請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59936
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭錦龍(Chin-Lung Kuo) | |
dc.contributor.author | Yi-Ting Chen | en |
dc.contributor.author | 陳奕廷 | zh_TW |
dc.date.accessioned | 2021-06-16T09:46:02Z | - |
dc.date.available | 2022-02-16 | |
dc.date.copyright | 2017-02-16 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-01-23 | |
dc.identifier.citation | 1. Rodrigues, P. C. M.; Pereloma, E. V.; Santos, D. B. Mechanical properities of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling. Materials Science and Engineering: A 2000, 283, 136-143.
2. Jun, H. J.; Kang, K. B.; Park, C. G. Effects of cooling rate and isothermal holding on the precipitation behavior during continuous casting of Nb–Ti bearing HSLA steels. Scripta Materialia 2003, 49, 1081-1086. 3. Zahidi, E. M.; Oudghiri-Hassani, H.; McBreen, P. H. Formation of thermally stable alkylidene layers on a catalytically active surface. Nature 2001, 409, 1023-6. 4. Poths, R. M.; Higginson, R. L.; Palmiere, E. J. Complex precipitation behaviour in a microalloyed plate steel. Scripta Materialia 2001, 44, 147-151. 5. Sun, J.; Boyd, J. D. Effect of thermomechanical processing on anisotropy of cleavage fracture stress in microalloyed linepipe steel. International Journal of Pressure Vessels and Piping 2000, 77, 369-377. 6. Mishra, S. K.; Ranganathan, S.; Das, S. K.; Das, S. Investigations on precipitation characteristics in a high strength low alloy (HSLA) steel. Scripta Materialia 1998, 39, 253-259. 7. Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547-9. 8. Nagata, M. T.; Speer, J. G.; Matlock, D. K. Titanium nitride precipitation behavior in thin-slab cast high-strength low-alloy steels. Metallurgical and Materials Transactions A 2002, 33, 3099-3110. 9. Liu, W. J.; Yue, S.; Jonas, J. J. Characterization of Ti carbosulfide precipitation in Ti microalloyed steels. Metallurgical Transactions A 1989, 20, 1907-1915. 10. Pandit, A.; Murugaiyan, A.; Podder, A. S.; Haldar, A.; Bhattacharjee, D.; Chandra, S.; Ray, R. K. Strain induced precipitation of complex carbonitrides in Nb–V and Ti–V microalloyed steels. Scripta Materialia 2005, 53, 1309-1314. 11. Liu, W. J.; Jonas, J. J. Ti(CN) precipitation in microalloyed austenite during stress relaxation. Metallurgical Transactions A 1988, 19, 1415-1424. 12. Funakawa, Y.; Shiozaki, T.; Tomita, K.; Yamamoto, T.; Maeda, E. Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides. ISIJ International 2004, 44, 1945-1951. 13. Chen, C. Y.; Yen, H. W.; Kao, F. H.; Li, W. C.; Huang, C. Y.; Yang, J. R.; Wang, S. H. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides. Materials Science and Engineering: A 2009, 499, 162-166. 14. Yen, H.-W.; Huang, C.-Y.; Yang, J.-R. Characterization of interphase-precipitated nanometer-sized carbides in a Ti–Mo-bearing steel. Scripta Materialia 2009, 61, 616-619. 15. Jang, J. H.; Lee, C. H.; Han, H. N.; Bhadeshia, H. K. D. H.; Suh, D. W. Modelling coarsening behaviour of TiC precipitates in high strength, low alloy steels. Materials Science and Technology 2013, 29, 1074-1079. 16. Kamikawa, N.; Abe, Y.; Miyamoto, G.; Funakawa, Y.; Furuhara, T. Tensile Behavior of Ti,Mo-added Low Carbon Steels with Interphase Precipitation. ISIJ International 2014, 54, 212-221. 17. Enloe, C. M.; Findley, K. O.; Parish, C. M.; Miller, M. K.; De Cooman, B. C.; Speer, J. G. Compositional evolution of microalloy carbonitrides in a Mo-bearing microalloyed steel. Scripta Materialia 2013, 68, 55-58. 18. Mukherjee, S.; Timokhina, I. B.; Zhu, C.; Ringer, S. P.; Hodgson, P. D. Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium–molybdenum steels. Acta Materialia 2013, 61, 2521-2530. 19. Chen, C. Y.; Chen, C. C.; Yang, J. R. Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb and Ti–Nb–Mo steel. Materials Characterization 2014, 88, 69-79. 20. Cheng, L.; Cai, Q.-w.; Xie, B.-s.; Ning, Z.; Zhou, X.-c.; Li, G.-s. Relationships among microstructure, precipitation and mechanical properties in different depths of Ti–Mo low carbon low alloy steel plate. Materials Science and Engineering: A 2016, 651, 185-191. 21. Lee, W.-B.; Hong, S.-G.; Park, C.-G.; Park, S.-H. Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo. Metallurgical and Materials Transactions A 2002, 33, 1689-1698. 22. Lee, W. B.; Hong, S. G.; Park, C. G.; Kim, K. H.; Park, S. H. Influence of Mo on precipitation hardening in hot rolled HSLA steels containing Nb. Scripta Materialia 2000, 43, 319-324. 23. Funakawa, Y.; Seto, K. Stabilization in Strength of Hot-rolled Sheet Steel Strengthened by Nanometer-sized Carbides. Tetsu-to-Hagane 2007, 93, 49-56. 24. Bhadeshia, H. K. D. H. Computational design of advanced steels. Scripta Materialia 2014, 70, 12-17. 25. A.Skobir, D. High Strength Low-Alloy (HSLA) Steels. Materials and technology 2011, 45, 295-301. 26. Timokhina, I. B.; Hodgson, P. D.; Ringer, S. P.; Zheng, R. K.; Pereloma, E. V. Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography. Scripta Materialia 2007, 56, 601-604. 27. Akben, M. G.; Bacroix, B.; Jonas, J. J. Effect of vanadium and molybdenum addition on high temperature recovery, recrystallization and precipitation behavior of niobium-based microalloyed steels. Acta Metallurgica 1983, 31, 161-174. 28. Uemori, R.; Chijiiwa, R.; Tamehiro, H.; Morikawa, H. AP-FIM study on the effect of Mo addition on microstructure in Ti-Nb steel. Applied Surface Science 1994, 76-77, 255-260. 29. Hu, B.-h.; Cai, Q.-w.; Wu, H.-b. Influence of Mo on Growth and Coarsening of Nanometer-sized Carbides in Low-alloy Ferritic Steels Containing Ti. Journal of Iron and Steel Research, International 2014, 21, 878-885. 30. Klueh, R. L.; Maziasz, P. J.; Alexander, D. J. Bainitic chromium-tungsten steels with 3 Pct chromium. Metallurgical and Materials Transactions A 1997, 28, 335-345. 31. Narita, T.; Ukai, S.; Ohtsuka, S.; Inoue, M. Effect of tungsten addition on microstructure and high temperature strength of 9CrODS ferritic steel. Journal of Nuclear Materials 2011, 417, 158-161. 32. Heo, N.-H.; Lee, H.-C. Effect of tungsten addition on the ductile-brittle-ductile transition in Fe-8Mn-7Ni-W maraging steels. Scripta Metallurgica et Materialia 1995, 33, 2031-2035. 33. Park, J. S.; Kim, S. J.; Lee, C. S. Effect of W addition on the low cycle fatigue behavior of high Cr ferritic steels. Materials Science and Engineering: A 2001, 298, 127-136. 34. Zhao, J.; Lee, T.; Lee, J. H.; Jiang, Z.; Lee, C. S. Effects of Tungsten Addition on the Microstructure and Mechanical Properties of Microalloyed Forging Steels. Metallurgical and Materials Transactions A 2013, 44, 3511-3523. 35. Lee, J. H.; Shishidou, T.; Zhao, Y. J.; Freeman, A. J.; Olson, G. B. Strong interface adhesion in Fe/TiC. Philosophical Magazine 2005, 85, 3683-3697. 36. Dudiy, S. V.; Lundqvist, B. I. First-principles density-functional study of metal-carbonitride interface adhesion: Co/TiC(001) and Co/TiN(001). Physical Review B 2001, 64. 37. Siegel, D. J.; Hector, L. G.; Adams, J. B. First-principles study of metal–carbide/nitride adhesion: Al/VC vs. Al/VN. Acta Materialia 2002, 50, 619-631. 38. Jhi, S.-H.; Ihm, J.; Louie, S. G.; Cohen, M. L. Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 1999, 399, 132-134. 39. Jung, W.-S.; Chung, S.-H. Ab initiocalculation of interfacial energies between transition metal carbides and fcc iron. Modelling and Simulation in Materials Science and Engineering 2010, 18, 075008. 40. Fors, D. H. R.; Wahnström, G. Theoretical study of interface structure and energetics in semicoherentFe(001)/MX(001)systems (M=Sc, Ti, V, Cr, Zr, Nb, Hf, Ta;X=Cor N). Physical Review B 2010, 82. 41. Ruda, M.; Farkas, D.; Garcia, G. Atomistic simulations in the Fe–C system. Computational Materials Science 2009, 45, 550-560. 42. Arya, A.; Carter, E. A. Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles. The Journal of Chemical Physics 2003, 118, 8982-8996. 43. Johnson, D. F.; Carter, E. A. Bonding and adhesion at the SiC/Fe interface. J Phys Chem A 2009, 113, 4367-73. 44. Christensen, M.; Dudiy, S.; Wahnström, G. First-principles simulations of metal-ceramic interface adhesion: Co/WC versus Co/TiC. Physical Review B 2002, 65. 45. Liu, L. M.; Wang, S. Q.; Ye, H. Q. First-principles study of polar Al/TiN(111) interfaces. Acta Materialia 2004, 52, 3681-3688. 46. Hartford, J. Interface energy and electron structure for Fe/VN. Physical Review B 2000, 61, 2221-2229. 47. Jung, W.-S.; Chung, S.-H.; Ha, H.-P.; Byun, J.-Y. An ab initio study of the energetics for interfaces between group V transition metal Nitrides and bcc iron. Modelling and Simulation in Materials Science and Engineering 2006, 14, 479-495. 48. Chung, S.-H.; Ha, H.-P.; Jung, W.-S.; Byun, J.-Y. An ab Initio Study of the Energetics for Interfaces between Group V Transition Metal Carbides and bcc Iron. ISIJ International 2006, 46, 1523-1531. 49. Yang, Z. G.; Enomoto, M. Discrete lattice plane analysis of Baker–Nutting related B1 compound/ferrite interfacial energy. Materials Science and Engineering: A 2002, 332, 184-192. 50. Sawada, H.; Taniguchi, S.; Kawakami, K.; Ozaki, T. First-principles study of interface structure and energy of Fe/NbC. Modelling and Simulation in Materials Science and Engineering 2013, 21, 045012. 51. Jang, J. H.; Lee, C.-H.; Heo, Y.-U.; Suh, D.-W. Stability of (Ti,M)C (M=Nb, V, Mo and W) carbide in steels using first-principles calculations. Acta Materialia 2012, 60, 208-217. 52. Park, N.-Y.; Choi, J.-H.; Cha, P.-R.; Jung, W.-S.; Chung, S.-H.; Lee, S.-C. First-Principles Study of the Interfaces between Fe and Transition Metal Carbides. The Journal of Physical Chemistry C 2013, 117, 187-193. 53. Teresiak, A.; Kubsch, H. X-ray investigations of high energy ball milled transition metal carbides. Nanostructured Materials 1995, 6, 671-674. 54. Willens, R. H.; Buehler, E.; Matthias, B. T. Superconductivity of the Transition-Metal Carbides. Physical Review 1967, 159, 327-330. 55. Nartowski, A. M.; Parkin, I. P.; MacKenzie, M.; Craven, A. J.; MacLeod, I. Solid state metathesis routes to transition metal carbides. Journal of Materials Chemistry 1999, 9, 1275-1281. 56. Hugosson, H. W.; Jansson, U.; Johansson, B.; Eriksson, O. Phase stability diagrams of transition metal carbides, a theoretical study. Chemical Physics Letters 2001, 333, 444-450. 57. Hugosson, H. W.; Eriksson, O.; Nordström, L.; Jansson, U.; Fast, L.; Delin, A.; Wills, J. M.; Johansson, B. Theory of phase stabilities and bonding mechanisms in stoichiometric and substoichiometric molybdenum carbide. Journal of Applied Physics 1999, 86, 3758-3767. 58. Ishikawa, F.; Takahashi, T.; Ochi, T. Intragranular ferrite nucleation in medium-carbon vanadium steels. Metallurgical and Materials Transactions A 1994, 25, 929-936. 59. Enomoto, M. Nucleation of phase transformations at intragranular inclusions in steel. Metals and Materials 1998, 4, 115-123. 60. Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Annalen der Physik 1927, 389, 457-484. 61. Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Physical Review 1964, 136, B864-B871. 62. Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140, A1133-A1138. 63. Thomas, L. H. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 2008, 23, 542. 64. Dirac, P. A. M. Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society 2008, 26, 376. 65. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics 1980, 58, 1200-1211. 66. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 1992, 46, 6671-6687. 67. Ceperley, D. M.; Alder, B. J. Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters 1980, 45, 566-569. 68. Perdew, J. P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 1981, 23, 5048-5079. 69. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 1992, 45, 13244-13249. 70. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996, 77, 3865-3868. 71. Kresse, G.; Hafner, J. Ab initiomolecular dynamics for liquid metals. Physical Review B 1993, 47, 558-561. 72. Kresse, G.; Hafner, J. Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49, 14251-14269. 73. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6, 15-50. 74. Kresse, G.; Furthmüller, J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B 1996, 54, 11169-11186. 75. Blöchl, P. E. Projector augmented-wave method. Physical Review B 1994, 50, 17953-17979. 76. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59, 1758-1775. 77. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters 1997, 78, 1396-1396. 78. Wyckoff, R. W. G. Crystal Structure. New York 1963. 79. Sha, X.; Cohen, R. E. First-principles thermoelasticity of bcc iron under pressure. Physical Review B 2006, 74. 80. Hare, J. P.; Hsu, W. K.; Kroto, H. W.; Lappas, A.; Prassides, K.; Terrones, M.; Walton, D. R. M. Nanoscale Encapsulation of Molybdenum Carbide in Carbon Clusters. Chemistry of Materials 1996, 8, 6-8. 81. Price, D. L.; Cooper, B. R. Total energies and bonding for crystallographic structures in titanium-carbon and tungsten-carbon systems. Physical Review B 1989, 39, 4945-4957. 82. Zhukov, V. P. Transition Metal Carbides and Nitrides. Academic Press: New York 1971. 83. Villars, P. C., L. D. . Pearson's Handbook of Crystallographic Data for Intermetallic Phases. American Society for Metals: Metals Park,OH 1985. 84. Hugosson, H. W.; Eriksson, O.; Jansson, U.; Johansson, B. Phase stabilities and homogeneity ranges in4d-transition-metal carbides: A theoretical study. Physical Review B 2001, 63. 85. Leung, T. C.; Kao, C. L.; Su, W. S.; Feng, Y. J.; Chan, C. T. Relationship between surface dipole, work function and charge transfer:Some exceptions to an established rule. Physical Review B 2003, 68. 86. Chan, K. T.; Neaton, J. B.; Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Physical Review B 2008, 77. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59936 | - |
dc.description.abstract | 本論文之研究目標為透過第一原理,配合密度泛函理論計算探討過渡金屬碳化析出顆粒和bcc母相鐵之間的接面系統(Fe/Ti1-xMxC,M=Mo,Nb,W)之界面能,以及接面結構形成能,藉此探討Mo和W對於析出強化的影響。本研究建立了16、32以及48顆原子大小之接面系統來模擬析出成長的情況,而濃度選擇為x=0.25,0.5以及0.75。
在本論文第一部份中,研究首先對Fe/(Ti1-xMx)C)進行界面能的計算,我們將其分為化學界面能(Chemical Interface Energy)以及應變界面能(Chemical Interface Energy including Strain Energy )進行探討。在化學界面能的計算中,我們發現Nb、Mo和W的添加皆有助於界面能的降低,但Mo的添加會使界面能下降特別顯著。當我們考慮各二元混合濃度接面系統時,在50%Mo置換的Fe/(Ti0.5Mo0.5)C擁有最低的界面能。我們亦發現W的添加可顯著的降低界面能量,利於析出。除此之外我們並發現化學界面能並非定值,其會隨著接面尺度加大而有降低之趨勢。當考慮應變界面能時,我們發現Fe/(Ti0.5Mo0.5)C接面系統仍具有各混合系統中最低之應變界面能。綜合化學界面能以及應變能的計算,可和實驗上觀測到Ti-Mo一比一混合時會有最強析出強化效果相呼應。 接著我們利用電子性質計算來解釋Mo添加為何能顯著的降低界面能。在能量態密度的計算中我們發現Mo的添加會讓1NN Fe d軌域和接面過渡金屬原子d軌域的交互作用增強,而W的添加也可看到類似效果。在接面結構的電荷轉移分析當中,我們發現TMCs和Fe形成接面結構時,系統電荷將會重新分布:Fe將會失去電子,而這些電子將大量轉移至接面處以及接面碳原子上,在接面系統內形成一Interface Dipole,此偶極矩能幫助穩定接面結構。我們進一步計算這些電荷差異在各系統所造成的Interface Dipole,發現界面能最低的Fe/(Ti0.5Mo0.5)C系統具有最強的Interface Dipole。在W系統中亦可看到Interface Dipole增加的趨勢,但W的添加所能造成的偶極矩效應並不如Mo那麼顯著。綜合此部分電子結構分析我們認為:Mo的添加會使接面系統中的電荷重新分布效應增強,誘發一較強的Interface Dipole使接面系統更加穩定。 在第二部份我們則從熱力學觀點探討接面系統之形成能,我們首先確認接面系統Fe/(Ti1-xMx)C當M原子偏析(Segregation)在接面處會具備最穩定之能量。由形成能計算結果,在Mo添加系統中形成能在35.2%濃度時出現了一個轉折點,我們認為Mo添加系統在35.2%-50% Mo置換區間內利將有最強的析出強化效果,因為在此Ti-Mo混合區間內接面形成能低,且接面形成能隨析出尺寸加大而上升;而在W添加系統中,同樣的轉折點出現在29.2%,因此在29.2%-50%W置換濃度區間會是最佳選擇。本研究進一步探討造成此轉折點的原因,我們認為因為析出成長時因第二元原子分相所造成的能量上升,以及析出加大時穩定接面系統能量下降等因素競爭,是造成在不同濃度下形成能有不同變化的主因。 | zh_TW |
dc.description.abstract | The aim of this thesis is to reveal the role of Mo addition to the Ti-based steel using first-principles calculations based on density functional theory. In the first part of this thesis, we calculated the chemical interface energy and strain interface energy (chemical interface energy including elastic strain) to investigate the effect of the addition of different composition Mo,W and Nb to the Ti-based interface system Fe/Ti1-xMxC. We built the interface system following Baker-Nutting orientation relationship. Our results of interface enrgy calculation shows that Mo and W addition can significantly decrease interface energy. The Fe/(Ti0.5Mo0.5)C interface system, which has Mo present at interface, has been found to be having the lowest chemical and strain interface energy in all the complex interface system. Furthermore, we found that interface energy isn’t a constant but decreases as particle size increases. We then employed density of state calculation to the different interface systems, the results shows that the interaction between segregated transition metal and its first nearest neighbor Fe has increasedfor the interface system that has the lowest interface energy. Moreover, from the analysis of charge difference calculation, the Mo addition to the interface can cause more ssignificant electron redistribution when the interface formed, and eventually induced stronger interface dipole to help stabilizing the interface.
In the second part of the thesis, we investigated the formation energy of the Fe/(Ti1-xMx)C interface system in the viewpoints of thermodynamics. For the dependence of atomic configuration of the TMCs, various stacking sequences have been considered at different composition. We discovered that the complex carbide of (Ti1-xMx)C which has M present at the interface were the most stable. For the Fe/(Ti1-xMox)C precipitation, our results show that there is a turnig point of formation energy at x=0.352 in Fe/Ti1-xMoxC system and x=0.292 for Fe/Ti1-xWxC ststem. Our results suggest that the substitution composition between x=0.352 to x=0.5 can possibly lead to ultimate precipitation hardening enhancement because the formation energy of the interface system in this composition range is low enough for TMC to nucleate,meanwhile, the formation energy increases as precipitation size increases.The results will lead to large amount of extreamly fine precipitations .For the Fe/(Ti1-xWx)C precipitation, our results shows that the substitution composition between x=0.292 to x=0.5 will have same effect. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:46:02Z (GMT). No. of bitstreams: 1 ntu-106-R03527049-1.pdf: 4575934 bytes, checksum: 5b380b1dce8a32c75e3943be2cacb9ba (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii 目錄 viii 圖目錄 x 表目錄 xiv 第一章 緒論 16 1.1 研究背景 16 1.2 (Ti,Mo)C析出之實驗文獻回顧 20 1.3 Fe/TMCs接面理論計算文獻回顧 23 1.4 研究結構及析出顆粒之晶格關係 26 1.5 研究動機與目的 29 第二章 文獻回顧與理論基礎 31 2.1 第一原理計算 (First principles calculation) 31 2.2 波恩-歐本海默近似(Born-Oppenheimer Approximation) 31 2.3 密度泛函理論 (Density Functional Theory, DFT) 32 2.3.1 Thomas-Fermi Model 32 2.3.2 Hohenberg-Kohn 定理 32 2.3.3 Kohn-Sham 方程式 33 2.3.4 交換相干泛涵 (Exchange-correlation functional) 35 2.3.5 虛位勢法 (Pseudopotential method) 35 第三章 Fe/(Ti1-xMx)C接面系統之界面能探討 37 3.1 研究方法 37 3.1.1 計算方法與條件 37 3.1.2 初始結構模型建立 38 3.2 B1結構過渡金屬碳化物基本性質分析 44 3.3 Ti-Based二元接面系統界面能量分析 48 3.3.1 最低能量接面結構確認 48 3.3.2 界面能量計算方法 56 3.3.3 接面結構性質探討 58 3.3.4 界面能量探討 64 3.4 電子結構分析 76 3.4.1 Fe/(Ti1-xMx)C能態密度分析 76 3.4.2 電荷轉移分析 82 第四章 Fe/(Ti1-xMx)C接面系統形成能及成核機制 90 4.1 研究方法 90 4.1.1 計算方法與條件 90 4.1.2 初始結構模型建立 91 4.2 Fe/(Ti1-xMx)C接面系統之形成能探討 92 4.2.1 成核理論 92 4.2.2 接面系統形成能計算及最佳Ti-M混和濃度預測 94 4.3 Ti-Based二元析出顆粒之可能成核機制 100 第五章 結論 108 參考文獻 111 | |
dc.language.iso | zh-TW | |
dc.title | 以第一原理計算探討過渡金屬碳化物在體心立方鐵中之界面能、形成能及其成核機制 | zh_TW |
dc.title | First-Principles Study of Interface between bcc Fe and Transition Metal Carbides | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊哲人,吳鉉忠,李明憲,顏鴻威 | |
dc.subject.keyword | 第一原理;高強度低合金鋼;析出強化;界面能, | zh_TW |
dc.subject.keyword | First Principles;Interface;Precipitation Hardening, | en |
dc.relation.page | 116 | |
dc.identifier.doi | 10.6342/NTU201700227 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-01-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 4.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。