Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰
dc.contributor.authorChih-Wei Changen
dc.contributor.author張智為zh_TW
dc.date.accessioned2021-06-16T09:46:06Z-
dc.date.available2017-02-16
dc.date.copyright2017-02-16
dc.date.issued2016
dc.date.submitted2017-01-24
dc.identifier.citation[1] D.-Y. Peng, D.B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals 15 (1976) 59-64.
[2] M.J. Huron, J. Vidal, New Mixing Rules in Simple Equations of State for Representing Vapor-Liquid-Equilibria of Strongly Non-Ideal Mixtures, Fluid Phase Equilib. 3 (1979) 255-271.
[3] J. Mollerup, A Note on Excess Gibbs Energy Models, Equations of State and the Local Composition Concept, Fluid Phase Equilib. 7 (1981) 121-138.
[4] S. Skjoldjorgensen, Group Contribution Equation of State (Gc-Eos) - a Predictive Method for Phase-Equilibrium Computations over Wide Ranges of Temperature and Pressures up to 30 Mpa, Ind. Eng. Chem. Res. 27 (1988) 110-118.
[5] T. Holderbaum, J. Gmehling, Psrk - a Group Contribution Equation of State Based on Unifac, Fluid Phase Equilib. 70 (1991) 251-265.
[6] H. Renon, J.M. Prausnitz, Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AIChE Journal 14 (1968) 135-144.
[7] G.M. Wilson, Vapor-Liquid Equilibrium. Xi. A New Expression for the Excess Free Energy of Mixing, Journal of the American Chemical Society 86 (1964) 127-130.
[8] D.S. Abrams, J.M. Prausnitz, Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AIChE Journal 21 (1975) 116-128.
[9] M.-J. Huron, J. Vidal, New Mixing Rules in Simple Equations of State for Representing Vapour-Liquid Equilibria of Strongly Non-Ideal Mixtures, Fluid Phase Equilibria 3 (1979) 255-271.
[10] M.L. Michelsen, A Modified Huron-Vidal Mixing Rule for Cubic Equations of State, Fluid Phase Equilibria 60 (1990) 213-219.
[11] D.S.H. Wong, S.I. Sandler, A Theoretically Correct Mixing Rule for Cubic Equations of State, AIChE Journal 38 (1992) 671-680.
[12] A. Klamt, Conductor-Like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena, The Journal of Physical Chemistry 99 (1995) 2224-2235.
[13] S.T. Lin, S.I. Sandler, A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model, Ind. Eng. Chem. Res. 41 (2002) 899-913.
[14] M.T. Lee, S.T. Lin, Prediction of Mixture Vapor-Liquid Equilibrium from the Combined Use of Peng-Robinson Equation of State and Cosmo-Sac Activity Coefficient Model through the Wong-Sandler Mixing Rule, Fluid Phase Equilibria 254 (2007) 28-34.
[15] C.-M. Hsieh, S.-T. Lin, Determination of Cubic Equation of State Parameters for Pure Fluids from First Principle Solvation Calculations, AIChE Journal 54 (2008) 2174-2181.
[16] C.M. Hsieh, S.T. Lin, First-Principles Predictions of Vapor-Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations, Ind. Eng. Chem. Res. 48 (2009) 3197-3205.
[17] I. Benjamin, Theoretical Study of the Water/1,2‐Dichloroethane Interface: Structure, Dynamics, and Conformational Equilibria at the Liquid–Liquid Interface, The Journal of Chemical Physics 97 (1992) 1432-1445.
[18] B. Bigot, B.J. Costa‐Cabral, J.L. Rivail, Conformational Equilibrium of 1,2‐Dichloroethane in Methylchloride. A Monte Carlo Simulation of the Differential Gauche–Anti Solvation, The Journal of Chemical Physics 83 (1985) 3083-3094.
[19] M. Kato, I. Abe, Y. Taniguchi, Raman Study of the Trans–Gauche Conformational Equilibrium of 1,2-Dichloroethane in Water: Experimental Evidence for the Hydrophobic Effect, The Journal of Chemical Physics 110 (1999) 11982-11986.
[20] C.J. Cramer, D.G. Truhlar, Quantum Chemical Conformational Analysis of 1,2-Ethanediol: Correlation and Solvation Effects on the Tendency to Form Internal Hydrogen Bonds in the Gas Phase and in Aqueous Solution, Journal of the American Chemical Society 116 (1994) 3892-3900.
[21] Y.P. Chang, T.M. Su, T.W. Li, I. Chao, Intramolecular Hydrogen Bonding, Gauche Interactions, and Thermodynamic Functions of 1,2-Ethanediamine, 1,2-Ethanediol, and 2-Aminoethanol:  A Global Conformational Analysis, The Journal of Physical Chemistry A 101 (1997) 6107-6117.
[22] G.I. Csonka, I.G. Csizmadia, Density Functional Conformational Analysis of 1,2-Ethanediol, Chemical Physics Letters 243 (1995) 419-428.
[23] N. Greenfield, G.D. Fasman, Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation, Biochemistry 8 (1969) 4108-4116.
[24] P.Y. Chou, G.D. Fasman, Prediction of Protein Conformation, Biochemistry 13 (1974) 222-245.
[25] A. Klamt, Chapter 7 - Refinements, Parameterization, and the Complete Cosmo-Rs, Cosmo-Rs, Elsevier, Amsterdam, 2005, pp. 109-125.
[26] C.M. Hsieh, S.T. Lin, Prediction of 1-Octanol-Water Partition Coefficient and Infinite Dilution Activity Coefficient in Water from the Pr Plus Cosmosac Model, Fluid Phase Equilib. 285 (2009) 8-14.
[27] C.M. Hsieh, S.T. Lin, Prediction of Liquid-Liquid Equilibrium from the Peng-Robinson Plus Cosmosac Equation of State, Chem. Eng. Sci. 65 (2010) 1955-1963.
[28] C.M. Hsieh, S.T. Lin, First-Principles Prediction of Vapor-Liquid-Liquid Equilibrium from the Pr Plus Cosmosac Equation of State, Ind. Eng. Chem. Res. 50 (2011) 1496-1503.
[29] D. Peng, D.B. Robinson, New 2-Constant Equation of State, Ind. Eng. Chem. Fundam. 15 (1976) 59-64.
[30] G. Backes, Bioperspectives in Focus: Nutrition for the Future - Dechema Conference on 26th April 2006 in Potsdam, Ernahr.-Umsch. 53 (2006) 244-246.
[31] S.T. Lin, S.I. Sandler, Infinite Dilution Activity Coefficients from Ab Initio Solvation Calculations, Aiche Journal 45 (1999) 2606-2618.
[32] S.T. Lin, C.M. Hsieh, M.T. Lee, Solvation and Chemical Engineering Thermodynamics, J. Chin. Inst. Chem. Eng. 38 (2007) 467-476.
[33] J.G. Kirkwood, Statistical Mechanics of Fluid Mixtures, J. Chem. Phys. 3 (1935) 300-313.
[34] B. Delley, From Molecules to Solids with the Dmol(3) Approach, J. Chem. Phys. 113 (2000) 7756-7764.
[35] B. Delley, The Conductor-Like Screening Model for Polymers and Surfaces, Mol. Simul. 32 (2006) 117-123.
[36] Delley B. DMol3 DFT studies: from molecules and molecular environments to surfaces
and solids. Paper presented at: Spring Meeting of the European-Materials-Research-Society;
Jun 01-04, 1999; Strasbourg, France.
[37] L.A. Curtiss, P.C. Redfern, K. Raghavachari, Gaussian-4 Theory, J. Chem. Phys. 126 (2007).
[38] Gaussian 09 [computer program]. Wallingford, CT, USA: Gaussian, Inc.; 2009.
[39] K. Kveseth, Conformational-Analysis .1. Temperature Effect on Structure and Composition of Rotational Conformers of 1,2-Dichloroethane as Studied by Gas Electron-Diffraction - Additional Remarks, Acta Chemica Scandinavica Series a-Physical and Inorganic Chemistry 29 (1975) 307-311.
[40] D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, Gromacs: Fast, Flexible, and Free, J. Comput. Chem. 26 (2005) 1701-1718.
[41] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, Gromacs 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation, J. Chem. Theory Comput. 4 (2008) 435-447.
[42] W.L. Jorgensen, D.S. Maxwell, J. TiradoRives, Development and Testing of the Opls All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, J. Am. Chem. Soc. 118 (1996) 11225-11236.
[43] M. Thol, G. Rutkai, A. Koster, M. Kortmann, R. Span, J. Vrabec, Fundamental Equation of State for Ethylene Oxide Based on a Hybrid Dataset, Chem. Eng. Sci. 121 (2015) 87-99.
[44] H. Renon, Prausnit.Jm, Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, Aiche Journal 14 (1968) 135-&.
[45] D.S. Abrams, J.M. Prausnitz, Statistical Thermodynamics of Liquid-Mixtures - New Expression for Excess Gibbs Energy of Partly or Completely Miscible Systems, Aiche Journal 21 (1975) 116-128.
[46] W.L. Jorgensen, R.C. Binning, B. Bigot, Structures and Properties of Organic Liquids - N-Butane and 1,2-Dichloroethane and Their Conformational Equilibria, J. Am. Chem. Soc. 103 (1981) 4393-4399.
[47] FrenkelD, SmitB. Understanding Molecular Simulation From Algorithms to Applications. New York: Academic press, 2002
[48] G. Rutkai, M. Thol, R. Lustig, R. Span, J. Vrabec, Communication: Fundamental Equation of State Correlation with Hybrid Data Sets, J. Chem. Phys. 139 (2013).
[49] M. Thol, G. Rutkai, A. Koster, M. Kortmann, R. Span, J. Vrabec, Fundamental Equation of State for Ethylene Oxide Based on a Hybrid Dataset (Vol 121, Pg 87, 2015), Chem. Eng. Sci. 134 (2015) 887-890.
[50] Allen MP, Tildesley DJ. Computer Simulation of Liquids. New York: Oxford University Press, 1987
[51] A. Klamt, G. Schuurmann, Cosmo - a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient, J. Chem. Soc.-Perkin Trans. 2 (1993) 799-805.
[52] L. Yang, C.-W. Chang, S.-T. Lin, A Novel Multiscale Approach for Rapid Prediction of Phase Behaviors with Consideration of Molecular Conformations, AIChE Journal (2016) n/a-n/a.
[53] C. Cappelli, S. Corni, J. Tomasi, Solvent Effects on Trans/Gauche Conformational Equilibria of Substituted Chloroethanes: A Polarizable Continuum Model Study, J. Phys. Chem. A 105 (2001) 10807-10815.
[54] K.B. Wiberg, T.A. Keith, M.J. Frisch, M. Murcko, Solvent Effects on 1,2-Dihaloethane Gauche/Trans Ratios, J. Phys. Chem. 99 (1995) 9072-9079.
[55] K. Ishii, Y. Kobayashi, K. Sakai, H. Nakayama, Structural Relaxation in Amorphous 1,2-Dichloroethane Studied by Transformation between Conformation Isomers, J. Phys. Chem. B 110 (2006) 24827-24833.
[56] M. Kato, I. Abe, Y. Taniguchi, Raman Study of the Trans-Gauche Conformational Equilibrium of 1,2-Dichloroethane in Water: Experimental Evidence for the Hydrophobic Effect, J. Chem. Phys. 110 (1999) 11982-11986.
[57] R.J. Sabharwal, Y.N. Huang, Y. Song, High-Pressure Induced Conformational and Phase Transformations of 1,2-Dichloroethane Probed by Raman Spectroscopy, J. Phys. Chem. B 111 (2007) 7267-7273.
[58] K. Tanabe, Calculation of Infrared Band Intensities and Determination of Energy Differences of Rotational Isomers of 1,2-Dichloroethane, 1,2-Dibromoethane and 1-Chloro-2-Bromoethane, Spectrochimica Acta Part a-Molecular Spectroscopy A 28 (1972) 407-&.
[59] S. Ikawa, E. Whalley, Effect of Pressure on Molecular-Conformations .5. The Internal-Rotation Angle of 1,2-Dichloroethane by Infrared-Spectroscopy, J. Chem. Phys. 81 (1984) 1620-1625.
[60] Y. Taniguchi, H. Takaya, P.T.T. Wong, E. Whalley, Effect of Pressure on Molecular-Conformations .2. Trans-Gauche Equilibrium of 1,2-Dichloroethane and 1,2-Dibromoethane, J. Chem. Phys. 75 (1981) 4815-4822.
[61] B.L. McClain, D. Ben-Amotz, Global Quantitation of Solvent Effects on the Isomerization Thermodynamics of 1,2-Dichloroethane and Trans-1,2-Dichlorocyclohexane, J. Phys. Chem. B 106 (2002) 7882-7888.
[62] D. Casanova, S. Gusarov, A. Kovalenko, T. Ziegler, Evaluation of the Scf Combination of Ks-Dft and 3d-Rism-Kh; Solvation Effect on Conformational Equilibria, Tautomerization Energies, and Activation Barriers, J. Chem. Theory Comput. 3 (2007) 458-476.
[63] F. Forti, C.N. Cavasotto, M. Orozco, X. Barril, F.J. Luque, A Multilevel Strategy for the Exploration of the Conformational Flexibility of Small Molecules, J. Chem. Theory Comput. 8 (2012) 1808-1819.
[64] S. Madurga, E. Vilaseca, Solvent Effect on the Conformational Equilibrium of 1,2-Dichloroethane in Water. The Role of Solute Polarization, J. Phys. Chem. A 108 (2004) 8439-8447.
[65] S. Wolfe, Gauche Effect - Some Stereochemical Consequences of Adjacent Electron Pairs and Polar Bonds, Accounts Chem. Res. 5 (1972) 102-&.
[66] C.J. Cramer, D.G. Truhlar, Quantum-Chemical Conformational-Analysis of 1,2-Ethanediol - Correlation and Solvation Effects on the Tendency to Form Internal Hydrogen-Bonds in the Gas-Phase and in Aqueous-Solution, J. Am. Chem. Soc. 116 (1994) 3892-3900.
[67] B.L. Larsen, P. Rasmussen, A. Fredenslund, A Modified Unifac Group-Contribution Model for Prediction of Phase-Equilibria and Heats of Mixing, Ind. Eng. Chem. Res. 26 (1987) 2274-2286.
[68] S. Cabani, P. Gianni, V. Mollica, L. Lepori, Group Contributions to the Thermodynamic Properties of Non-Ionic Organic Solutes in Dilute Aqueous-Solution, J. Solut. Chem. 10 (1981) 563-595.
[69] M. Karelson, V.S. Lobanov, A.R. Katritzky, Quantum-Chemical Descriptors in Qsar/Qspr Studies, Chem. Rev. 96 (1996) 1027-1043.
[70] A.R. Katritzky, V.S. Lobanov, M. Karelson, Qspr - the Correlation and Quantitative Prediction of Chemical and Physical-Properties from Structure, Chem. Soc. Rev. 24 (1995) 279-&.
[71] S. Wang, J.M. Stubbs, J.I. Siepmann, S.I. Sandler, Effects of Conformational Distributions on Sigma Profiles in Cosmo Theories, J. Phys. Chem. A 109 (2005) 11285-11294.
[72] A. Leo, C. Hansch, D. Elkins, Partition Coefficients and Their Uses, Chem. Rev. 71 (1971) 525-+.
[73] T.H. Gan, J.B. Peel, G.D. Willett, Photoelectron-Spectra of Gauche and Trans Conformers of 1,2-Dichloroethane, Journal of the Chemical Society-Faraday Transactions Ii 73 (1977) 965-972.
[74] M. Coates, D.W. Connell, D.M. Barron, Aqueous Solubility and Octan-1-Ol to Water Partition-Coefficients of Aliphatic-Hydrocarbons, Environ. Sci. Technol. 19 (1985) 628-632.
[75] W.V. Wilding, R.L. Rowley, J.L. Oscarson, Dippr (R) Project 801 Evaluated Process Design Data, Fluid Phase Equilib. 150 (1998) 413-420.
[76] C.A. Jones, E.M. Schoenborn, A.P. Colburn, Equilibrium Still for Miscible Liquids - Data on Ethylene Dichloride-Toluene and Ethanol-Watcr, Industrial and Engineering Chemistry 35 (1943) 666-672.
[77] M.K. Baranaev, I.S. Gilman, L.M. Kogan, N.P. Rodionova, Vydelenie Dikhloretana Iz Ego Vodnykh Rastvorov, Zhurnal Prikladnoi Khimii 27 (1954) 1094-1100.
[78] T.J. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X.L. Zhang, Y. Li, R.X. Wang, L.H. Lai, Computation of Octanol-Water Partition Coefficients by Guiding an Additive Model with Knowledge, J. Chem Inf. Model. 47 (2007) 2140-2148.
[79] A. Lancia, D. Musmarra, F. Pepe, Vapor-Liquid Equilibria for Mixtures of Ethylene Glycol, Propylene Glycol, and Water between 98 Degrees and 122 Degrees C, J. Chem. Eng. Jpn. 29 (1996) 449-455.
[80] V.M. Gun'ko, R. Nasiri, S.S. Sazhin, Effects of the Surroundings and Conformerisation of N-Dodecane Molecules on Evaporation/Condensation Processes, J. Chem. Phys. 142 (2015) 8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59937-
dc.description.abstract流體的相行為在化學工業程序設計是不可或缺的資訊。預測純物質與混合物流體的相行為對於初期程序設計是相當重要的。在以往的研究方法中常使用官能基貢獻法或是定量結構與關係法等方式來進行項行為的預測。已有許多研究指出,分子構型也是影響流體相行為的一個重要原因,但是在常用的預測方法中往往選擇單一構型來進行預測,將分子構型對於性質的影響併入模型的參數中,但是這樣的計算方法往往需要大量的實驗數值來進行參數的迴歸,而且也會因為構型選擇限制了模型的準確度。在本研究中,我們提出以結合量子化學計算、分子動態模擬計算,藉由計算純物質分子的溶劑化自由能,獲取PR+COSMOSAC狀態方程式所需之參數a、b以及ω,當有了這些資訊便可以在數秒之內快速完成相行為預測,以及非剛性分子在不同相中構型的分布狀況,因此可以用來了解分子構型對於相行為的影響。我們選擇兩個簡單的分子1,2-dichloroethane和1,2-ethanediol來進行研究,前者僅有兩種主要的構型,在相行為以及構型分布比例的解釋上都能簡單的利用極性來說明。然而後者較為複雜有10種構型,極性大小和氫鍵面積同時影響到相行為以及構型分布比例。研究中我們我們主要探討純物質蒸氣壓、二成分系統的氣液相平衡以及液液相平衡,過程中我們將專注在不同環境對分子構型的影響,分析構型的比例及吉布絲自由能,最後得知藉由分子構型的考慮能使得該分子做到更準確的相行為預測及更大的應用範圍,此外還能從微觀角度得知環境對構型的影響。zh_TW
dc.description.abstractThe modeling and prediction of fluid phase behavior have long been a focus of research. It is important information for process design. However, conventional predictive methods, such as the group contribution methods, usually ignore the structure details, e.g. the conformation of molecules. This limits such methods in providing properties of a chemical species in different chemical environments. Conformational distribution of flexible molecules may have a significant influence on physical properties.
In this work we use the predictive PR+COMOSAC EOS to determine the sensitivity of thermophysical properties to the detailed molecular conformations. The PR+COSMOSAC EOS provides thermodynamic properties of a fluid from the results of quantum mechanical solvation calculations, where the molecular structure is the only input. The PR+COSMOSAC EOS is used to provide the fugacity of chemical species in a mixture. The electrostatic and dispersion interactions in the EOS are determined from quantum-mechanical solvation calculations and molecular dynamics simulations at a few state points.
We examine the prediction of vapor pressure and partition coefficients for two typical systems (1,2-dichloroethane and 1,2-ethandiol) in order to better understand the effect of molecular conformation in phase behavior. Two main conformations (trans and gauche) are considered for 1,2-dichloroethane, and 10 conformations are analyzed for 1,2-ethandiol. In these two cases, different conformation will affect polarity and hydrogen bonding surface area. This causes the variation of intermolecular forces and reflects on the vapor pressure and different affinity to solvent. Therefore, contribution of each conformation will not be same in each phase and will be affected by different solvent. In this project we take the conformational transformations as chemical reactions with the equilibrium constant determined from ab initio G4 calculations. With all the EOS parameters obtained from molecular simulations at different scales, subsequent phase equilibrium predictions can be achieved within milliseconds. In this research, we find out that considering conformation of molecule can improve the phase behavior and make the molecule behave better in more kinds of systems. In addition, we can also know how chemical environment affect conformation in microscopic world.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:46:06Z (GMT). No. of bitstreams: 1
ntu-105-R03524002-1.pdf: 1861108 bytes, checksum: 7287f3d21ea27399a99308c5d33ba891 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
Contents VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
Chapter 2 Theory 4
2.1 The PR+COSMOSAC Equation of State 4
2.2 Determination of the Solvation Charging Free Energy 5
2.3 Determination of the Solvation Free Energy 12
2.4 The solvation free energy from MD simulations 13
2.5 Chemical Equilibrium 14
2.6 The Vapor Pressure from Fugacity 16
2.7 The Octanol-Water Partition Coefficient from Fugacity 16
Chapter 3 Computational Details 18
3.1 The optimization of molecular geometry 18
3.2 The equilibrium constant of conformers 18
3.3 The solvation free energy from molecular dynamics simulations 21
3.4 The corrections to the dispersion energy 23
3.5 The phase equilibrium calculations 28
Chapter 4 Results and Discussion 29
4.1 Phase Behaviors of pure DCE system 40
4.2 Vapor-liquid equilibrium of binary mixture containing DCE 42
4.3 Temperature Effect and Solvent Effect on Conformations 44
4.4 Total error of binary VLE systems 48
4.5 Liquid-liquid equilibrium of binary mixture containing DCE 49
4.6 Impact of Molecular Conformation on Kow 51
4.7 Alternative methods to obtain equilibrium constant and adjust parameters of dispersion 52
4.8 Phase Behaviors of pure EDL system 55
4.9 Vapor-liquid equilibrium of binary mixture containing EDL 59
4.10 Liquid-liquid equilibrium of binary mixture containing EDL 65
4.11 Another Probable Structure for Long-chain Alkane 67
4.12 Partition Coefficient of C20H42 68
4.13 Kow calculation of other chemicals 69
Chapter 5 Conclusion 71
References 72
Appendix 81
Appendix Table 85
dc.language.isoen
dc.subject溶解zh_TW
dc.subject相行為zh_TW
dc.subject多尺度方法zh_TW
dc.subject狀態方程式zh_TW
dc.subject分子動態模擬zh_TW
dc.subject分子構型zh_TW
dc.subjectmultiscale approachen
dc.subjectphase behavioren
dc.subjectmolecular conformationen
dc.subjectsolvationen
dc.subjectmolecular dynamics simulationen
dc.subjectPR+COSMOSAC equation of stateen
dc.title以第一原理計算探討分子構型對流體相行為的影響zh_TW
dc.titleHow Does Conformation Flexibility Influence the Fluid Phase Behavior: An Investigation from First Principlesen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳立仁,郭錦龍,李旻璁,董彥佃
dc.subject.keyword多尺度方法,狀態方程式,分子動態模擬,溶解,分子構型,相行為,zh_TW
dc.subject.keywordmultiscale approach,PR+COSMOSAC equation of state,molecular dynamics simulation,solvation,molecular conformation,phase behavior,en
dc.relation.page89
dc.identifier.doi10.6342/NTU201700215
dc.rights.note有償授權
dc.date.accepted2017-01-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
1.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved