請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59935
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭錦龍(Chin-Lung Kuo) | |
dc.contributor.author | Chia-Tse Hung | en |
dc.contributor.author | 洪嘉澤 | zh_TW |
dc.date.accessioned | 2021-06-16T09:45:59Z | - |
dc.date.available | 2022-02-16 | |
dc.date.copyright | 2017-02-16 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-01-24 | |
dc.identifier.citation | 1. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry 2011, 21, 9938.
2. Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective. J Am Chem Soc 2013, 135, 1167-76. 3. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-67. 4. Palacin, M. R., Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society reviews 2009, 38, 2565-75. 5. Scrosati, B.; Hassoun, J.; Sun, Y.-K., Lithium-ion batteries. A look into the future. Energy & Environmental Science 2011, 4, 3287. 6. Szczech, J. R.; Jin, S., Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 2011, 4, 56-72. 7. Liu, C.; Neale, Z. G.; Cao, G., Understanding electrochemical potentials of cathode materials in rechargeable batteries. Materials Today 2016, 19, 109-123. 8. Nobuhara, K.; Nakayama, H.; Nose, M.; Nakanishi, S.; Iba, H., First-principles study of alkali metal-graphite intercalation compounds. Journal of Power Sources 2013, 243, 585-587. 9. Okamoto, Y., Density Functional Theory Calculations of Alkali Metal (Li, Na, and K) Graphite Intercalation Compounds. The Journal of Physical Chemistry C 2014, 118, 16-19. 10. Sharma, R. A., Thermodynamic Properties of the Lithium-Silicon System. Journal of The Electrochemical Society 1976, 123, 1763. 11. Boukamp, B. A., All-Solid Lithium Electrodes with Mixed-Conductor Matrix. Journal of The Electrochemical Society 1981, 128, 725. 12. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B., Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities. Journal of The Electrochemical Society 2004, 151, A698. 13. Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles. Particle & Particle Systems Characterization 2014, 31, 317-336. 14. Chou, C.-Y.; Kim, H.; Hwang, G. S., A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li–M (M = Si, Ge, Sn) Alloys. The Journal of Physical Chemistry C 2011, 115, 20018-20026. 15. Peled, E., Improved Graphite Anode for Lithium-Ion Batteries Chemically. Journal of The Electrochemical Society 1996, 143, L4. 16. Liang, W.; Yang, H.; Fan, F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S., Tough germanium nanoparticles under electrochemical cycling. ACS Nano 2013, 7, 3427-33. 17. Limthongkul, P.; Jang, Y.-I.; Dudney, N. J.; Chiang, Y.-M., Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia 2003, 51, 1103-1113. 18. Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang, J. Y., Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett 2011, 11, 3991-7. 19. Lim, L. Y.; Liu, N.; Cui, Y.; Toney, M. F., Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries. Chemistry of Materials 2014, 26, 3739-3746. 20. Gu, M.; Wang, Z.; Connell, J. G.; Perea, D. E.; Lauhon, L. J.; Gao, F.; Wang, C., Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4. ACS Nano 2013, 7, 6303-9. 21. Silberstein, K. E.; Lowe, M. A.; Richards, B.; Gao, J.; Hanrath, T.; Abruna, H. D., Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries. Langmuir : the ACS journal of surfaces and colloids 2015, 31, 2028-35. 22. Yen, Y.-C.; Chao, S.-C.; Wu, H.-C.; Wu, N.-L., Study on Solid-Electrolyte-Interphase of Si and C-Coated Si Electrodes in Lithium Cells. Journal of The Electrochemical Society 2009, 156, A95. 23. Nadimpalli, S. P. V.; Sethuraman, V. A.; Dalavi, S.; Lucht, B.; Chon, M. J.; Shenoy, V. B.; Guduru, P. R., Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries. Journal of Power Sources 2012, 215, 145-151. 24. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89, 206-218. 25. Aurbach, D.; Moshkovich, M.; Cohen, Y.; Schechter, A., The Study of Surface Film Formation on Noble-Metal Electrodes in Alkyl Carbonates/Li Salt Solutions, Using Simultaneous in Situ AFM, EQCM, FTIR, and EIS. Langmuir : the ACS journal of surfaces and colloids 1999, 15, 2947-2960. 26. Deshpande, R.; Verbrugge, M.; Cheng, Y. T.; Wang, J.; Liu, P., Battery Cycle Life Prediction with Coupled Chemical Degradation and Fatigue Mechanics. Journal of the Electrochemical Society 2012, 159, A1730-A1738. 27. Ganesh, P.; Kent, P. R. C.; Jiang, D.-e., Solid–Electrolyte Interphase Formation and Electrolyte Reduction at Li-Ion Battery Graphite Anodes: Insights from First-Principles Molecular Dynamics. The Journal of Physical Chemistry C 2012, 116, 24476-24481. 28. Nguyen, C. C.; Song, S.-W., Characterization of SEI layer formed on high performance Si–Cu anode in ionic liquid battery electrolyte. Electrochemistry Communications 2010, 12, 1593-1595. 29. Tian, H.; Xin, F.; Wang, X.; He, W.; Han, W., High capacity group-IV elements (Si, Ge, Sn) based anodes for lithium-ion batteries. Journal of Materiomics 2015, 1, 153-169. 30. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B., Highly Reversible Lithium Storage in Nanostructured Silicon. Electrochemical and Solid-State Letters 2003, 6, A194. 31. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J., Li-alloy based anode materials for Li secondary batteries. Chemical Society reviews 2010, 39, 3115-41. 32. Wu, S.; Han, C.; Iocozzia, J.; Lu, M.; Ge, R.; Xu, R.; Lin, Z., Germanium-Based Nanomaterials for Rechargeable Batteries. Angew Chem Int Ed Engl 2016, 55, 7898-922. 33. Ma, H.; Cheng, F.; Chen, J. Y.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J., Nest-like Silicon Nanospheres for High-Capacity Lithium Storage. Advanced Materials 2007, 19, 4067-4070. 34. Song, T.; Xia, J.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I.; Zang, D. S.; Kim, H.; Huang, Y.; Hwang, K. C.; Rogers, J. A.; Paik, U., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett 2010, 10, 1710-6. 35. Sangster, J.; Pelton, A. D., The Ge- Li (Germanium-Lithium) system. Journal of Phase Equilibria 1997, 18, 289-294. 36. Fuller, C. S.; Severiens, J. C., Mobility of Impurity Ions in Germanium and Silicon. Physical Review 1954, 96, 21-24. 37. Conwell, E., Properties of Silicon and Germanium. Proceedings of the IRE 1952, 40, 1327-1337. 38. Lim, L. Y.; Fan, S.; Hng, H. H.; Toney, M. F., Storage Capacity and Cycling Stability in Ge Anodes: Relationship of Anode Structure and Cycling Rate. Advanced Energy Materials 2015, 5, 1500599. 39. Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O'Dwyer, C.; Ryan, K. M., High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network. Nano Lett 2014, 14, 716-23. 40. Lee, G.-H.; Lee, S.; Lee, C. W.; Choi, C.; Kim, D.-W., Stable high-areal-capacity nanoarchitectured germanium anodes on three-dimensional current collectors for Li ion microbatteries. J. Mater. Chem. A 2016, 4, 1060-1067. 41. Park, M. H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J., Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew Chem Int Ed Engl 2011, 50, 9647-50. 42. Abel, P. R.; Chockla, A. M.; Lin, Y. M.; Holmberg, V. C.; Harris, J. T.; Korgel, B. A.; Heller, A.; Mullins, C. B., Nanostructured Si((1)-x)Gex for tunable thin film lithium-ion battery anodes. ACS Nano 2013, 7, 2249-57. 43. Song, T.; Cheng, H.; Choi, H.; Lee, J. H.; Han, H.; Lee, D. H.; Yoo, D. S.; Kwon, M. S.; Choi, J. M.; Doo, S. G.; Chang, H.; Xiao, J.; Huang, Y.; Park, W. I.; Chung, Y. C.; Kim, H.; Rogers, J. A.; Paik, U., Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano 2012, 6, 303-9. 44. Duveau, D.; Fraisse, B.; Cunin, F.; Monconduit, L., Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi1–xElectrodes for Li Ion Batteries. Chemistry of Materials 2015, 27, 3226-3233. 45. Hwang, C.-M.; Lim, C.-H.; Park, J.-W., Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries. Thin Solid Films 2011, 519, 2332-2338. 46. Ge, M.; Kim, S.; Nie, A.; Shahbazian-Yassar, R.; Mecklenburg, M.; Lu, Y.; Fang, X.; Shen, C.; Rong, J.; Yi Park, S.; Suk Kim, D.; Young Kim, J.; Zhou, C., Capacity retention behavior and morphology evolution of SixGe1-x nanoparticles as lithium-ion battery anode. Nanotechnology 2015, 26, 255702. 47. Liu, X. H.; Liu, Y.; Kushima, A.; Zhang, S.; Zhu, T.; Li, J.; Huang, J. Y., In Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures. Advanced Energy Materials 2012, 2, 722-741. 48. Liu, Y.; Vishniakou, S.; Yoo, J.; Dayeh, S. A., Engineering Heteromaterials to Control Lithium Ion Transport Pathways. Scientific reports 2015, 5, 18482. 49. Jiang, N., On the in situ study of Li ion transport in transmission electron microscope. Journal of Materials Research 2014, 30, 424-428. 50. Chou, C.-Y.; Hwang, G. S., On the origin of anisotropic lithiation in crystalline silicon over germanium: A first principles study. Applied Surface Science 2014, 323, 78-81. 51. Chou, C.-Y.; Hwang, G. S., On the origin of the significant difference in lithiation behavior between silicon and germanium. Journal of Power Sources 2014, 263, 252-258. 52. Zintl, E., Intermetallische Verbindungen. Angewandte Chemie 1939, 52, 1-6. 53. Born, M.; Oppenheimer, R., Zur Quantentheorie der Molekeln. Annalen der Physik 1927, 389, 457-484. 54. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136, B864-B871. 55. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140, A1133-A1138. 56. Thomas, L. H., The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 2008, 23, 542. 57. Dirac, P. A. M., Note on Exchange Phenomena in the Thomas Atom. Mathematical Proceedings of the Cambridge Philosophical Society 2008, 26, 376. 58. Vosko, S. H.; Wilk, L.; Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics 1980, 58, 1200-1211. 59. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B 1992, 46, 6671-6687. 60. Blöchl, P. E., Projector augmented-wave method. Physical Review B 1994, 50, 17953-17979. 61. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59, 1758-1775. 62. Car, R.; Parrinello, M., Unified approach for molecular dynamics and density-functional theory. Phys Rev Lett 1985, 55, 2471-2474. 63. Verlet, L., Computer 'Experiments' on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review 1967, 159, 98-103. 64. Swope, W. C., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. The Journal of chemical physics 1982, 76, 637. 65. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics 1984, 81, 511. 66. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A 1985, 31, 1695-1697. 67. Jónsson, H.; Mills, G.; Jacobsen, K. W., Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions. 1998. 68. Lugt, W. v. d.; Alblas, B. P., in Handbook of Thermodynamic and Transport Properties of Alkali Metals, edited by R. W. Ohse. 1985, Chap. 5.1. 69. Kulkarni, R. V.; Aulbur, W. G.; Stroud, D., Ab initio molecular-dynamics study of the structural and transport propertiesof liquid germanium. Physical Review B 1997, 55, 6896-6903. 70. Štich, I.; Car, R.; Parrinello, M., Structural, bonding, dynamical, and electronic properties of liquid silicon: Anab initiomolecular-dynamics study. Physical Review B 1991, 44, 4262-4274. 71. Kresse, G.; Hafner, J., Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Physical Review B 1994, 49, 14251-14269. 72. Wang, S.; Wang, C. Z.; Chuang, F. C.; Morris, J. R.; Ho, K. M., Ab initio molecular dynamics simulation of liquid Al88Si12 alloys. The Journal of chemical physics 2005, 122, 34508. 73. Khoo, K. H.; Chan, T. L.; Kim, M.; Chelikowsky, J. R., Ab initiomolecular dynamics simulations of molten Al1−xSixalloys. Physical Review B 2011, 84. 74. Xu, R.; van der Lugt, W., The electrical resistivities of liquid Li-Ge alloys. Physica B: Condensed Matter 1991, 173, 435-438. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59935 | - |
dc.description.abstract | 本研究利用第一原理計算與分子動力學模擬探討液態與非晶相鋰鍺合金在不同成分下的動力學、結構等性質,LixGe合金成分介於x = 0.45-4.81,藉由適當的程序產生液態和非晶相結構,並且與鋰矽合金系統進行相關性質的比較,此篇論文主要分成兩個部分:
第一部分的研究主要針對液態鋰鍺合金相關性質進行分析,鋰鍺合金內原子的擴散係數強烈地受成分濃度所影響,在我們計算的濃度範圍中,Li1.00Ge原子的擴散係數呈現極小,當合金內鋰濃度上升,原子的擴散系數轉而提高,另外在低鋰濃度Li0.45Ge原子的擴散能力也會較Li1.00Ge大幅提升。但鋰矽系統不同,原子的擴散系數只隨著鋰濃度提高而上升。比較兩系統,低鋰濃度時,鋰鍺合金原子的擴散系數大於鋰矽合金系統,但濃度接近x = 1.00時,鋰鍺系統原子擴散系數會迅速地降低,兩系統出現反轉,鋰矽合金內原子的擴散系數會大於鋰鍺合金。我們藉由速度自相關函數(velocity autocorrelation function)的方法來分析系統,發現在Li1.00Ge內鋰和鍺原子間的交互作用力極強,導致原子的擴散能力大幅的降低,但Li1.00Si中無此現象。在結構性質的分析中顯示Li1.00Ge因為極強的鋰和鍺原子間的交互作用力導致特殊的原子分布關係,另外我們還觀察到鋰鍺合金在低鍺濃度時鍺原子隨著溫度升高而聚集的現象。最後我們分析了鋰鍺合金的能量態密度,合金呈現金屬材料的特性,且鋰鍺濃度接近八隅體組成時(Li3.57Ge),在費米能階附近呈現極小,代表其電子導電率低於它組濃度,具最弱的金屬特性。 在本研究的第二個部分,我們將前述的液態合金進行適當的降溫程序,再進行結構最適化處理後得到非晶相鋰鍺合金固體。對各濃度非晶相鋰鍺合金進行結構與電子性質分析,結果顯示,非晶相合金與液態合金有相似的短程局域結構,結構並不會隨著相變化的過程有大幅度的轉變,在態密度的計算上也與液態合金具有相似的結果。 | zh_TW |
dc.description.abstract | This study discusses two main topics. First part, we investigated the dynamic, structural and electronic properties of the liquid Li-Ge alloys. We also compared the Li-Ge system with Li-Si system which had been studied. Second, we studied their amorphous solid. By using first-principles calculations and molecular dynamics simulations, we generate realistic structural models of the liquid and amorphous alloys within various compositions.
Diffusivities of Li and Ge atoms appear to be largely dependent on the chemical composition of alloys. Initially, the diffusivities of Li and Ge decrease rapidly with the increase of Li, when the composition reaches Li1.00Ge, the diffusivities of the atoms exhibit the minimum values. Nevertheless, as the Li concentration continued to rise, the diffusivities of both elements go up instead. On the other hand, the trending in diffusivity of the Li-Si system is different, it increases with the concentration of Li only. In addition, we found that the diffusivity of the atoms in Li-Ge alloy are larger than atoms in Li-Si alloy in early stage of lithiation, as previous studies had shown. But when the concentration of Li reaches a certain level, the diffusivities of the atoms in Li-Si alloy will be greater than atoms in Li-Ge alloy. The interactions between atoms in the alloy can be examined via the velocity autocorrelation function. Results showed that severe decline of diffusivities in Li¬1.00Ge is caused by the strong interactions between Li and Ge atoms, while this phenomenon can’t be found in Li-Si system. This special interactions between Li and Ge atoms can be proved by structural property analysis. Finally, we calculated the DOS of LixGe and the results showed the poor metallic behavior of LixGe near the octet composition. Also, amorphous LixGe alloy share similar local bonding structure and electronic property with liquid LixGe alloy. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:45:59Z (GMT). No. of bitstreams: 1 ntu-106-R03527058-1.pdf: 5663235 bytes, checksum: b81e0b644fb135a92d4104911ba9f0b1 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 #
口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 1.1 研究背景 鋰電池發展 1 1.2 IV-A族負極鋰離子電池 1 1.2.1 矽基負極系統 2 1.2.2 鍺基負極系統 3 1.3 研究動機和目標 5 第二章 理論基礎 13 2.1 波恩-歐本海默近似法53 13 2.2 密度泛函理論54, 55 13 2.2.1 Thomas-Fermi 模型56 14 2.2.2 Hohenberg-Kohn定理54 14 2.2.3 Kohn-Sham 方程式55 15 2.2.4 交換相關泛函(exchange-correlation functional) 16 2.2.5 虛位勢法(pseudopotential method)60, 61 17 2.3 分子動力學模擬62 18 2.3.1 Verlet演算法63 18 2.3.2 正則系統的溫度控制:Nosé-Hoover控溫法65, 66 19 2.4 Nudged elastic band (NEB) method67 20 第三章 研究方法 22 3.1 計算條件 22 3.2 結構模型建立 23 第四章 結果與討論 25 4.1 液態合金性質的分析 25 4.1.1 液態鋰鍺合金的動力學性質 25 4.1.2 液態鋰鍺合金的結構性質 48 4.1.3 液態鋰鍺合金的電子性質 72 4.2 非晶相系統分析:與液態結構進行比較 75 4.2.1 非晶相系統建立 75 4.2.2 非晶相固體結構分析 76 4.2.3 非晶相固體電子性值 82 第五章 結論 83 參考文獻 85 | |
dc.language.iso | zh-TW | |
dc.title | 以第一原理計算探討鋰鍺合金之液相與非晶相之動力學與結構性質 | zh_TW |
dc.title | First-Principles Study of the Dynamic and Structural Properties of Liquid and Amorphous Lix¬Ge Alloys | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林祥泰(Hsiang-Tai Lin),黃慶怡(Ching-Yi Huang),趙聖德(Sheng-Te Chao) | |
dc.subject.keyword | 鋰電池,負極,合金型負極,鋰鍺合金,動力學,速度自相關函數, | zh_TW |
dc.subject.keyword | lithium-ion battery,anode,alloy type,lithium germanium alloy,dynamics,velocity autocorrelation function,VACF, | en |
dc.relation.page | 90 | |
dc.identifier.doi | 10.6342/NTU201700224 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-01-24 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。