Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏(Woei-Horng Fang)
dc.contributor.authorPo-Chen Hsuen
dc.contributor.author許博淳zh_TW
dc.date.accessioned2021-05-16T16:19:10Z-
dc.date.available2013-09-24
dc.date.available2021-05-16T16:19:10Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-12
dc.identifier.citationAstatke, M., et al. (1998). 'How E. coli DNA polymerase I (Klenow fragment)distinguishes between deoxy- and dideoxynucleotides.' J Mol Biol 278(1): 147-165.
Bailey, M. F., et al. (2004). 'Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase.' J Mol Biol 336(3): 673-693.
Bailey, M. F., et al. (2007). 'Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.' Biochemistry 46(27):8085-8099.
Beese, L. S., et al. (1993). 'Structure of DNA polymerase I Klenow fragment bound to duplex DNA.' Science 260(5106): 352-355.
Bell, J. B., et al. (1997). 'Base miscoding and strand misalignment errors by mutator Klenow polymerases with amino acid substitutions at tyrosine 766 in the O helix of
the fingers subdomain.' J Biol Chem 272(11): 7345-7351.
Bell, S. P., et al. (2002). 'DNA replication in eukaryotic cells.' Annu Rev Biochem 71:333-374.
Brautigam, C. A., et al. (1999). 'Structures of normal single-stranded DNA and deoxyribo-3'-S-phosphorothiolates bound to the 3'-5' exonucleolytic active site of DNA polymerase I from Escherichia coli.' Biochemistry 38(2):696-704.
Brutlag, D., et al. (1972). 'Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic
acid polymerases.' J Biol Chem 247(1): 241-248.
Catherine, M. J., et al. (1987). 'DNA polymerase I: from crystal structure to function via genetics.' Trends in Biochemical Sciences 12: 288-292.
Cowart, M., et al. (1989). 'DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases.' Biochemistry
28(5): 1975-1983. 47
Derbyshire, V., et al. (1991). 'The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.' EMBO J 10(1): 17-24.
Donlin, M. J., et al. (1991). 'Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction.' Biochemistry 30(2): 538-546.
Doublie, S., et al. (1998). 'Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution.' Nature 391(6664): 251-258.
Fang, W., et al. (1997). 'Methyl-directed repair of mismatched small heterologous sequences in cell extracts from Escherichia coli.' J Biol Chem 272(36): 22714-22720.
Fidalgo da Silva, E., et al. (2007). 'DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase.' Nucleic Acids Res
35(16): 5452-5463.
Freemont, P. S., et al. (1988). 'Cocrystal structure of an editing complex of Klenow fragment with DNA.' Proc Natl Acad Sci U S A 85(23): 8924-8928.
Freemont, P. S., et al. (1986). 'A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.' Proteins 1(1): 66-73.
Friedberg, E. C., G.C. Walker, and W. Siede (1995). DNA repair and mutagenesis. Washington, D.C, ASM Press
Garg, A., et al. (2004). 'Juvenile pilocytic astrocytoma presenting with subarachnoid hemorrhage. Case report and review of the literature.' J Neurosurg 100(5 Suppl
Pediatrics): 525-529.
Goldsby, R. E., et al. (2002). 'High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading.' Proc Natl Acad Sci U S A 99(24):15560-15565.
Jeremy M. Berg, J. L. T., and Lubert Stryer (2012). Biochemistry.
Joyce, C. M., et al. (1982). 'Nucleotide sequence of the Escherichia coli polA gene and primary structure of DNA polymerase I.' J Biol Chem 257(4): 1958-1964.48
Joyce, C. M., et al. (1994). 'Function and structure relationships in DNA polymerases.' Annu Rev Biochem 63: 777-822.
Kaguni, L. S. (2004). 'DNA polymerase gamma, the mitochondrial replicase.' Annu Rev Biochem 73: 293-320.
Klenow, H., et al. (1970). 'Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis.' Proc Natl Acad Sci U S A 65(1): 168-175.
Kramer, W., et al. (1984). 'The gapped duplex DNA approach to oligonucleotide-directed mutation construction.' Nucleic Acids Res 12(24):9441-9456.
Kukreti, P., et al. (2008). 'Identification of a new motif required for the 3'-5'exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): the RRRY motif is necessary for the binding of single-stranded DNA substrate and the template strand of the mismatched duplex.' J Biol Chem 283(26): 17979-17990.
Kunkel, T. A., et al. (2000). 'DNA replication fidelity.' Annu Rev Biochem 69:497-529.
Lee, C. C., et al. (2010). 'Endonuclease V-mediated deoxyinosine excision repair in vitro.' DNA Repair (Amst) 9(10): 1073-1079.
Lehman, I. R., et al. (1958). 'Enzymatic synthesis of deoxyribonucleic acid. I. Preparation of substrates and partial purification of an enzyme from Escherichia coli.' J Biol Chem 233(1): 163-170.
Lehman, I. R., et al. (1973). 'Persistence of deoxyribonucleic acid polymerase I and its 5'--3' exonuclease activity in PolA mutants of Escherichia coli K12.' J Biol Chem 248(22): 7717-7723.
Li, Y., et al. (1998). 'Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural
basis for nucleotide incorporation.' EMBO J 17(24): 7514-7525.49
Matsumoto, Y., et al. (1995). 'Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair.' Science 269(5224): 699-702.
Morales, J. C., et al. (2000). 'Importance of terminal base pair hydrogen-bonding in 3'-end proofreading by the Klenow fragment of DNA polymerase I.' Biochemistry 39(10): 2626-2632.
Mullen, G. P., et al. (1989). 'Substrate and DNA binding to a 50-residue peptide fragment of DNA polymerase I. Comparison with the enzyme.' J Biol Chem 264(33):19637-19647.
Napolitano, R., et al. (2000). 'All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis.' EMBO J 19(22): 6259-6265.
Nusslein, V., et al. (1971). 'Function of DNA polymerase 3 in DNA replication.' Nat New Biol 234(52): 285-286.
Ollis, D. L., et al. (1985). 'Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP.' Nature 313(6005): 762-766.
Patel, P. H., et al. (2001). 'Prokaryotic DNA polymerase I: evolution, structure, and 'base flipping' mechanism for nucleotide selection.' J Mol Biol 308(5): 823-837.
Patel, S. S., et al. (1991). 'Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient
mutant.' Biochemistry 30(2): 511-525.
Polesky, A. H., et al. (1992). 'Side chains involved in catalysis of the polymerase reaction of DNA polymerase I from Escherichia coli.' J Biol Chem 267(12):8417-8428.
Polesky, A. H., et al. (1990). 'Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli.' J Biol Chem 265(24): 14579-14591.
Pursell, Z. F., et al. (2007). 'Yeast DNA polymerase epsilon participates in leading-strand DNA replication.' Science 317(5834): 127-130.50
Que, B. G., et al. (1978). 'Mechanisms of selective inhibition of 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I by nucleoside 5'-monophosphates.' Biochemistry 17(9): 1603-1606.
Reddy, M. K., et al. (1992). 'Processive proofreading is intrinsic to T4 DNA polymerase.' J Biol Chem 267(20): 14157-14166.
Reddy, M. K., et al. (1992). 'Processive proofreading is intrinsic to T4 DNA polymerase.' Journal of Biological Chemistry 267(20): 14157-14166.
Schaaper, R. M. (1993). 'Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli.' J Biol Chem 268(32): 23762-23765.
Seeman, N. C., et al. (1976). 'Sequence-specific recognition of double helical nucleic acids by proteins.' Proc Natl Acad Sci U S A 73(3): 804-808.
Simon, M., et al. (1991). 'The 3' to 5' exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accuratereplication.' EMBO J 10(8): 2165-2170.
Steitz, T. A. (1998). 'A mechanism for all polymerases.' Nature 391(6664): 231-232.
Steitz, T. A., et al. (1987). 'Structural studies of Klenow fragment: an enzyme with two active sites.' Cold Spring Harb Symp Quant Biol 52: 465-471.
Thompson, E. H., et al. (2002). 'Determinants of DNA mismatch recognition within the polymerase domain of the Klenow fragment.' Biochemistry 41(3): 713-722.
Tom Brown, O. K. (1992). 'Structural basis of DNA mutagenesis ' Current Opinion in Structural Biology 2(3): 354-360.
Tuske, S., et al. (2000). 'The J-helix of Escherichia coli DNA polymerase I (Klenow fragment) regulates polymerase and 3'- 5'-exonuclease functions.' J Biol Chem 275(31): 23759-23768.
Wong, I., et al. (1991). 'An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics.' Biochemistry 30(2):526-537.51
Woodgate, R. (1999). 'A plethora of lesion-replicating DNA polymerases.' Genes Dev 13(17): 2191-2195.
Xie, P. (2009). 'A possible mechanism for the dynamics of transition between polymerase and exonuclease sites in a high-fidelity DNA polymerase.' J Theor Biol 259(3): 434-439.
Yu-Jane Sheng, H.-J. L., Jeff Z. Y. Chen, Heng-Kwong Tsao (2004). 'Static Propertiesof a Stacking Chain.' Macromolecules 37: 9631-9638.
林千如 (2012). 'DNA聚合酶I於引子末端倒數第二個配對錯誤鹼基校正活性之全
面分析.' 國立臺灣大學101 學年碩士論文.
陳怡安 (2011). '核酸聚合酶I對於模板與引子交會處帶有異雙股的核酸受質之校
正活性分析.' 國立臺灣大學100 學年碩士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5993-
dc.description.abstractDNA為生物體之遺傳物質,其高度複製忠誠度(fidelity)有助於維持基因穩定性及預防突變發生。DNA聚合酶主要透過三種方式降低複製錯誤率:鹼基選擇性配對(base selection)、3端往5端外切酶(3’→5’ exonuclease)之校正能力(proofreading activity)及錯誤配對修復機制(mismatch repair system)。研究指出DNA聚合酶能夠移除引子末端鹼基或末端連續兩個錯誤鹼基。本實驗室發表文獻 (DNA Repair 9: 1073-1079)指出當DNA聚合酶I與DNA內切酶V(endonuclease V)、DNA連接酶(DNA ligase)及dNTP共同存在下能夠修復G-dI的錯誤配對,應是由DNA內切酶V切斷dI上游第二個磷酸雙酯鍵,活化DNA聚合酶I校正活性導致。本實驗室進一步分析DNA聚合酶I對斷股上游第二個鹼基為錯誤配對十二種受質之校正活性。發現DNA聚合酶I可以修復斷股上游第二個錯誤配對(林千如, 國立臺灣大學101學年碩士論文),顯示斷股上游第二個位置有錯誤配對會活化DNA聚合酶I的3端往5端外切酶活性。然而我們對DNA聚合酶I校正外切酶作用於引子3’端上游配對錯誤的整體修復能力仍未全然明瞭,為了探究DNA聚合酶I的3端往5端外切酶的活化能力,我們設計一系列含配對錯誤的受質,各受質與引子3’端相隔1至8個正常配對鹼基以檢測聚合酶往3’上游配對錯誤的校正活性。配對錯誤受質的的設計,是利用限制酶對於序列具專一性,來偵測所製備的配對錯誤是否被校正。我們將配對錯誤鹼基設計在限制酶作用的位置,然後安排不同的限制酶在配對錯誤鹼基的下游,以利產生3’端不同位置的斷股。如此便製備出在斷股上游不同位置有配對錯誤鹼基的核酸受質。我們設計A-A 及T-T兩種具有代表性的配對錯誤進行測試,將各種不同位置配對錯誤受質與DNA聚合酶I作用,並在含有0.1 mM dNTPs 的情形下觀察其校正活性。此外,為觀察酵素反應作用初期的反應狀況,我們將不同的核酸受質與DNA聚合酶I反應,將反應時間設定在6分鐘之內,觀察酵素動力學的變化,並比較不同位置的配對錯誤,核酸修復效率與反應速率的差異。實驗結果發現,DNA聚合酶I能夠校正至斷股上游第四個錯誤配對之異雙股DNA,在不同濃度的DNA聚合酶I具有不同的校正活性。我們也發現對於不同位置錯誤配對的核酸受質,DNA聚合酶I的校正活性與反應速率也有所差異。利用線性配對錯誤受質與DNA聚合酶I作用的校正活性,排除DNA聚合酶I行缺口轉譯(nick translation)的可能性後,我們確認DNA聚合酶I是利用3’端往5’端外切酶,對斷股上游錯誤配對鹼基進行校正。此結果與先前X光晶體繞射研究核酸在DNA聚合酶活化位之轉移的推論相符合,這些結果對於DNA聚合酶在校正機制(proofreading)上的研究,有正面的幫助。另外,本研究也證實,配對錯誤在離斷股3’端上游超過 5個核苷長度時,就不容易被DNA 聚合酶I所移除,這個結果可以作為site-directed mutagenesis 實驗設計寡核苷酸引子(oligonucleotide primer )時的參考。zh_TW
dc.description.abstractDNA carries genetic information in all living organisms. During DNA replication, it is important to maintain genomic integrity. Three mechanisms are involved in maintaining the high fidelity of genome. The first is base selection during replication; the second is the proofreading activities of DNA polymerases, which can remove the mis-incorporated nucleotide at the primer-template junction. The third is DNA mismatch repair systems. According to previous studies, it is known that terminal mismatch and consecutive two mismatches at the 3’ end of the primer can be edited by DNA polymerase I (pol I). Our previous study showed that the proofreading activity of pol I could edit deoxyinosine-containing heteroduplex DNA following the process of endonuclease V which create a strand breakage at the second phosphodiester bond 3’ to the deoxyinosine (DNA Repair 9: 1073-9). To figure out how it works, we constructed twelve heteroduplex DNAs containing single mismatch at the penultimate site of the primer and analyzed the proofreading activity. The results showed that all of the twelve heteroduplex DNAs can be edited by proofreading activity of pol I. However, the overall capacity of pol I proofreading exonuclease toward mismatches embedded upstream of the primer is still not fully understood. Therefore, we designed a series of mismatch substrates containing a strand break at 0 to 7 nucleotides 3’ to the mismatch, which mimic mismatches embedded in primer template junctions, to study proofreading activity of pol I. Mismatches were designed to interrupt a restriction endonuclease recognition sequence so that proofreading activity can be scored by the restriction endonuclease assay. We also placed several restriction endonucleases sequences at 3’ side to the mismatches so that in the same sequence content a series of substrates containing different strand breaks can be prepared. The two mismatches, A-A and T-T, were employed for the proofreading assay. The assay condition was in the presence of 0.1 mM each of the four dNTPs to mimic in vivo replication condition. Kinetic reactions of different substrates were assayed in a 6-min reaction span to obtain the initial rates for the comparison of substrate specificity for pol I proofreading. Our results showed that pol I can actively edit mismatches at -1, -2, -3, and -4 positions of the primer terminus. The correction levels were pol I concentration dependent, and also demonstrated certain degree of substrate specificity. Linearized heteroduplex substrate could also be efficiently proofread by pol I which ruled out the possible interference by non-specific nick translation.
The results of this study is consistent with previous X-ray crystallography study that at least 4 nucleotide from 3’ end of the primer were required for transfer from polymerization site to exonuclease active site for editing. In addition, we also found mismatches located more than 5 nucleotides from 3’ end were very difficult to remove by proofreading proficient DNA polymerase. The observation could provide a good guidance for designing oligonucleotides for gapped duplex site-directed mutagenesis.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:19:10Z (GMT). No. of bitstreams: 1
ntu-102-R00424019-1.pdf: 3739602 bytes, checksum: 26a45eab6306ccee4e940378cbc6b31d (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 I
中文摘要 II
英文摘要 IV
圖目次 VIII
表目次 IX
附錄目次 X
縮寫表 XI
前言 1
一、緒論 1
1.1 DNA複製忠誠度與DNA聚合酶之關係 1
1.2 DNA聚合酶I之立體結構與聚合反應 2
1.3 DNA聚合酶之校正反應 3
二、研究目的與動機 5
2.1 研究動機 5
2.2 研究目的 6
材料與方法 8
一、菌株(bacteria strain) 8
二、載體(vector) 8
三、酵素 8
四、突變噬菌體f1PM之建構 8
五、f1PM mutant 複製型雙股核酸之製備 10
六、f1PM mutant 單股核酸之製備 11
七、不同位置配對錯誤異雙股核酸之製備 11
八、配對錯誤受質對鑑定用限制酶之敏感性分析 12
九、DNA聚合酶I 於配對錯誤受質之校正活性測定 12
十、DNA聚合酶I 於線性配對錯誤受質之校正活性測定 13
十一、Klenow fragment 於配對錯誤受質之校正活性測定 13
實驗結果 14
一、f1PM 嵌入變種噬菌體之選殖 14
二、配對錯誤受質對鑑定用限制酶之敏感性分析 14
三、DNA聚合酶I 對配對錯誤受質之校正活性測定 15
四、DNA聚合酶I 對配對錯誤受質校正活性之反應速率分析 16
五、DNA聚合酶I 於線性配對錯誤受質之校正活性測定 16
六、以Klenow fragment 取代DNA聚合酶I 測試其修復反應 17
討論 18
圖 22
表 41
附錄 43
參考文獻 46
dc.language.isozh-TW
dc.subject錯誤配對zh_TW
dc.subject異雙股核酸zh_TW
dc.subject限制&#37238zh_TW
dc.subject校正反應zh_TW
dc.subject核酸外切&#37238zh_TW
dc.subject核酸聚合&#37238zh_TW
dc.subject核酸複製忠誠度zh_TW
dc.titleDNA聚合酶I於引子不同位置配對錯誤鹼基校正活性分析zh_TW
dc.titleThe Proofreading Activity of DNA Polymerase I to Single Mismatches at Different Sites of the Primeren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許濤,蔡芷季,楊雅倩
dc.subject.keyword校正反應,核酸複製忠誠度,核酸聚合&#37238,核酸外切&#37238,錯誤配對,限制&#37238,異雙股核酸,zh_TW
dc.subject.keywordproofreading fidelity,DNA polymerase,DNA polymerase I,exonuclease activity,mismatch,restriction enzyme,heteroduplex DNA,en
dc.relation.page51
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-12
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf3.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved