請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59979完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林淑怡(Shu-I Lin) | |
| dc.contributor.author | Yi-Ting Lee | en |
| dc.contributor.author | 李宜庭 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:48:32Z | - |
| dc.date.available | 2022-02-17 | |
| dc.date.copyright | 2017-02-17 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-20 | |
| dc.identifier.citation | 陳正次. 1998. 番茄育種. 蔬菜育種技術研習會專刊農業試驗所特刊第73號.台中農業試驗所印行. 231-283.
陳正次. 2002. 番茄病蟲害與生理障礙的防治. 番茄品種特性與栽培技術全輯. 行政院農委會種苗改良繁殖場印行. 56-78. 郭宏遠、何超然. 2010. 台灣番茄市場及品種簡介. 苗栗區農業專訊. 50: 11-13. 行政院經濟部農委會農糧署農業統計年報資料. 2016. http://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx Adams, P. and A.M. El-Gizawy. 1988. Effect of calcium stress on the calcium status of tomatoes grown in NFT. Notes. 222:15-22. Adams, P. and L.C. Ho. 1992. The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. J. Hort. Sci. 67:827-839. Adams P. 2002. Nutritional control in hydroponics. In: Savvas D, Passam H, eds. Hydroponic production of vegetables and ornamentals. Athens, Greece: Embryo Publications, 211–261. Bar-Tal, A. and E. Pressman. 1996. Root restriction and potassium and calcium solution concentrations affect dry-matter production, cation uptake, and blossom-end rot in greenhouse tomato. J. Amer. Soc. Hort. Sci. 121:649-655. Biddinger E. J., C. Liu, R. J. Joly and K.G. Raghothama. 1998. Physiological and Molecular Responses of Aeroponically Grown Tomato Plants to Phosphorus Deficiency. J. Amer. Soc. Hort. Sci. 123(2):330-333 Borkowski, J. 1983. Study on the calcium uptake dynamic by tomato fruits and blossom-end rot control. Symposium on the Use of Fertilizers in Protected Vegetable Production 145: 222-229. Bradfield, E. and C. Guttridge. 1984. Effects of night-time humidity and nutrient solution concentration on the calcium content of tomato fruit. Sci. Hort. 22:207-217. Demarty, M., C. Morvan, and M. Thellier. 1984. Calcium and the cell wall. Plant, Cell and Environment. 7:441-448. de Freitas, S.T., K.A. Shackel, and E.J. Mitcham. 2011a. Abscisic acid triggers whole-plant and fruit-specific mechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit. J. Exp. Bot. 62:2645-56. de Freitas, S.T., M. Padda, Q. Wu, S. Park, and E.J. Mitcham. 2011b. Dynamic alternations in cellular and molecular components during blossom-end rot development in tomatoes expressing sCAX1, a constitutively active Ca2+/H+ antiporter from Arabidopsis. Plant Physiol. 156: 844-855. de Freitas, S.T., A.K. Handa, Q. Wu, S. Park, and E.J. Mitcham. 2012. Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. Plant J. Sep;71(5):824-35. de Kreij, C., J. Janse, B. Van Goor, and J. Van Doesburg. 1992. The incidence of calcium oxalate crystals in fruit walls of tomato (Lycopersicon esculentum Mill.) as affected by humidity, phosphate and calcium supply. J. Hort. Sci. 67:45-50. de Kreij, C. 1996. Interactive effects of air humidity, calcium and phosphate on blossom‐end rot, leaf deformation, production and nutrient contents of tomato. J. plant Nutri. 19:361-377.Drew and Saker, 1984 Drew M. C. and L. R. Saker. 1984. Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: evidence of non-allosteric regulation. Planta. 160:500–507. Estabrooks, D.N. and H. Tiessen. 1972. Blossom-end rot and black seeds of tomatoes. Can. J. Plant Sci. 52:1076-1077. FAO (Food and Agriculture Organization of the United Nations), 2015. FAOStat, production 2015. Available online: http://www.fao.org/economic/ess/ess-publications/ess-yearbook/en/#.WIAFJX0RodI Fedrizzi, L., D. Lim, and E. Carafoli. 2008. Calcium and signal transduction. Biochem. Mol. Bio. Edu. 36:175-180. Fujita K., M. Okada, K. Lei, J. Ito, K. Ohkura, J. J. Adu‐Gyamfi, and P. K. Mohapatra. 2003. Effect of P‐deficiency on photoassimilate partitioning and rhythmic changes in fruit and stem diameter of tomato (Lycopersicon esculentum) during fruit growth. J. Exp. Bot. 54 (392): 2519-2528. Geraldson, C.M. 1955. The use of calcium for control of blossom-end rot of tomatoes. Proc. Fla. State Hort. Soc. 68:197-202. Ghoname. A. A., A. M. El-Bassiouny, A. M. R. Abdel-Mawgoud, W. A. El-Tohamy, and N. Gruda. 2012. Growth, Yield and Blossom-End Rot Incidence in Bell Pepper as Affected by Phosphorus Level and Amino Acid Applications. Gesunde Pflanzen 64(1):29–37. Hirschi. K. 2001. Vacuolar H+/Ca2+ transport: who’s directing the traffic. Trends in Plant Sci. 6:100–104. Ho LC, Grange RI, Picken AJ. 1987. An analysis of the accumulation of water and dry matter in tomato fruit. Plant, Cell and Environment 10: 157–162. Ho, L.C. 1996. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit in relation to the quality and yield of tomato. J. Exp. Bot. 47:1239-1243. Ho, L.C. and P.J. White. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Annu. Bot. 95:571-581. Ho, L., R. Belda, M. Brown, J. Andrews, and P. Adams. 1993. Uptake and transport of calcium and the possible causes of blossom-end rot in tomato. J. Exp. Bot. 44:509-518. Hoffland E.,G. R. Findenegg, and J. A. Nelemans. 1989 Solubilization of rock phosphate by rape. Plant and Soil. 113(2):155–160. Kirkby, E. and D. Pilbeam. 1984. Calcium as a plant nutrient. Plant, Cell and Environment 7:397-405. Kim, M.C., W.S. Chung, D.-J. Yun, and M.J. Cho. 2009. Calcium and calmodulin-mediated regulation of gene expression in plants. Mol. Plant. 2:13. Liebisch F., J. F. J. Max, G. Heine, and W. J. Horst. 2009. Blossom-end rot and fruit cracking of tomato grown in net-covered greenhouses in Central Thailand can partly be corrected by calcium and boron sprays. J. Plant Nutr. Soil Sci. 172: 140–150 Maynard DN, Barham WS, McCombs CL. 1957. The effect of calcium nutrition of tomatoes as related to the incidence and severity of blossom-end rot. Proceedings of the American Society for Horticultural Science 69: 318–322. Marschner. H. 1995. Mineral nutrition of higher plants. 2nd edn. London: Academic Press. Masarirambi, M.T., N. Mhazo, T.O. Oseni, and V.D. Shongwe. 2009. Common physiological disorders of tomato (Lycopersicon esculentum) fruit found in Swaziland. J Agric Soc Sci. 5:123-127. Muchhal et al., Muchhal U. S., C. Liu, and K. G. Raghothama. 1997. Ca2+-ATPase is expressed differentially in phosphate-starved roots of tomato. Physiol. Plantarum.101(3):540–544. Navarro, J.M., P. Flores, M. Carvajal, and V. Martinez. 2005. Changes in quality and yield of tomato fruit with ammonium, bicarbonate and calcium fertilisation under saline conditions. J. Hort. Sci. Biotech. 80:351-357. Ochoa, W.F., S. Corbalán-Garcia, R. Eritja, J.A. Rodrı́guez-Alfaro, J.C. Gómez-Fernández, I. Fita, and N. Verdaguer. 2002. Additional binding sites for anionic phospholipids and calcium ions in the crystal structures of complexes of the C2 domain of protein kinase Cα. J. Mol.Bio. 320:277-291. Olle, M. and I. Bender. 2009. Causes and control of calcium deficiency disorders in vegetables: a review. J. Hort. Sci. Biotech. 84:577-584. Park, S., N.H. Cheng, J.K. Pittman, K.S. Yoo, J. Park, R.H. Smith, and K.D. Hirschi. 2005. Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol. 139:1194-206. Plieth, C. 2001. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma. 218:1-23. Raghothama K.G. and A.S. Karthikeyan. 2005. Phosphate acquisition. Plant Soil. 274:37–49 Raleigh, S.M. and J.A. Chucka. 1944. Effect of nutrient ratio and concentration on growth and composition of tomato plants and on the occurence of blossom-end rot of the fruit. Plant Physiol. 19: 671. Sanders. D., J. Pelloux, C. Brownlee, and J.F. Harper. 2002. Calcium at the crossroads of signaling. Plant Cell. 14: S401–S417. Schmitz-Eiberger, M., R. Haefs, and G. Noga. 2002. Calcium deficiency - Influence on the antioxidative defense system in tomato plants. J. Plant Physiol. 159:733-742. Spurr, A. 1959. Anatomical aspects of blossom-end rot in the tomato with special reference to calcium nutrition. Hilgardia. 28:269-295. Suzuki, K., M. Shono, and Y. Egawa. 2003. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Protoplasma 222:149-56. SzeH, Liang F, Hwang I, Curran AC, Harper JF.2000. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annual Review of Plant Physiology and Plant Molecular Biology 51: 433–462.Taylor, M.D. and S.J. Locascio. 2004. Blossom-End Rot: A Calcium Deficiency. J. Plant Nutri. 27:123-139. White, P. J. 2000. Calcium channels in higher plants. Biochimica et Biophysica Acta 1465: 171–189. White, P. J. 2001. The pathways of calcium movement to the xylem. J. Experi. Botany. 52: 891–899. White, P.J. and M.R. Broadley. 2003. Calcium in plants. Annu. Bot. 92:487-511. Willumsen, J., K. Kaack, and K.K. Petersen. 1996. Yield and blossom-end rot of tomato as affected by salinity and cation activity ratios in the root zone. J. Hort. Sci. Biotech. 71:81-98. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59979 | - |
| dc.description.abstract | 鈣與磷為植物生長發育所需必要元素,鈣具有穩定細胞膜與細胞壁結構之功用,亦是重要次級傳訊者;磷調控多項生理、生化反應,並且是細胞膜構成之重要元素。番茄 (Solanum lycopersicum L.) 為世界重要經濟作物。在世界各地番茄生產區曾因缺鈣生理障害- 尻腐病 (blossom-end rot, BER) 的發生,導致嚴重經濟損失。導致尻腐病發生的因素繁多,如鈣肥吸收不足、細胞內鈣離子的分布不均等。sCAX1 (small cation exchanger 1) 為鈣氫離子反向轉運蛋白 (Ca2 + / H+ antiporter),近年來研究顯示當植株大量表現sCAX1,使得鈣離子被運送至液胞貯藏,降低胞質外 (apoplastic) 鈣離子濃度,導致尻腐病的發生。本試驗以肥液滴灌方式給予植株不同濃度之鈣肥及磷肥,探討其對尻腐病發生率與鈣運移相關基因表現之影響。試驗結果顯示在‘金剛二號’,高鈣處理與低鈣處理對授粉後15天未熟期青果尻腐病發生率與嚴重度無顯著影響,但在此時期高鈣處理已降低多數鈣運移相關基因表現量;高鈣處理顯著降低‘金剛二號’授粉後45天綠熟期青果尻腐病發生率與嚴重度,且降低鈣運移相關基因表現量。其他品種不論在授粉後15或45天,鈣處理皆不顯著影響其尻腐病發生率與嚴重度,但於授粉後45天綠熟期青果,高鈣處理降低多數鈣運移相關基因表現量。相較於低磷處理,高磷處理降低‘種苗亞蔬15號’之紅熟期果實尻腐病發生率與嚴重度,也降低ATPase 4、ATPase 7、ATPase 8表現量;‘美惠’與‘CLN2460L’因為尻腐病發生率低,不易看出高磷處理對尻腐病發生率與嚴重度之效果,但高磷處理同樣降低其ATPase 4、ATPase 7表現量。上述結果顯示高鈣與高磷處理可降低‘金剛二號’與‘種苗亞蔬15號’尻腐病發生率與嚴重度,且其原因可能與降低鈣運移相關基因表現量有關。 | zh_TW |
| dc.description.abstract | Calcium (Ca) and phosphorus (P) are essential elements for plant growth and development. Calcium functions in maintaining structures of cell membrane and cell wall, and also serves as an important second messenger. Phosphorus is involved in the regulation of several physiological and biochemical processes, and is also an important component of cell membrane. Tomato (Solanum lycopersicum L.) is an important economic crop worldwide. Blossom-end rot (BER), a Ca related physiological disorder, had led to serious financial loss in tomato commercial production areas around the world. A lot of factors may lead to occurrence of BER, such as insufficient uptake of calcium, unbalanced partition of Ca within the cell, etc. Recent studies showed that when the transgenic plant overexpressed sCAX1 (small cation exchanger 1, a Ca2 + / H+ antiporter), more Ca2+ transport into vacuole, lower apoplastic Ca concentration and thus occurrence of BER were observed. By studying the effects of applying different concentrations of calcium and phosphate fertilizers to plants with trickle fertigation, this research intended to explore the effects of Ca and P on BER incidence and Ca transport-related genes expression. The results showed that in ‘King Kong 2’ immature-green stage fruits (15 days after pollination, 15 DAP), BER incidence and severity were not altered by high and low Ca concentration treatments, whereas high Ca concentration treatment reduced expression levels of most Ca transport-related genes. In ‘King Kong 2’ mature-green stage fruits (45 DAP), high Ca concentration treatment significantly reduced BER incidence and severity, and reduced expression levels of most Ca transport-related genes. BER incidence and severity of 15 DAP and 45 DAP fruit of other cultivars were not significantly altered by Ca treatment, whereas high Ca concentration treatment reduced expression levels of most Ca transport-related genes. In comparison to low P concentration treatment, high P concentration treatment reduced BER incidence and severity of ‘Taiwan Seed ASVEG #15’ red stage fruits as well as expression levels of ATPase 4, ATPase 7 and ATPase 8. BER incidence was low in ‘Mei Huei’ and ‘CLN2460L’, so that the effect of high P concentration treatment on BER incidence and severity could not be easily observed, while high P concentration treatment reduced expression levels of ATPase 4 and ATPase 7. Above results indicated that both high Ca and high P concentration treatments reduced BER incidence and severity of ‘King Kong 2’ and ‘Taiwan Seed ASVEG #15’, probably due to reduced expressions of Ca transport-related genes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:48:32Z (GMT). No. of bitstreams: 1 ntu-106-R02628137-1.pdf: 2757236 bytes, checksum: 37babda2d18861e1cd4649f5ed00dbaf (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 前言 1 前人研究 3 一、番茄的重要性與目前臺灣產業現況 3 二、番茄尻腐病徵狀介紹、發生原因及尻腐病防治對策 3 三、磷與鈣對番茄的重要性以及與尻腐病的關係 5 四、尻腐病相關基因介紹 8 材料與方法 9 一、試驗材料與栽培管理 9 二、試驗處理與試驗設計 10 三、調查項目 12 四、基因分析 17 結果 24 試驗一、鈣處理對番茄果實尻腐病發生情形與相關基因表現之影響 24 試驗二、磷濃度對番茄果實品質與尻腐病發生情形及其相關基因表現之影響 27 試驗三、磷濃度及噴鈣處理對番茄果實尻腐病發生情形之影響 30 討論 55 一、鈣對不同時期青果番茄果實尻腐病的影響 56 二、磷濃度對番茄尻腐病發生情形及品質的影響 58 三、磷濃度處理及噴鈣對番茄尻腐病及品質的影響 60 結論 62 參考文獻 63 附錄1. 2013年冬作不同鈣濃度處理之十個商業大果番茄品種外部尻腐病發生率 69 附錄2. 尻腐病相關基因引子 70 附錄3. 2013年四品種番茄紅熟期果實CAX1與CAX3基因表現情形 71 附錄4. 2014-2016試驗期間月均溫 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 番茄 | zh_TW |
| dc.subject | 尻腐病 | zh_TW |
| dc.subject | 鈣 | zh_TW |
| dc.subject | 磷 | zh_TW |
| dc.subject | 鈣氫離子反向轉運蛋白 | zh_TW |
| dc.subject | 番茄 | zh_TW |
| dc.subject | 尻腐病 | zh_TW |
| dc.subject | 鈣 | zh_TW |
| dc.subject | 磷 | zh_TW |
| dc.subject | 鈣氫離子反向轉運蛋白 | zh_TW |
| dc.subject | calcium | en |
| dc.subject | phosphorus | en |
| dc.subject | tomato | en |
| dc.subject | blossom-end rot | en |
| dc.subject | calcium | en |
| dc.subject | phosphorus | en |
| dc.subject | Ca2 + / H+ antiporter | en |
| dc.subject | blossom-end rot | en |
| dc.subject | tomato | en |
| dc.subject | Ca2 + / H+ antiporter | en |
| dc.title | 鈣與磷對番茄果實尻腐病與鈣運移相關基因表現之影響 | zh_TW |
| dc.title | Effects of Calcium and Phosphorus on Blossom-End Rot and Expression Levels of Calcium Transport-Related Genes in Tomato Fruits | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅筱鳳(Hsiao-Feng Lo),楊雯如(Wen-Ju Yang) | |
| dc.subject.keyword | 番茄,尻腐病,鈣,磷,鈣氫離子反向轉運蛋白, | zh_TW |
| dc.subject.keyword | tomato,blossom-end rot,calcium,phosphorus,Ca2 + / H+ antiporter, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201700144 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-01-20 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
