐懷恩、 李泰昌、 王美琪、 郭雅芩、 林瑞松。 2011。 外銷文心蘭切花生產品質之關鍵。 2010 花卉研究團隊研究現況與展望研討會專刊。pp:17-33。 陳燿煌、 張元聰、 韓錦絲。 2009。 文心蘭設施栽培。 臺南區農業專訊。pp: 22-27。 游婷媛。 2009。 暗期中斷處理與磷肥濃度對文心蘭生長與開花之影響。 中興大學園藝學系所學位論文。台中。 黃怡菁。 1997。 文心蘭基本生長週期與花期修剪產期調節。 高雄區農業專訊。pp: 3-5。 臧友真。 2013。 文心蘭miR156-SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) 調控模組於高溫誘導開花機制之功能性探討。臺灣大學植物科學研究所學位論文。國立台灣大學植物科學研究所碩士論文。 Achard, P., and Genschik, P. (2009). Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J. Exp. Bot. 60, 1085-1092. Amasino, R. (2004). Vernalization, competence, and the epigenetic memory of winter. Plant Cell 16, 2553-2559. Amasino, R.M., and Michaels, S.D. (2010). The timing of flowering. Plant Physiol. 154, 516-520. Anderson, J.V., Chevone, B.I., and Hess, J.L. (1992). Seasonal variation in the antioxidant system of eastern white pine needles evidence for thermal dependence. Plant Physiol. 98, 501-508. Arnaudo, A.M., and Garcia, B.A. (2013). Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 6, 1. Attolico, A., and De Tullio, M. (2006). Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiol. Biochem. 44, 462-466. Ausín, I., Alonso-Blanco, C., Jarillo, J.A., Ruiz-García, L., and Martínez-Zapater, J.M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genet. 36, 162-166. Bahin, E., Bailly, C., Sotta, B., Kranner, I., Corbineau, F., and Leymarie, J. (2011). Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell Environ. 34, 980-993. Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genet. 2, e106. Barth, C., De Tullio, M., and Conklin, P.L. (2006). The role of ascorbic acid in the control of flowering time and the onset of senescence. J. Exp. Bot. 57, 1657-1665. Bastow, R., Mylne, J.S., Lister, C., Lippman, Z., Martienssen, R.A., and Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167. Beckman, J.S., Beckman, T.W., Chen, J., Marshall, P.A., and Freeman, B.A. (1990). Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U. S. A. 87, 1620-1624. Bender, K.W., Wang, X., Cheng, G.B., Kim, H.S., Zielinski, R.E., and Huber, S.C. (2015). Glutaredoxin AtGRXC2 catalyses inhibitory glutathionylation of Arabidopsis BRI1-associated receptor-like kinase 1 (BAK1) in vitro. Biochem. J. 467, 399-413. Blázquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998). Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791-800. Bolaños, J.P., Almeida, A., Stewart, V., Peuchen, S., Land, J.M., Clark, J.B., and Heales, S.J. (1997). Nitric oxide‐mediated mitochondrial damage in the brain: Mechanisms and implications for neurodegenerative diseases. J. Neurochem. 68, 2227-2240. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. Cao, Y., Dai, Y., Cui, S., and Ma, L. (2008). Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20, 2586-2602. Chang, S., Puryear, J., and Cairney,. J. (1993). A simple and efficient method for isolating RNA from pine tress. Plant molecular biology reporter 11:113-116. Chin, D.-C., Shen, C.-H., SenthilKumar, R., and Yeh, K.-W. (2014). Prolonged exposure to elevated temperature induces floral transition via up-regulation of cytosolic ascorbate peroxidase 1 and subsequent reduction of the ascorbate redox ratio in Oncidium hybrid orchid. Plant Cell Physiol. 55, 2164-2176. Chin, D.-C., Hsieh, C.-C., Lin, H.-Y., and Yeh, K.-W. (2016). A Low Glutathione Redox State Couples with a Decreased Ascorbate Redox Ratio to Accelerate Flowering in Oncidium Orchid. Plant Cell Physiol. 57, 423-436. Cobbett, C.S. (2000). Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opin. Plant Biol. 3, 211-216. Conklin, P. (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 24, 383-394. Conklin, P., and Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ.27, 959-970. Conklin, P.L., Williams, E.H., and Last, R.L. (1996). Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc. Natl. Acad. Sci. U. S. A. 93, 9970-9974. Conklin, P.L., Saracco, S.A., Norris, S.R., and Last, R.L. (2000). Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154, 847-856. Corbesier, L., and Coupland, G. (2006). The quest for florigen: a review of recent progress. J. Exp. Bot. 57, 3395-3403. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., and Turnbull, C. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033. Cotgreave, I.A., Gerdes, R., Schuppe-Koistinen, I., and Lind, C. (2002). S-Glutathionylation of glyceraldehyde-3-phosphate dehydrogenase: Role of thiol oxidation and catalysis by glutaredoxin. Methods Enzymol. 348, 175-182. Dalle-Donne, I., Rossi, R., Giustarini, D., Colombo, R., and Milzani, A. (2007). S-glutathionylation in protein redox regulation. Free Radic. Biol. Med. 43, 883-898. Datta, R., Kumar, D., Sultana, A., Hazra, S., Bhattacharyya, D., and Chattopadhyay, S. (2015). Glutathione regulates 1-aminocyclopropane-1-carboxylate synthase transcription via WRKY33 and 1-aminocyclopropane-1-carboxylate oxidase by modulating messenger RNA stability to induce ethylene synthesis during stress. Plant Physiol. 169, 2963-2981. De Luca, A., Moroni, N., Serafino, A., Primavera, A., Pastore, A., Pedersen, J.Z., Petruzzelli, R., Farrace, M.G., Pierimarchi, P., and Moroni, G. (2011). Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochem. J. 440, 175-183. de Pinto, M.C., and De Gara, L. (2004). Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J. Exp. Bot. 55, 2559-2569. Deng, W., Ying, H., Helliwell, C.A., Taylor, J.M., Peacock, W.J., and Dennis, E.S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108, 6680-6685. Denness, L., McKenna, J.F., Segonzac, C., Wormit, A., Madhou, P., Bennett, M., Mansfield, J., Zipfel, C., and Hamann, T. (2011). Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species-and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 156, 1364-1374. Dietz, K.J. (2008). Redox signal integration: from stimulus to networks and genes. Physiol. Plant. 133, 459-468. Dixon, D.P., Davis, B.G., and Edwards, R. (2002). Functional divergence in the glutathione transferase superfamily in plants identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J. Biol. Chem. 277, 30859-30869. Edwards, R., Dixon, D.P., and Walbot, V. (2000). Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5, 193-198. Filipovska, A., and Murphy, M.P. (2006). Overview of protein glutathionylation. Curr. Protoc. Toxicol. 6.10. 11-16.10. 18. Foyer, C.H., and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133, 21-25. Foyer, C.H., and Noctor, G. (2003). Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 119, 355-364. García-Giménez, J.L., Olaso, G., Hake, S.B., Bönisch, C., Wiedemann, S.M., Markovic, J., Dasí, F., Gimeno, A., Pérez-Quilis, C., and Palacios, O. (2013). Histone H3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure. Antioxid. Redox Signal. 19, 1305-1320. Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis. Cell 107, 525-535. Gill, S.S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909-930. Grek, C.L., Zhang, J., Manevich, Y., Townsend, D.M., and Tew, K.D. (2013). Causes and consequences of cysteine S-glutathionylation. J. Biol. Chem. 288, 26497-26504. Grill, D. (2001). Significance of glutathione to plant adaptation to the environment. Plant ecophysiology 2: 1572-5561. Gu, X., Le, C., Wang, Y., Li, Z., Jiang, D., Wang, Y., and He, Y. (2013). Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues. Nat. Commun. 4. Guo, A.-Y., Zhu, Q.-H., Gu, X., Ge, S., Yang, J., and Luo, J. (2008). Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418, 1-8. Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J., and Allen, R.D. (1993). Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. U. S. A. 90, 1629-1633. He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751-1754. Henikoff, S., and Shilatifard, A. (2011). Histone modification: cause or cog? Trends Genet. 27, 389-396. Herschbach, C., and Rennenberg, H. (2001). Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition. Progress in Botany, pp. 177-193. Hew, C., and Yong, J. (1994). Growth and photosynthesis of Oncidium ‘Goldiana’. Eur. J. Hortic. Sci. 69, 809-819. Howden, R., Andersen, C.R., Goldsbrough, P.B., and Cobbett, C.S. (1995). A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiology 107:1067-1073. Huijser, P., and Schmid, M. (2011). The control of developmental phase transitions in plants. Development 138, 4117-4129. Ito, H., Iwabuchi, M., and Ogawa, K.i. (2003). The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol. 44, 655-660. Jacob, C., Giles, G.I., Giles, N.M., and Sies, H. (2003). Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem.-Int. Edit. 42, 4742-4758. Jain, M., Choudhary, D., Kale, R.K., and Bhalla‐Sarin, N. (2002). Salt‐and glyphosate‐induced increase in glyoxalase I activity in cell lines of groundnut (Arachis hypogaea). Physiol. Plant. 114, 499-505. Joo, J.H., Bae, Y.S., and Lee, J.S. (2001). Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126, 1055-1060. Jung, J.H., Ju, Y., Seo, P.J., Lee, J.H., and Park, C.M. (2012). The SOC1‐SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J. 69, 577-588. Kil, I.S., and Park, J.-W. (2005). Regulation of mitochondrial NADP+-dependent isocitrate dehydrogenase activity by glutathionylation. J. Biol. Chem. 280, 10846-10854. Kim, J.J., Lee, J.H., Kim, W., Jung, H.S., Huijser, P., and Ahn, J.H. (2012). The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Plant Physiol. 159, 461-478. Klein, J., Saedler, H., and Huijser, P. (1996). A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Molecular and General Genetics 250, 7-16. Kocsy, G., Szalai, G., and Galiba, G. (2004b). Effect of osmotic stress on glutathione and hydroxymethylglutathione accumulation in wheat. J. Plant Physiol. 161:785–794 Kotchoni, S.O., Larrimore, K.E., Mukherjee, M., Kempinski, C.F., and Barth, C. (2009). Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiol. 149, 803-815. Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alós, E., Alvey, E., Harberd, N.P., and Wigge, P.A. (2012). Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242-245. Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., and Ahn, J.H. (2010). Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic Acids Res. gkp1240. Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldmann, K.A., and Amasino, R.M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6, 75-83. Lee, J.H., Lee, J.S., and Ahn, J.H. (2008). Ambient temperature signaling in plants: an emerging field in the regulation of flowering time. J. Plant Biol. 51, 321-326. Lee, J.H., Ryu, H.-S., Chung, K.S., Posé, D., Kim, S., Schmid, M., and Ahn, J.H. (2013). Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342, 628-632. Leipner, J., Fracheboud, Y., and Stamp, P. (1999). Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ. Exp. Bot. 42, 129-139. Levy, Y.Y., Mesnage, S., Mylne, J.S., Gendall, A.R., and Dean, C. (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297, 243-246. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., and Cobbett, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737-745. Manning, K., Tör, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J., and Seymour, G.B. (2006). A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nature Genet. 38, 948-952. Michelet, L., Zaffagnini, M., Marchand, C., Collin, V., Decottignies, P., Tsan, P., Lancelin, J.-M., Trost, P., Miginiac-Maslow, M., and Noctor, G. (2005). Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc. Natl. Acad. Sci. U. S. A. 102, 16478-16483. Mishra, S., Jha, A., and Dubey, R. (2011). Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248, 565-577. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410. Mutasa-Göttgens, E., and Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 040. Neill, S., Desikan, R., and Hancock, J. (2002). Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5, 388-395. Nieto-Sotelo, J., and Ho, T.-H.D. (1986). Effect of heat shock on the metabolism of glutathione in maize roots. Plant Physiol. 82, 1031-1035. Noctor, G., and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Biol. 49, 249-279. Ogawa, K.i., Hatano-Iwasaki, A., Yanagida, M., and Iwabuchi, M. (2004). Level of glutathione is regulated by ATP-dependent ligation of glutamate and cysteine through photosynthesis in Arabidopsis thaliana: mechanism of strong interaction of light intensity with flowering. Plant Cell Physiol. 45, 1-8. Ogawa, K.i., Tasaka, Y., Mino, M., Tanaka, Y., and Iwabuchi, M. (2001). Association of glutathione with flowering in Arabidopsis thaliana. Plant Cell Physiol. 42, 524-530. Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., and Mauch, F. (2007). Identification of PAD2 as a γ‐glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49, 159-172. Posé, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G.C., Immink, R.G., and Schmid, M. (2013). Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503, 414-417. Preston, J.C., and Hileman, L.C. (2010). SQUAMOSA‐PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. Plant J. 62, 704-712. Proveniers, M.C., and van Zanten, M. (2013). High temperature acclimation through PIF4 signaling. Trends Plant Sci. 18, 59-64. Quan, L.J., Zhang, B., Shi, W.W., and Li, H.Y. (2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 50, 2-18. Radi, R., Beckman, J.S., Bush, K.M., and Freeman, B.A. (1991). Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244-4250. Ratcliffe, O.J., Nadzan, G.C., Reuber, T.L., and Riechmann, J.L. (2001). Regulation of Flowering in Arabidopsis by an FLC Homologue. Plant Physiol. 126, 122-132. Scandalios, J. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian J. Med. Biol. Res. 38, 995-1014. Schomburg, F.M., Patton, D.A., Meinke, D.W., and Amasino, R.M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13, 1427-1436. Sgherri, C.L.M., and Navari‐Izzo, F. (1995). Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defence mechanisms. Physiol. Plant. 93, 25-30. Sharma, P., and Dubey, R.S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46, 209-221. Sharma, P., Jha, A.B., Dubey, R.S., and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Am. J. Bot. 2012. Shen, C.-H., Krishnamurthy, R., and Yeh, K.-W. (2009). Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant Cell Physiol. 50, 935-946. Shih, Y.-Y., and Lin, C.-H. (2015). S-Glutathionylation promotes HSP90 degradation under oxidative stress. Faseb J. 29, 717.716. Smaczniak, C., Immink, R.G., Angenent, G.C., and Kaufmann, K. (2012). Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081-3098. Sun, R., Eriksson, S., and Wang, L. (2012). Oxidative stress induced S-glutathionylation and proteolytic degradation of mitochondrial thymidine kinase 2. J. Biol. Chem. 287, 24304-24312. Sung, S., and Amasino, R.M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164. Teotia, S., and Tang, G. (2015). To bloom or not to bloom: role of microRNAs in plant flowering. Mol. Plant. 8, 359-377. Tepe, M., and Harms, H. (1995). Influence of abiotic stress on the GSH/GSSG system of plant cell cultures. J. Plant Nutr. Soil Sci.158, 75-78. Unte, U.S., Sorensen, A.-M., Pesaresi, P., Gandikota, M., Leister, D., Saedler, H., and Huijser, P. (2003). SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 15, 1009-1019. Usami, T., Horiguchi, G., Yano, S., and Tsukaya, H. (2009). The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136, 955-964. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006. Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.-P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., Van Montagu, M., and Inzé, D. (2000). The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12, 97-109. Wang, H., Nussbaum-Wagler, T., Li, B., Zhao, Q., Vigouroux, Y., Faller, M., Bomblies, K., Lukens, L., and Doebley, J.F. (2005). The origin of the naked grains of maize. Nature 436, 714-719. Wang, J.-W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138, 738-749. Wang, W., Vignani, R., Scali, M., and Cresti, M. (2006). A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis 27, 2782-2786. Winterbourn, C.C. (1993). Superoxide as an intracellular radical sink. Free Radic. Biol. Med. 14, 85-90. Wu, G., and Poethig, R.S. (2006). Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547. Xiang, C., Werner, B.L., E'Lise, M.C., and Oliver, D.J. (2001). The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 126, 564-574. Yan, J., Tsuichihara, N., Etoh, T., and Iwai, S. (2007). Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ. 30, 1320-1325. Yanagida, M., Mino, M., Iwabuchi, M., and Ogawa, K.i. (2004). Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant Cell Physiol. 45, 129-137. Yong, J., and Hew, C. (1995). The importance of photoassimilate contribution from the current shoot and connected back shoots to inflorescence size in the thin-leaved sympodial orchid Oncidium Goldiana. Int. J. Plant Sci. 450-459. Yosef, I., Irihimovitch, V., Knopf, J.A., Cohen, I., Orr-Dahan, I., Nahum, E., Keasar, C., and Shapira, M. (2004). RNA binding activity of the ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit from Chlamydomonas reinhardtii. J. Biol. Chem. 279, 10148-10156. Zaffagnini, M., Michelet, L., Marchand, C., Sparla, F., Decottignies, P., Le Marechal, P., Miginiac‐Maslow, M., Noctor, G., Trost, P., and Lemaire, S.D. (2007). The thioredoxin‐independent isoform of chloroplastic glyceraldehyde‐3‐phosphate dehydrogenase is selectively regulated by glutathionylation. FEBS J. 274, 212-226. Zhang, C., Liu, J., Zhang, Y., Cai, X., Gong, P., Zhang, J., Wang, T., Li, H., and Ye, Z. (2011). Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Reports 30, 389-398. Zhang, Y., Schwarz, S., Saedler, H., and Huijser, P. (2007). SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol.Biol. 63, 429-439. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/60013 | - |
dc.description.abstract | 文心蘭的開花調控機制受到維他命C (ascorbate) 及穀胱甘肽 (glutathione) 的氧化還原態 (redox state) 所調控,然而氧化態的GSSG (oxidized form) 如何扮演訊號因子去啟動開花調控基因是一個未知的問題。本實驗利用抗穀胱甘肽抗體 (anti-GSH antiserum) 進行開花假球莖總蛋白質之篩選偵測,得到了一個約20 kDa的蛋白質分子,並證明此蛋白質為組蛋白H2B。試管內反應試驗結果,證實H2B重組蛋白分子可與GSSG進行共價結合,利用液相層析雙質譜儀分析結果也證實H2BCys40可與穀胱甘肽結合。若以1 mM GSSG溶液噴灑文心蘭幼苗期之假球莖,發現可縮短文心蘭抽花梗之時間,且H2B的穀胱甘肽化現象 (glutathionylation) 亦很明顯;利用yeast one-hybrid方法分析,初步顯示穀胱甘肽化的H2B可以和SPL10-2啟動子有親合能力。圓二色光譜 (circular dichroism) 分析也顯示穀胱甘肽化的H2B之構造受到改變。綜合上述,文心蘭的開花機制中有可能是染色質的H2B經過穀胱甘肽化後,影響到開花基因的表現所致。 | zh_TW |
dc.description.abstract | The flowering regulation of Oncidesa is coordinately regulated by ascorbate and glutathione redox states. However, the role of glutathione disulfide (GSSG;oxidized form) as a signal factor to trigger flowering regulatory genes is still unknown. In this study, the glutathionylated proteins approximate 20 kDa were detected by anti-GSH antiserium, and the histone protein H2B was identified as the glutathionylated protein by LC-MS-MS analysis. The H2B-recombinant protein covalently bound with GSSG in vitro. By LC-MS-MS analysis, we found that the glutathionylation site of H2B was identified at cys40. Oncidesa plants in unsheath stage were treated with 1 mM GSSG. The result demonstrated that the early flowering of Oncidesa and the level of H2B glutathionylation were obviously detected. The glutathionyltion of H2B had affinity on SPL10-2 promoter in yeast one-hybrid assay. Further, the circular dichroism (CD) analysis suggested that glutathionylation of H2B affects its secondary structure. Collectively, we assumed that the glutathionylation of H2B alters the chromatin structure, leading to activation of flowering genes in Oncidesa. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:50:36Z (GMT). No. of bitstreams: 1 ntu-106-R03b42006-1.pdf: 3824252 bytes, checksum: 095fb53ad88d79d646d89d0c01af12b3 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 ii
中文摘要 iii Abstract iv 檢索表 v 目錄 vii 第一章 前言 1 第一節 文心蘭概論 1 第二節 植物開花生理 4 第三節 穀胱甘肽 (GSH) 與植物氧化逆境之關聯 9 第四節 蛋白質穀胱甘肽化與植物生理之關聯 13 第五節 文心蘭開花調控機制 16 第六節 研究目的 18 第二章 材料與方法 19 一、實驗材料 19 二、實驗方法 19 第一節 氧化態之穀胱甘肽 (GSSG) 處理文心蘭 19 第二節 文心蘭溫度處理 19 第三節 基因釣取 19 第四節 基因表現量測定 20 第五節 西方墨點法 (Western Blot) 24 第六節 載體構築 28 第七節 酵母菌轉型 32 第八節 純化候選基因之重組蛋白進行穀胱甘肽化分析 34 第九節 純化OgH2B重組蛋白進行圓二色光譜 (circular dichroism;CD) 36 第十節 OgH2B modeling 39 第三章 結果 40 第一節 文心蘭不同生長期之蛋白質穀胱甘肽化之挑選 40 第二節 文心蘭OgH2A與OgH2B之ORF (open reading frame) 釣取 41 第三節 OgH2A與OgH2B進行穀胱甘肽化之驗證 41 第四節 文心蘭OgH2B穀胱甘肽化之驗證 43 第五節 文心蘭不同生長期OgH2B調控機制之探討 43 第六節 較高的環境溫度 (30℃) 的開花誘導機制與OgH2B穀胱甘肽化之關係 44 第七節 OgH2B、OgH2BC40A與文心蘭開花基因啟動子交互作用 45 第八節 OgH2BC40A-C及OgH2BC40A-N與 OgSPL10-2啟動子交互作用. .46 第九節 OgH2B重組蛋白穀胱甘肽化對其結構影響之探討 47 第四章 討論 49 第一節 文心蘭不同生長期與蛋白質穀胱甘肽化之關係 49 第二節 OgH2B穀胱甘肽化 50 第三節 抽花芽期與30℃環境中穀胱甘肽化程度與OgH2B蛋白質累積量皆增加 52 第四節 OgH2B和OgH2BC40A與OgSPL10-2啟動子有交互作用之探討 53 第五節 OgH2B穀胱甘肽化對其結構與穩定性之探討 54 第六節 未來展望 56 參考文獻 57 | |
dc.language.iso | zh-TW | |
dc.title | 組蛋白H2B的穀胱甘肽化調控文心蘭開花之研究 | zh_TW |
dc.title | Glutathionylation of H2B regulates flowering initiation
in Oncidesa orchid | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 謝旭亮,王淑珍,葉國禎,徐駿森 | |
dc.subject.keyword | 文心蘭;組蛋白H2B;開花;穀胱甘?化, | zh_TW |
dc.subject.keyword | flowering, glutathionylation; H2B; histone modification;Oncidesa, | en |
dc.relation.page | 94 | |
dc.identifier.doi | 10.6342/NTU201700119 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-01-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。