Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59999
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖(Hsi-Sheng Goan)
dc.contributor.authorChien-Chang Chenen
dc.contributor.author陳建彰zh_TW
dc.date.accessioned2021-06-16T09:49:44Z-
dc.date.available2018-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-19
dc.identifier.citation[1] H. J. Carmichael, Statistical Methods in Quantum Optics 1. Springer, Berlin, 1999.
[2] H.-P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford Uni-versity Press, Oxford, 2002.
[3] Á. Rivas and S. F. Huelga, Open Quantum Systems. Springer, Heidelberg, 2012.
[4] C.-F. Li, J.-S. Tang, Y.-L. Li, and G.-C. Guo, 'Experimentally witnessing the initial correlation between an open quantum system and its environment,' Phys. Rev. A, vol. 83, p. 064102, Jun 2011.
[5] A. Smirne, D. Brivio, S. Cialdi, B. Vacchini, and M. G. A. Paris, 'Experimental investigation of initial system-environment correlations via trace-distance evolution,' Phys. Rev. A, vol. 84, p. 032112, Sep 2011.
[6] M. Ringbauer, C. J. Wood, K. Modi, A. Gilchrist, A. G. White, and A. Fedrizzi, 'Characterizing quantum dynamics with initial system-environment correlations,' Phys. Rev. Lett., vol. 114, p. 090402, Mar 2015.
[7] A. M. Kuah, K. Modi, C. A. Rodríguez-Rosario, and E. C. G. Sudarshan, 'How state preparation can affect a quantum experiment: Quantum process tomography for open systems,' Phys. Rev. A, vol. 76, p. 042113, Oct 2007.
[8] K. Modi and E. C. G. Sudarshan, 'Role of preparation in quantum process tomog-raphy,' Phys. Rev. A, vol. 81, p. 052119, May 2010.
[9] K. Modi, 'Preparation of states in open quantum mechanics,' Open Syst. Inf. Dyn., vol. 18, no. 03, pp. 253{260, 2011.
[10] A. Z. Chaudhry and J. Gong, 'Amplification and suppression of system-bath-correlation effects in an open many-body system,' Phys. Rev. A, vol. 87, p. 012129, Jan 2013.
[11] A. Z. Chaudhry and J. Gong, 'Role of initial system-environment correlations: A master equation approach,' Phys. Rev. A, vol. 88, p. 052107, Nov 2013.
[12] P. Pechukas, 'Reduced dynamics need not be completely positive,' Phys. Rev. Lett., vol. 73, pp. 1060{1062, Aug 1994.
[13] A. Royer, 'Reduced dynamics with initial correlations, and time-dependent environ-ment and hamiltonians,' Phys. Rev. Lett., vol. 77, pp. 3272{3275, Oct 1996.
[14] M. Campisi, P. Talkner, and P. Hänggi, 'Fluctuation theorem for arbitrary open quantum systems,' Phys. Rev. Lett., vol. 102, p. 210401, May 2009.
[15] A. G. Dijkstra and Y. Tanimura, 'Non-markovian entanglement dynamics in the presence of system-bath coherence,' Phys. Rev. Lett., vol. 104, p. 250401, Jun 2010.
[16] A. G. Dijkstra and Y. Tanimura, 'Non-markovianity: initial correlations and nonlin-ear optical measurements,' Philos. Trans. R. Soc. A, vol. 370, no. 1972, pp. 3658-3671, 2012.
[17] C. K. Lee, J. Cao, and J. Gong, 'Noncanonical statistics of a spin-boson model: Theory and exact monte carlo simulations,' Phys. Rev. E, vol. 86, p. 021109, Aug 2012.
[18] H. A. Carteret, D. R. Terno, and K. Życzkowski, 'Dynamics beyond completely positive maps: Some properties and applications,' Phys. Rev. A, vol. 77, p. 042113, Apr 2008.
[19] K. Modi, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, 'Positivity in the presence of initial system-environment correlation,' Phys. Rev. A, vol. 86, p. 064102, Dec 2012.
[20] F. Buscemi, 'Complete positivity, markovianity, and the quantum data-processing inequality, in the presence of initial system-environment correlations,' Phys. Rev. Lett., vol. 113, p. 140502, Oct 2014.
[21] L. Liu and D. M. Tong, 'Completely positive maps within the framework of direct-sum decomposition of state space,' Phys. Rev. A, vol. 90, p. 012305, Jul 2014.
[22] J. M. Dominy, A. Shabani, and D. A. Lidar, 'A general framework for complete positivity,' Quantum Inf. Process., vol. 15, no. 1, pp. 465{494, 2016.
[23] M. Ban, 'Quantum master equation for dephasing of a two-level system with an initial correlation,' Phys. Rev. A, vol. 80, p. 064103, Dec 2009.
[24] C. Uchiyama and M. Aihara, 'Role of initial quantum correlation in transient linear response,' Phys. Rev. A, vol. 82, p. 044104, Oct 2010.
[25] A. Smirne, H.-P. Breuer, J. Piilo, and B. Vacchini, 'Initial correlations in open-systems dynamics: The jaynes-cummings model,' Phys. Rev. A, vol. 82, p. 062114, Dec 2010.
[26] Y.-J. Zhang, X.-B. Zou, Y.-J. Xia, and G.-C. Guo, 'Different entanglement dynamical behaviors due to initial system-environment correlations,' Phys. Rev. A, vol. 82, p. 022108, Aug 2010.
[27] J. Dajka and J. Łuczka, 'Distance growth of quantum states due to initial system-environment correlations,' Phys. Rev. A, vol. 82, p. 012341, Jul 2010.
[28] J. Dajka, J. Łuczka, and P. Hänggi, 'Distance between quantum states in the presence of initial qubit-environment correlations: A comparative study,' Phys. Rev. A, vol. 84, p. 032120, Sep 2011.
[29] V. G. Morozov, S. Mathey, and G. Röpke, 'Decoherence in an exactly solvable qubit model with initial qubit-environment correlations,' Phys. Rev. A, vol. 85, p. 022101, Feb 2012.
[30] C. Uchiyama, 'Exploring initial correlations in a gibbs state by application of external field,' Phys. Rev. A, vol. 85, p. 052104, May 2012.
[31] Y. Gao, 'The dynamical role of initial correlation in the exactly solvable dephasing model,' Eur. Phys. J. D, vol. 67, no. 8, p. 183, 2013.
[32] V. Semin, I. Sinayskiy, and F. Petruccione, 'Initial correlation in a system of a spin coupled to a spin bath through an intermediate spin,' Phys. Rev. A, vol. 86, p. 062114, Dec 2012.
[33] E.-M. Laine, J. Piilo, and H.-P. Breuer, 'Witness for initial system-environment cor-relations in open-system dynamics,' Europhys. Lett., vol. 92, no. 6, p. 60010, 2010.
[34] C. A. Rodríguez-Rosario, K. Modi, L. Mazzola, and A. Aspuru-Guzik, 'Unification of witnessing initial system-environment correlations and witnessing non-markovianity,' Europhys. Lett., vol. 99, no. 2, p. 20010, 2012.
[35] L. Mazzola, C. A. Rodríguez-Rosario, K. Modi, and M. Paternostro, 'Dynamical role of system-environment correlations in non-markovian dynamics,' Phys. Rev. A, vol. 86, p. 010102, Jul 2012.
[36] A. Smirne, L. Mazzola, M. Paternostro, and B. Vacchini, 'Interaction-induced corre-lations and non-markovianity of quantum dynamics,' Phys. Rev. A, vol. 87, p. 052129, May 2013.
[37] Á. Rivas, S. F. Huelga, and M. B. Plenio, 'Quantum non-markovianity: characteriza-tion, quanti cation and detection,' Rep. Prog. Phys., vol. 77, no. 9, p. 094001, 2014, and references therein.
[38] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, 'Completely positive dynamical semigroups of N -level systems,' J. Math. Phys., vol. 17, no. 5, pp. 821{825, 1976.
[39] G. Lindblad, 'On the generators of quantum dynamical semigroups,' Comm. Math. Phys., vol. 48, no. 2, pp. 119{130, 1976.
[40] N. Erez, G. Gordon, M. Nest, and G. Kurizki, 'Thermodynamic control by frequent quantum measurements,' Nature, vol. 452, pp. 724{727, Apr. 2008.
[41] G. Gordon, G. Bensky, D. Gelbwaser-Klimovsky, D. D. B. Rao, N. Erez, and G. Kur-izki, 'Cooling down quantum bits on ultrashort time scales,' New J. Phys., vol. 11, no. 12, p. 123025, 2009.
[42] G. Gordon, D. D. B. Rao, and G. Kurizki, 'Equilibration by quantum observation,' New J. Phys., vol. 12, no. 5, p. 053033, 2010.
[43] C. Meier and D. J. Tannor, 'Non-markovian evolution of the density operator in the presence of strong laser fields,' J. Chem. Phys., vol. 111, no. 8, p. 3365, 1999.
[44] X. Wang and S. G. Schirmer, 'Contractivity of the hilbert-schmidt distance under open-system dynamics,' Phys. Rev. A, vol. 79, p. 052326, May 2009.
[45] H.-P. Breuer, E.-M. Laine, and J. Piilo, 'Measure for the degree of non-markovian behavior of quantum processes in open systems,' Physical Review Letters, vol. 103, p. 210401, Nov 2009.
[46] H.-T. Chang, P.-P. Zhang, and Y.-C. Cheng, 'Criteria for the accuracy of small polaron quantum master equation in simulating excitation energy transfer dynamics,' J. Chem. Phys., vol. 139, no. 22, p. 224112, 2013.
[47] D. P. S. McCutcheon and A. Nazir, 'Coherent and incoherent dynamics in excitonic energy transfer: Correlated fluctuations and off-resonance effects,' Phys. Rev. B, vol. 83, p. 165101, Apr 2011.
[48] S. Jang, 'Theory of multichromophoric coherent resonance energy transfer: A polaronic quantum master equation approach,' J. Chem. Phys., vol. 135, no. 3, p. 034105, 2011.
[49] Y.-C. Cheng and R. J. Silbey, 'A unified theory for charge-carrier transport in organic crystals,' J. Chem. Phys., vol. 128, no. 11, p. 114713, 2008.
[50] T. Holstein, 'Studies of polaron motion,' Ann. Phys., vol. 8, no. 3, pp. 325 - 342, 1959.
[51] R. Silbey and R. A. Harris, 'Variational calculation of the dynamics of a two level system interacting with a bath,' J. Chem. Phys., vol. 80, no. 6, pp. 2615{2617, 1984.
[52] C. K. Lee, J. Moix, and J. Cao, 'Accuracy of second order perturbation theory in the polaron and variational polaron frames,' J. Chem. Phys., vol. 136, no. 20, p. 204120, 2012.
[53] D. P. S. McCutcheon and A. Nazir, 'Consistent treatment of coherent and incoherent energy transfer dynamics using a variational master equation,' J. Chem. Phys., vol. 135, no. 11, p. 114501, 2011.
[54] C. Zhao, Z. Lü, and H. Zheng, 'Entanglement evolution and quantumphase transition of biased s =1/2 spin-boson model,' Phys. Rev. E, vol. 84, p. 011114, Jul 2011.
[55] A. Nazir, D. P. S. McCutcheon, and A. W. Chin, 'Ground state and dynamics of the biased dissipative two-state system: Beyond variational polaron theory,' Phys. Rev. B, vol. 85, p. 224301, Jun 2012.
[56] S. Bera, A. Nazir, A. W. Chin, H. U. Baranger, and S. Florens, 'Generalized multipolaron expansion for the spin-boson model: Environmental entanglement and the biased two-state system,' Phys. Rev. B, vol. 90, p. 075110, Aug 2014.
[57] D. P. S. McCutcheon, N. S. Dattani, E. M. Gauger, B. W. Lovett, and A. Nazir, 'A general approach to quantum dynamics using a variational master equation: Application to phonon-damped rabi rotations in quantum dots,' Phys. Rev. B, vol. 84, p. 081305, Aug 2011.
[58] Y. Tanimura, 'Reduced hierarchical equations of motion in real and imaginary time: Correlated initial states and thermodynamic quantities,' J. Chem. Phys., vol. 141, no. 4, p. 044114, 2014.
[59] D. P. S. McCutcheon and A. Nazir, 'Model of the optical emission of a driven semicon-ductor quantum dot: Phonon-enhanced coherent scattering and off-resonant sideband narrowing,' Phys. Rev. Lett., vol. 110, p. 217401, May 2013.
[60] Z. Lü and H. Zheng, 'Effects of counter-rotating interaction on driven tunneling dynamics: Coherent destruction of tunneling and bloch-siegert shift,' Phys. Rev. A, vol. 86, p. 023831, Aug 2012.
[61] Y. Yan, Z. Lü, and H. Zheng, 'Dynamical effects of counter-rotating couplings on interference between driving and dissipation,' Phys. Rev. A, vol. 90, p. 053850, Nov 2014.
[62] P. Gaspard and M. Nagaoka, 'Slippage of initial conditions for the redfield master equation,' J. Chem. Phys., vol. 111, no. 13, pp. 5668{5675, 1999.
[63] R. Xu and Y. Yan, 'Theory of open quantum systems,' J. Chem. Phys., vol. 116, no. 21, pp. 9196{9206, 2002.
[64] U. Kleinekathöfer, 'Non-markovian theories based on a decomposition of the spectral density,' J. Chem. Phys., vol. 121, no. 6, p. 2505, 2004.
[65] A. Pomyalov, C. Meier, and D. Tannor, 'The importance of initial correlations in rate dynamics: A consistent non-markovian master equation approach,' Chem. Phys., vol. 370, pp. 98 { 108, 2010.
[66] B. Hwang and H.-S. Goan, 'Optimal control for non-markovian open quantum systems,' Phys. Rev. A, vol. 85, p. 032321, Mar 2012.
[67] J.-S. Tai, K.-T. Lin, and H.-S. Goan, 'Optimal control of quantum gates in an exactly solvable non-markovian open quantum bit system,' Phys. Rev. A, vol. 89, p. 062310, Jun 2014.
[68] E. Geva, E. Rosenman, and D. Tannor, 'On the second-order corrections to the quantum canonical equilibrium density matrix,' J. Chem. Phys., vol. 113, no. 4, p. 1380, 2000.
[69] C. H. Fleming, A. Roura, and B. L. Hu, 'Initial-state preparation with dynamically generated system-environment correlations,' Phys. Rev. E, vol. 84, p. 021106, Aug 2011.
[70] N. D. Mermin, 'A short simple evaluation of expressions of the Debye-Waller form,' J. Math. Phys., vol. 7, no. 6, pp. 1038{1038, 1966.
[71] D. P. S. McCutcheon and A. Nazir, 'Quantum dot rabi rotations beyond the weak exciton - phonon coupling regime,' New J. Phys., vol. 12, no. 11, p. 113042, 2010.
[72] C.-C. Chen and H.-S. Goan, 'Effects of initial system-environment correlations on open-quantum-system dynamics and state preparation,' Phys. Rev. A, vol. 93, p. 032113, Mar 2016.
[73] F. A. Pollock, D. P. S. McCutcheon, B. W. Lovett, E. M. Gauger, and A. Nazir, 'A multi-site variational master equation approach to dissipative energy transfer,' New J. Phys., vol. 15, no. 7, p. 075018, 2013.
[74] A. J. Ramsay, T. M. Godden, S. J. Boyle, E. M. Gauger, A. Nazir, B. W. Lovett, A. M. Fox, and M. S. Skolnick, 'Phonon-induced rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots,' Phys. Rev. Lett., vol. 105, p. 177402, Oct 2010.
[75] M. O. Scully and M. S. Zubairy, Quantum optics. Cambridge university press, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59999-
dc.description.abstract我們研究藉由外場對一個二能階(量子位元)系統從一個系統與環境的共同平衡或相關態製備一個目標初始態。這個系統與環境的共同平衡或相關態起因於系統和其環境之間不可避免的交互作用。 我們引進在延伸輔助的劉維爾空間(extended auxiliary Liouville space)中的一個有效率的方法,來描述在強外場和系統與環境初始相關的存在下,一個非馬可夫(non-Markovian)開放量子系統的動力學。 我們藉由使用分佈差(population difference)的時間演化、布洛赫球(Bloch sphere)表示下的態軌線(state trajectory),以及開放量子系統的兩個約化系統態之間的軌跡距離(trace distance),來研究系統與環境的初始相關對系統態製備的影響。 在我們的微擾理論處理中,我們對軌跡距離引進了上限和下限以描述在系統態的製備後,各式各樣相關態之間軌跡距離的動力學的多樣行為。這些我們所提出比在文獻中類似之界限還要更好計算的上下界限,對軌跡距離的增加給了一個充分條件與一個必要條件,並且關連到見證非馬可夫性質 (non-Markovianity)以及系統與環境浴場初始相關性質。
此外,我們發展了一個結合了傳統的變分極化子主方程式方法和混合反旋的旋波(counter-rotating-hybridized rotating-wave)方法的實用的方法,來描述一個在系統與環境弱或強耦合的狀況下,被驅動開放量子系統的動力學。我們的方法,稱做CHRW變分極化子方法,在旋波近似(RWA)不適用的廣大參數範圍中仍然有效,換言之,也能夠處理強驅動和遠非共振(大失諧)的狀況。我們藉由一個驅動自旋與玻色子耦合模型來說明我們的方法、並討論我們的CHRW變分極化子主方程式的適用準則,且給出其有效物理狀況的參數邊界。我們指出我們得到的結果可還原到由系統與環境弱耦合法和完全極化子(full-polaron)法於他們合適的參數極限下所得到的結果。因此我們多方面適用的CHRW變分極化子方法能夠内補插(interpolate)於這兩個方法,並且結合系統與環境弱耦合法,能夠對於驅動開放量子系統在一個非常廣的參數空間下獲取到正確的行為。
zh_TW
dc.description.abstractWe investigate the preparation of a target initial state for a two-level (qubit) system from a system-environment equilibrium or correlated state by an external field. The system-environment equilibrium or correlated state results from the inevitable interaction of the system with its environment. An efficient method in an extended auxiliary Liouville space is introduced to describe the dynamics of the non-Markovian open quantum system in the presence of a strong field and an initial system-environment correlation. By using the time evolutions of the population difference, the state trajectory in the Bloch sphere representation, and the trace distance between two reduced system states of the open quantum system, the effect of initial system-environment correlations on the preparation of a system state is studied. We introduce an upper bound and a lower bound for the trace distance within our perturbation formalism to describe the diverse behaviors of the dynamics of the trace distance between various correlated states after the system state preparation. These bounds, that are much more computable than similar bounds in the literature, give a sufficient condition and a necessary condition for the increase of the trace distance and are related to the witnesses of non-Markovianity and initial system-bath correlation.
In addition, we develop a practical method that combines the traditional variational polaron master equation approach with the counter-rotating-hybridized rotating-wave (CHRW) method to describe the dynamics of a driven open quantum system in a weak or strong system-environment coupling regime. Our method, called the CHRW variational polaron method, is valid over a broad range of parameters beyond the rotating wave approximation (RWA), i.e., also capable of dealing with the cases of strong driving and far off-resonance (large detuning). We illustrate our method through a driven spin-boson model and discuss the criteria for and give the boundaries of regimes of validity of our CHRW variational polaron master equation. We show that the results we obtain reduce to those by the weak-system-bath-coupling method and the full-polaron method in their appropriate parameter limits. Thus our versatile CHRW variational polaron method is able to interpolate between these two methods and, combining with the weak-system-bath-coupling method, can capture the correct behaviors over a very wide parameter space for driven open quantum systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:49:44Z (GMT). No. of bitstreams: 1
ntu-106-F98222045-1.pdf: 2438588 bytes, checksum: 20598ab9321fcf3813e29a86083da981 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsChinese abstract I
Abstract II
1. Introduction 1
2. Open quantum system 7
2.1. Interaction picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. Projection operator techniques for the non-Markovian time-nonlocal master equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3. Bath correlation function fitting and the time-nonlocal master equation in the extended Liouville space . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1. Time-nonlocal master equation with the spin-boson model . . . . . . 12
2.3.2. The explicit form of the bath correlation function . . . . . . . . . . . 15
2.3.3. Exponential fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4. Non-Markovian second-order time-local master equation . . . . . . . . . . . 16
3. Effects of initial system-environment correlations on open-quantum-system dy-namics and state preparation 18
3.1. Initial system-environment correlation . . . . . . . . . . . . . . . . . . . . . 19
3.2. Time-nonlocal master equation . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1. Initial state preparations to system-bath thermal equilibrium state . 26
3.3.2. State preparations to the excited state . . . . . . . . . . . . . . . . . 31
3.3.3. Nonfactorized prepared states after the system state preparation . . 35
3.4. Bounds for the trace distance: role of the system-environment correlations . 38
3.4.1. Upper and lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2. Examples of the field-free evolutions for the upper and lower bounds 41
4. Polaron transformation 44
4.1. Variational polaron and small polaron methods . . . . . . . . . . . . . . . . 45
4.2. Determining $xi_{k}$ - free energy minimization . . . . . . . . . . . . . . . . . . . 47
4.3. Variational polaron time-local master equation and its bath correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4. Criteria for the regimes of validity (except the pure dephasing case) . . . . 52
4.5. Exponential fitting and the variational polaron time-local Non-Markovian master equation in the extended Liouville space . . . . . . . . . . . . . . . . 55
5. Variational polaron master equation approach for a driven non-Markovian open quantum system beyond the rotating wave approximation 57
5.1. Model Hamiltonian and non-Markovian master equation . . . . . . . . . . . 58
5.1.1. Weak-coupling master equation . . . . . . . . . . . . . . . . . . . . . 58
5.1.2. Variational polaron transformation . . . . . . . . . . . . . . . . . . . 60
5.1.3. Time-dependent unitary transformation . . . . . . . . . . . . . . . . 62
5.1.4. Free energy minimization . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.5. Variational polaron master equation . . . . . . . . . . . . . . . . . . 65
5.2. Criterion for the regimes of validity . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.1. CHRW variational polaron method . . . . . . . . . . . . . . . . . . . 68
5.2.2. Full-polaron method . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3. Weak-coupling method . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.4. Regimes of validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1. On or near resonance . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2. Off resonance and boundaries of the regimes of validity . . . . . . . 77
6. Conclusion 81
A. Appendix 84
A.1. Derivation of the Bose-Einstein distribution in Eq. (2.50) and the vanishing terms within the trace of the bath correlation function . . . . . . . . . . . . 84
A.2. Derivation of Eq. (3.18): The expansion of $Q rho_{T}^{eq}$ to first order in the cou-pling Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.3. Derivation of Eq. (3.20): The inhomogeneous term expressed as an infinite integral form from $Q rho_{T}^{eq}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3.1. Evaluate Eq. (A.19) of the infinite integral form . . . . . . . . . . . 88
A.3.2. Evaluate Eq. (A.18) of the inhomogeneous term from $Q rho_{T}^{eq}$. . . . . 89
A.4. Correlation function fitting without coupling constant . . . . . . . . . . . . 91
A.4.1. Numerical calculation of the ordinary differential equation (ODE) in terms of matrices for a time-nonlocal master equation . . . . . . . 92
A.5. Derivation of Eq. (3.26): The trace distance between two 2 × 2 matrices . . 94
A.6. Semiclassical atom-field interaction Hamiltonian in the dipole approximation 94
A.6.1. p • A Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.6.2. r • E Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.6.3. Equivalence of the p • A and r • E Hamiltonians in the physical quantity100
A.7. Rotating wave approximation (RWA) . . . . . . . . . . . . . . . . . . . . . . 103
A.8. Details of diagonizing variational polaron transformed Hamiltonian in Eq. (4.8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.9. Derivation of the variational polaron bath correlation functions . . . . . . . 108
A.10.CHRW polaron transformation in Eqs. (5.17) and (5.35) . . . . . . . . . . . 113
A.11.Derivation of the CHRW variational parameter $xi_{k}$ in Eq. (5.38) . . . . . . . 115
A.12.Transformed initial state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.12.1. $sigma_{z}$ transformation in Chap. 4 . . . . . . . . . . . . . . . . . . . . . . 117
A.12.2. $sigma_{3}equivfrac{I+sigma_{z}}{2}=left|1
ight
angle leftlangle 1
ight|$ transformation in Chap. 5 . . . . . . . . . . . . . 117
A.13.Explicit forms of the equations abbreviated as summations with indices in
Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.13.1.Numerical calculation of the ordinary differential equation (ODE) in terms of matrices for a time-local master equation . . . . . . . . . 120
A.14.Units in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Bibliography 123
dc.language.isoen
dc.subject自由能最小化zh_TW
dc.subject開放量子系統zh_TW
dc.subject初始相關zh_TW
dc.subject旋波近似zh_TW
dc.subject軌跡距離zh_TW
dc.subject變分極化子轉換zh_TW
dc.subjectinitial correlationsen
dc.subjectopen quantum systemen
dc.subjectfree energy minimizationen
dc.subjectvariational polaron transformationen
dc.subjecttrace distanceen
dc.subjectrotating wave approximationen
dc.title對於驅動開放量子系統的系統與環境初始相關在態製備的影響和變分極化子方法zh_TW
dc.titleEffects of initial system-environment correlations on state preparation and variational polaron method for driven open quantum systemsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee蔡政達,林俊達,鄭原忠,陳岳男
dc.subject.keyword開放量子系統,初始相關,旋波近似,軌跡距離,變分極化子轉換,自由能最小化,zh_TW
dc.subject.keywordopen quantum system,initial correlations,rotating wave approximation,trace distance,variational polaron transformation,free energy minimization,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201700124
dc.rights.note有償授權
dc.date.accepted2017-01-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved