Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59924
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙
dc.contributor.authorYa-Min Yangen
dc.contributor.author楊雅閔zh_TW
dc.date.accessioned2021-06-16T09:45:20Z-
dc.date.available2017-03-01
dc.date.copyright2017-03-01
dc.date.issued2017
dc.date.submitted2017-01-24
dc.identifier.citationAL-TAWFIQ, J. A., HINEDI, K., GHANDOUR, J., KHAIRALLA, H., MUSLEH, S., UJAYLI, A. & MEMISH, Z. A. (2014). Middle East respiratory syndrome coronavirus: a case-control study of hospitalized patients. Clin Infect Dis 59, 160-5.
ALSAHAFI, A. J. & CHENG, A. C. (2016). The epidemiology of Middle East respiratory syndrome coronavirus in the Kingdom of Saudi Arabia, 2012–2015. International Journal of Infectious Diseases 45, 1-4.
ANDERSON, R. M. (1991). Discussion: the Kermack-McKendrick epidemic threshold theorem. Bull Math Biol 53, 3-32.
ANDERSON, R. M. & MAY, R. M. (1985). Age-related changes in the rate of disease transmission: implications for the design of vaccination programmes. J Hyg (Lond) 94, 365-436.
ANDERSON, R. M. & MAY, R. M. (1991). Infectious diseases of humans : dynamics and control: Oxford University Press.
ANDERSSON, M., EKDAHL, K., MOLSTAD, S., PERSSON, K., HANSSON, H. B. & GIESECKE, J. (2005). Modelling the spread of penicillin-resistant Streptococcus pneumoniae in day-care and evaluation of intervention. Stat Med 24, 3593-607.
ARMITAGE, P., MEYNELL, G. G. & WILLIAMS, T. (1965). Birth-death and other models for microbial infection. Nature 207, 570-2.
ASSIRI, A., AL-TAWFIQ, J. A., AL-RABEEAH, A. A., AL-RABIAH, F. A., AL-HAJJAR, S., AL-BARRAK, A., FLEMBAN, H., AL-NASSIR, W. N., BALKHY, H. H., AL-HAKEEM, R. F., MAKHDOOM, H. Q., ZUMLA, A. I. & MEMISH, Z. A. (2013a). Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. The Lancet Infectious Diseases 13, 752-761.
ASSIRI, A., MCGEER, A., PERL, T. M., PRICE, C. S., AL RABEEAH, A. A., CUMMINGS, D. A., ALABDULLATIF, Z. N., ASSAD, M., ALMULHIM, A., MAKHDOOM, H., MADANI, H., ALHAKEEM, R., AL-TAWFIQ, J. A., COTTEN, M., WATSON, S. J., KELLAM, P., ZUMLA, A. I., MEMISH, Z. A. & TEAM, K. M.-C. I. (2013b). Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 369, 407-16.
BACAËR, N. (2011a). A short history of mathematical population dynamics. London: Springer Verlag.
BACAËR, N. (2011b). A short history of mathematical population dynamics. London: Springer Verlag.
BAILEY, N. T. J. (1956). ON ESTIMATING THE LATENT AND INFECTIOUS PERIODS OF MEASLES: I. FAMILIES WITH TWO SUSCEPTIBLES ONLY. Biometrika 43, 15-22.
BAILEY, N. T. J. (1975). The mathematical theory of infectious diseases and its applications. 2nd ed. edn. London: Griffin.
BARLETT, M. S. (1955). An introduction to Stochastic processes with special reference to methods and applications: Cambridge University Press.
BARRETT, C. L., BISSET, K. R., EUBANK, S. G., XIZHOU, F. & MARATHE, M. V. (2008). EpiSimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis pp. 1-12.
BARTLETT, M. S. (1949). Some Evolutionary Stochastic Processes. Journal of the Royal Statistical Society. Series B (Methodological) 11, 211-229.
BARTLETT, M. S. (1956). Deterministic and Stochastic Models for Recurrent Epidemics. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 4: Contributions to Biology and Problems of Health pp. 81-109, Berkeley, Calif.: University of California Press.
BECKMAN, R., BISSET, K. R., CHEN, J., LEWIS, B., MARATHE, M. & STRETZ, P. (2014). ISIS: a networked-epidemiology based pervasive web app for infectious disease pandemic planning and response. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining pp. 1847-1856, New York, New York, USA: ACM.
BERMEJO-MARTIN, J. F., ALMANSA, R. & ORTIZ DE LEJARAZU, R. (2013). Weakened immunity in aged hosts with comorbidities as a risk factor for the emergence of influenza A H7N9 mutants. J Infect Dev Ctries 7, 497-8.
BISSET, K. R., CHEN, J., DEODHAR, S., FENG, X., MA, Y. & MARATHE, M. V. (2014). Indemics: An Interactive High-Performance Computing Framework for Data Intensive Epidemic Modeling. ACM Trans Model Comput Simul 24.
BISSET, K. R., CHEN, J., FENG, X., KUMAR, V. S. A. & MARATHE, M. V. (2009). EpiFast: a fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In Proceedings of the 23rd international conference on Supercomputing pp. 430-439, Yorktown Heights, NY, USA: ACM.
BREBAN, R., RIOU, J. & FONTANET, A. (2013). Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. The Lancet 382, 694-699.
CARRAT F, VERGU E, FERGUSON NM ET AL. TIME LINES OF INFECTION AND DISEASE IN HUMAN INFLUENZA: A REVIEW OF VOLUNTEER CHALLENGE STUDIES. AM J EPIDEMIOL 2008;167:775-85.
CASAGRANDI, R., BOLZONI, L., LEVIN, S. A. & ANDREASEN, V. (2006). The SIRC model and influenza A. Math Biosci 200, 152-69.
CAUCHEMEZ, S., FRASER, C., VAN KERKHOVE, M. D., DONNELLY, C. A., RILEY, S., RAMBAUT, A., ENOUF, V., VAN DER WERF, S. & FERGUSON, N. M. (2014a). Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect Dis 14, 50-6.
CAUCHEMEZ, S., FRASER, C., VAN KERKHOVE, M. D., DONNELLY, C. A., RILEY, S., RAMBAUT, A., ENOUF, V., VAN DER WERF, S. & FERGUSON, N. M. (2014b). Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. The Lancet Infectious Diseases 14, 50-56.
CAUCHEMEZ, S., VAN KERKHOVE, M. D., RILEY, S., DONNELLY, C. A., FRASER, C. & FERGUSON, N. M. (2013). Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill 18.
CHAN, J., NG, C., CHAN, Y., MOK, T., LEE, S., CHU, S., LAW, W., LEE, M. & LI, P. (2003). Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax 58, 686-689.
CHAO, D. L., HALLORAN, M. E., OBENCHAIN, V. J. & LONGINI, I. M., JR. (2010). FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput Biol 6, e1000656.
CHIANG, C. L. (1980). An introduction to stochastic processes and their applications. Huntington, N.Y.: R. E. Krieger Pub. Co.
CHOWELL, G., BLUMBERG, S., SIMONSEN, L., MILLER, M. A. & VIBOUD, C. (2014). Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics 9, 40-51.
CHOWELL, G., FENIMORE, P. W., CASTILLO-GARSOW, M. A. & CASTILLO-CHAVEZ, C. (2003). SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol 224, 1-8.
CHOWELL, G., HENGARTNER, N. W., CASTILLO-CHAVEZ, C., FENIMORE, P. W. & HYMAN, J. M. (2004). The basic reproduction number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol 229, 119-26.
COELHO, F. C., CRUZ, O. G. & CODECO, C. T. (2008). Epigrass: a tool to study disease spread in complex networks. Source Code Biol Med 3, 3.
CONGDON, P. (2010). Applied Bayesian hierarchical methods. Boca Raton: CRC Press.
COTTEN, M., WATSON, S. J., KELLAM, P., AL-RABEEAH, A. A., MAKHDOOM, H. Q., ASSIRI, A., AL-TAWFIQ, J. A., ALHAKEEM, R. F., MADANI, H., ALRABIAH, F. A., HAJJAR, S. A., AL-NASSIR, W. N., ALBARRAK, A., FLEMBAN, H., BALKHY, H. H., ALSUBAIE, S., PALSER, A. L., GALL, A., BASHFORD-ROGERS, R., RAMBAUT, A., ZUMLA, A. I. & MEMISH, Z. A. (2013). Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study. The Lancet 382, 1993-2002.
COTTEN, M., WATSON, S. J., ZUMLA, A. I., MAKHDOOM, H. Q., PALSER, A. L., ONG, S. H., AL RABEEAH, A. A., ALHAKEEM, R. F., ASSIRI, A., AL-TAWFIQ, J. A., ALBARRAK, A., BARRY, M., SHIBL, A., ALRABIAH, F. A., HAJJAR, S., BALKHY, H. H., FLEMBAN, H., RAMBAUT, A., KELLAM, P. & MEMISH, Z. A. (2014). Spread, circulation, and evolution of the Middle East respiratory syndrome coronavirus. MBio 5.
COWLING, B. J., PARK, M., FANG, V. J., WU, P., LEUNG, G. M. & WU, J. T. (2015). Preliminary epidemiological assessment of MERS-CoV outbreak in South Korea, May to June 2015. Euro Surveill 20, 7-13.
COX, D. R. & MILLER, H. D. (1965). The theory of stochastic processes. New York,: Wiley.
DALEY, D. J. & GANI, J. (1999). Epidemic modelling : an introduction. Cambridge: Cambridge University Press.
DAVIES, J. R., GRILLI, E. A. & SMITH, A. J. (1984). Influenza A: infection and reinfection. J Hyg (Lond) 92, 125-7.
DE GROOT, R. J., BAKER, S. C., BARIC, R. S., BROWN, C. S., DROSTEN, C., ENJUANES, L., FOUCHIER, R. A., GALIANO, M., GORBALENYA, A. E., MEMISH, Z. A., PERLMAN, S., POON, L. L., SNIJDER, E. J., STEPHENS, G. M., WOO, P. C., ZAKI, A. M., ZAMBON, M. & ZIEBUHR, J. (2013). Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol 87, 7790-2.
DEGUEN, S. & FLAHAULT, A. (2000). Impact on immunization of seasonal cycle of chickenpox. Eur J Epidemiol 16, 1177-81.
DIETZ, K. (1975). Transmission and control of arbovirus disease. Society for Industrial and Applied Mathematics, 104-121.
DIETZ, K. (1993). The estimation of the basic reproduction number for infectious diseases. Stat Methods Med Res 2, 23-41.
DROSTEN, C., SEILMAIER, M., CORMAN, V. M., HARTMANN, W., SCHEIBLE, G., SACK, S., GUGGEMOS, W., KALLIES, R., MUTH, D., JUNGLEN, S., MÜLLER, M. A., HAAS, W., GUBERINA, H., RÖHNISCH, T., SCHMID-WENDTNER, M., ALDABBAGH, S., DITTMER, U., GOLD, H., GRAF, P., BONIN, F., RAMBAUT, A. & WENDTNER, C.-M. (2013). Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. The Lancet Infectious Diseases 13, 745-751.
EICHNER, M., SCHWEHM, M., DUERR, H. P. & BROCKMANN, S. O. (2007). The influenza pandemic preparedness planning tool InfluSim. BMC Infect Dis 7, 17.
EUBANK, S., GUCLU, H., KUMAR, V. S., MARATHE, M. V., SRINIVASAN, A., TOROCZKAI, Z. & WANG, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature 429, 180-4.
FIORE, A. E., UYEKI, T. M., BRODER, K., FINELLI, L., EULER, G. L., SINGLETON, J. A., ISKANDER, J. K., WORTLEY, P. M., SHAY, D. K., BRESEE, J. S. & COX, N. J. (2010). Prevention and control of influenza with vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2010. MMWR Recomm Rep 59, 1-62.
FLUTRACKERS.COM Novel Coronavirus - WHO, CHP, WPRO, ECDC, OIE, FAO, MoA, reports and updates. .
FORD, D. A., KAUFMAN, J. H. & EIRON, I. (2006). An extensible spatial and temporal epidemiological modelling system. Int J Health Geogr 5, 4.
GARNETT, G. P. & BOWDEN, F. J. (2000). Epidemiology and control and curable sexually transmitted diseases: opportunities and problems. Sex Transm Dis 27, 588-99.
GELMAN, A. (2014). Bayesian data analysis. Third edition. edn. Boca Raton: CRC Press.
GHANI, A. C., DONNELLY, C. A., COX, D. R., GRIFFIN, J. T., FRASER, C., LAM, T. H., HO, L. M., CHAN, W. S., ANDERSON, R. M., HEDLEY, A. J. & LEUNG, G. M. (2005). Methods for estimating the case fatality ratio for a novel, emerging infectious disease. American journal of epidemiology 162, 479-86.
GOMES, M. G., WHITE, L. J. & MEDLEY, G. F. (2004). Infection, reinfection, and vaccination under suboptimal immune protection: epidemiological perspectives. J Theor Biol 228, 539-49.
GOMES, M. G., WHITE, L. J. & MEDLEY, G. F. (2005). The reinfection threshold. J Theor Biol 236, 111-3.
GRIFFITHS, D. A. (1972). A Bivariate Birth-Death Process Which Approximates to the Spread of a Disease Involving a Vector. Journal of Applied Probability 9, 65-75.
GUERY, B., POISSY, J., EL MANSOUF, L., SÉJOURNÉ, C., ETTAHAR, N., LEMAIRE, X., VUOTTO, F., GOFFARD, A., BEHILLIL, S., ENOUF, V., CARO, V., MAILLES, A., CHE, D., MANUGUERRA, J.-C., MATHIEU, D., FONTANET, A. & VAN DER WERF, S. (2013). Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus: a report of nosocomial transmission. The Lancet 381, 2265-2272.
GULLAND, A. (2013). Novel coronavirus spreads to Tunisia. BMJ 346, f3372.
HEFFERNAN, J. M., SMITH, R. J. & WAHL, L. M. (2005). Perspectives on the basic reproductive ratio. J R Soc Interface 2, 281-93.
HETHCOTE, H. W. (1999). Simulations of pertussis epidemiology in the United States: effects of adult booster vaccinations. Math Biosci 158, 47-73.
HIJAWI B, A. M., SAYAYDEH A, ALQASRAWI S, HADDADIN A, & N., J. (2013). Novel coronavirus infection in Jordan April 2012: epidemiological findings from a retrospective investigation. Eastern Mediterranean Health Journal 19 (suppl 1), S12–18.
HSIEH, Y. H., KING, C. C., CHEN, C. W., HO, M. S., HSU, S. B. & WU, Y. C. (2007). Impact of quarantine on the 2003 SARS outbreak: a retrospective modeling study. J Theor Biol 244, 729-36.
HSU, C. Y., YEN, A. M., CHEN, L. S. & CHEN, H. H. (2014). Surveillance of influenza from household to community in Taiwan. Transactions of the Royal Society of Tropical Medicine and Hygiene 108, 213-20.
HSU, C. Y., YEN, A. M., CHEN, L. S. & CHEN, H. H. (2015). Analysis of household data on influenza epidemic with Bayesian hierarchical model. Mathematical biosciences 261, 13-26.
HUI, D. S., PERLMAN, S. & ZUMLA, A. (2015a). Spread of MERS to South Korea and China. The Lancet Respiratory Medicine 3, 509-510.
HUI, D. S., PERLMAN, S. & ZUMLA, A. (2015b). Spread of MERS to South Korea and China. Lancet Respir Med 3, 509-10.
KEIDING, N. (1975). Maximum Likelihood Estimation in the Birth-and-Death Process. The Annals of Statistics 3, 363-372.
KERMACK, W. O. & MCKENDRICK, A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 115, 700-721.
KIM D, KIM Y, PARK S, YUN M, YANG J, KANG H, ET AL. VARIATIONS IN SPIKE GLYCOPROTEIN GENE OF MERS-COV, SOUTH KOREA, 2015. EMERG INFECT DIS. 2016;22(1):100-104. HTTPS://DX.DOI.ORG/10.3201/EID2201.151055
KRETZSCHMAR, M. (1989). A renewal equation with a birth-death process as a model for parasitic infections. J Math Biol 27, 191-221.
LAI, C. C., JIANG, D. S., WU, H. M. & CHEN, H. H. (2015). A dynamic model for the outbreaks of hand, foot, and mouth disease in Taiwan. Epidemiol Infect 144, 1500-11.
LEKONE, P. E. & FINKENSTADT, B. F. (2006). Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62, 1170-7.
LESSLER J, REICH NG, CUMMINGS DA ET AL. OUTBREAK OF 2009 PANDEMIC INFLUENZA A (H1N1) AT A NEW YORK CITY SCHOOL. N ENGL J MED 2009;361:2628-36.
LESSLER, J., SALJE, H., VAN KERKHOVE, M. D., FERGUSON, N. M., CAUCHEMEZ, S., RODRIQUEZ-BARRAQUER, I., HAKEEM, R., JOMBART, T., AGUAS, R. & AL-BARRAK, A. (2016a). Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia. American journal of epidemiology, kwv452.
LESSLER, J., SALJE, H., VAN KERKHOVE, M. D., FERGUSON, N. M., CAUCHEMEZ, S., RODRIQUEZ-BARRAQUER, I., HAKEEM, R., JOMBART, T., AGUAS, R., AL-BARRAK, A. & CUMMINGS, D. A. (2016b). Estimating the Severity and Subclinical Burden of Middle East Respiratory Syndrome Coronavirus Infection in the Kingdom of Saudi Arabia. American journal of epidemiology 183, 657-63.
LIPSITCH, M., COHEN, T., COOPER, B., ROBINS, J. M., MA, S., JAMES, L., GOPALAKRISHNA, G., CHEW, S. K., TAN, C. C., SAMORE, M. H., FISMAN, D. & MURRAY, M. (2003). Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966-70.
LLOYD-SMITH, J. O., SCHREIBER, S. J., KOPP, P. E. & GETZ, W. M. (2005). Superspreading and the effect of individual variation on disease emergence. Nature 438, 355-9.
LUNN, D. J., THOMAS, A., BEST, N. & SPIEGELHALTER, D. (2000). WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing 10, 325-337.
MAJUMDER, M. S., RIVERS, C., LOFGREN, E. & FISMAN, D. (2014). Estimation of MERS-Coronavirus Reproduction number and Case Fatality Rate for the Spring 2014 Saudi Arabia Outbreak: Insights from Publicly Available Data. PLoS Curr 6.
MARAIS, B. J., LONNROTH, K., LAWN, S. D., MIGLIORI, G. B., MWABA, P., GLAZIOU, P., BATES, M., COLAGIURI, R., ZIJENAH, L., SWAMINATHAN, S., MEMISH, Z. A., PLETSCHETTE, M., HOELSCHER, M., ABUBAKAR, I., HASAN, R., ZAFAR, A., PANTALEO, G., CRAIG, G., KIM, P., MAEURER, M., SCHITO, M. & ZUMLA, A. (2013). Tuberculosis comorbidity with communicable and non-communicable diseases: integrating health services and control efforts. Lancet Infect Dis 13, 436-48.
MCKENDRICK, W. O. K. A. A. G. (1927). A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 115, 700-721.
MEMISH, Z. A., AL-TAWFIQ, J. A., MAKHDOOM, H. Q., AL-RABEEAH, A. A., ASSIRI, A., ALHAKEEM, R. F., ALRABIAH, F. A., AL HAJJAR, S., ALBARRAK, A., FLEMBAN, H., BALKHY, H., BARRY, M., ALHASSAN, S., ALSUBAIE, S. & ZUMLA, A. Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study. Clinical Microbiology and Infection 20, 469-474.
MEMISH, Z. A., COTTEN, M., WATSON, S. J., KELLAM, P., ZUMLA, A., ALHAKEEM, R. F., ASSIRI, A., RABEEAH, A. A. & AL-TAWFIQ, J. A. (2014). Community case clusters of Middle East respiratory syndrome coronavirus in Hafr Al-Batin, Kingdom of Saudi Arabia: a descriptive genomic study. Int J Infect Dis 23, 63-8.
MEMISH, Z. A., ZUMLA, A. I., AL-HAKEEM, R. F., AL-RABEEAH, A. A. & STEPHENS, G. M. (2013). Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med 368, 2487-94.
MIZUMOTO, K., ENDO, A., CHOWELL, G., MIYAMATSU, Y., SAITOH, M. & NISHIURA, H. (2015). Real-time characterization of risks of death associated with the Middle East respiratory syndrome (MERS) in the Republic of Korea, 2015. BMC Medicine 13, 228.
MONI, M. A. & LIO, P. (2014). Network-based analysis of comorbidities risk during an infection: SARS and HIV case studies. BMC Bioinformatics 15, 333.
NOWOTNY, N. & KOLODZIEJEK, J. (2014). Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013. Euro Surveill 19, 20781.
OBOHO, I. K., TOMCZYK, S. M., AL-ASMARI, A. M., BANJAR, A. A., AL-MUGTI, H., ALORAINI, M. S., ALKHALDI, K. Z., ALMOHAMMADI, E. L., ALRADDADI, B. M., GERBER, S. I., SWERDLOW, D. L., WATSON, J. T. & MADANI, T. A. (2015). 2014 MERS-CoV outbreak in Jeddah--a link to health care facilities. N Engl J Med 372, 846-54.
OBOHO , I. K., TOMCZYK , S. M., AL-ASMARI , A. M., BANJAR , A. A., AL-MUGTI , H., ALORAINI , M. S., ALKHALDI , K. Z., ALMOHAMMADI , E. L., ALRADDADI , B. M., GERBER , S. I., SWERDLOW , D. L., WATSON , J. T. & MADANI , T. A. (2015). 2014 MERS-CoV Outbreak in Jeddah — A Link to Health Care Facilities. New England Journal of Medicine 372, 846-854.
OMRANI, A. S., MATIN, M. A., HADDAD, Q., AL-NAKHLI, D., MEMISH, Z. A. & ALBARRAK, A. M. (2013). A family cluster of Middle East Respiratory Syndrome Coronavirus infections related to a likely unrecognized asymptomatic or mild case. Int J Infect Dis 17, e668-72.
OVASKAINEN, O. T. & GRENFELL, B. T. (2003). Mathematical tools for planning effective intervention scenarios for sexually transmitted diseases. Sex Transm Dis 30, 388-94.
PALESE, P. & YOUNG, J. F. (1982). Variation of influenza A, B, and C viruses. Science 215, 1468-74.
PARK, H. Y., LEE, E. J., RYU, Y. W., KIM, Y., KIM, H., LEE, H. & YI, S. J. (2015). Epidemiological investigation of MERS-CoV spread in a single hospital in South Korea, May to June 2015. Euro Surveill 20, 1-6.
PARK, J., LEE, D. S., CHRISTAKIS, N. A. & BARABASI, A. L. (2009). The impact of cellular networks on disease comorbidity. Mol Syst Biol 5, 262.
PEASE, C. M. (1987). An evolutionary epidemiological mechanism, with applications to type A influenza. Theor Popul Biol 31, 422-52.
PENTTINEN, P. M., KAASIK-AASLAV, K., FRIAUX, A., DONACHIE, A., SUDRE, B., AMATO-GAUCI, A. J., MEMISH, Z. A. & COULOMBIER, D. (2013). Taking stock of the first 133 MERS coronavirus cases globally--Is the epidemic changing? Euro Surveill 18.
PROMED-MAIL 15 Jun 2015 MERS-CoV (66): South Korea, Saudi Arabia.
PROTOTYPE PKPD MODEL LIBRARY FOR WINBUGS. IN: PROTOTYPE PKPD MODEL LIBRARY FOR WINBUGS (USER MANUAL: VERSION 1.2). METRUM INSTITUTE
PURI, P. S. (1968). Some further results on the birth-and-death process and its integral. Mathematical Proceedings of the Cambridge Philosophical Society 64, 141-154.
PUZELLI, S., AZZI, A., SANTINI, M. G., DI MARTINO, A., FACCHINI, M., CASTRUCCI, M. R., MEOLA, M., ARVIA, R., CORCIOLI, F., PIERUCCI, F., BARETTI, S., BARTOLONI, A., BARTOLOZZI, D., DE MARTINO, M., GALLI, L., POMPA, M. G., REZZA, G., BALOCCHINI, E. & DONATELLI, I. (2013). Investigation of an imported case of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013. Euro Surveill 18.
RAMBAUT, A. & WIKRAMARATNA, P. (2015a). MERS-Cases, https://github.com/rambaut/MERS-Cases/tree/gh-pages/data (accessed Jun 20, 2015).
RAMBAUT, A. & WIKRAMARATNA, P. (2015b). MERS-CoV spatial, temporal and epidemiological information. http://epidemic.bio.ed.ac.uk/coronavirus_background (accessed Jun 20, 2015).
REUSS, A., LITTERST, A., DROSTEN, C., SEILMAIER, M., BOHMER, M., GRAF, P., GOLD, H., WENDTNER, C. M., ZANUZDANA, A., SCHAADE, L., HAAS, W. & BUCHHOLZ, U. (2014). Contact investigation for imported case of Middle East respiratory syndrome, Germany. Emerg Infect Dis 20, 620-5.
RILEY, S., FRASER, C., DONNELLY, C. A., GHANI, A. C., ABU-RADDAD, L. J., HEDLEY, A. J., LEUNG, G. M., HO, L. M., LAM, T. H., THACH, T. Q., CHAU, P., CHAN, K. P., LO, S. V., LEUNG, P. Y., TSANG, T., HO, W., LEE, K. H., LAU, E. M., FERGUSON, N. M. & ANDERSON, R. M. (2003). Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science 300, 1961-6.
ROBINSON, J. C. (2004). An introduction to ordinary differential equations. Cambridge ; New York: Cambridge University Press.
SHORTLEY, G. & WILKINS, J. R. (1965). Independent-Action and Birth-Death Models in Experimental Microbiology. Bacteriol Rev 29, 102-41.
SU, S., WONG, G., LIU, Y., GAO, G. F., LI, S. & BI, Y. (2015). MERS in South Korea and China: a potential outbreak threat? Lancet 385, 2349-2350.
TWU, S. J., CHEN, T. J., CHEN, C. J., OLSEN, S. J., LEE, L. T., FISK, T., HSU, K. H., CHANG, S. C., CHEN, K. T., CHIANG, I. H., WU, Y. C., WU, J. S. & DOWELL, S. F. (2003). Control measures for severe acute respiratory syndrome (SARS) in Taiwan. Emerg Infect Dis 9, 718-20.
UNIT, M. B. (2004). 'WINBUGS DIFFERENTIAL INTERFACE (WBDIFF).' RETRIEVED SEP. 18, 2016, FROM HTTP://WINBUGS-DEVELOPMENT.MRC-BSU.CAM.AC.UK/WBDIFF.HTML.
VAN BOVEN, M., DE MELKER, H. E., SCHELLEKENS, J. F. & KRETZSCHMAR, M. (2000). Waning immunity and sub-clinical infection in an epidemic model: implications for pertussis in The Netherlands. Math Biosci 164, 161-82.
VAN DEN BROEK, J. & NISHIURA, H. (2009). Using epidemic prevalence data to jointly estimate reproduction and removal. The annals of applied statistics, 1505-1520.
WEBSTER, R. G., BEAN, W. J., GORMAN, O. T., CHAMBERS, T. M. & KAWAOKA, Y. (1992). Evolution and ecology of influenza A viruses. Microbiol Rev 56, 152-79.
WEBSTER, R. G., LAVER, W. G., AIR, G. M. & SCHILD, G. C. (1982). Molecular mechanisms of variation in influenza viruses. Nature 296, 115-21.
WHO (2014a). Middle East respiratory syndrome coronavirus (MERS-CoV) summary and literature update–as of 11 June 2014.
WHO (2014b). Update on MERS-CoV transmission from animals to humans, and interim recommendations for at-risk groups.
WHO (2015a). MERS-CoV outbreak largest outside Kingdom of Saudi Arabia.
WHO (2015b). Middle East respiratory syndrome coronavirus (MERS-CoV)_20150705 death and confirmed cases.
WHO (2016). Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia.
WHO MERS-COV RESEARCH, G. (2013). State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS Curr 5.
WILLIAMS, T. (1965). The Basic Birth-Death Model for Microbial Infections. Journal of the Royal Statistical Society. Series B (Methodological) 27, 338-360.
WOOD, R. M., EGAN, J. R. & HALL, I. M. (2014). A dose and time response Markov model for the in-host dynamics of infection with intracellular bacteria following inhalation: with application to Francisella tularensis. J R Soc Interface 11, 20140119.
ZAKI, A. M., VAN BOHEEMEN, S., BESTEBROER, T. M., OSTERHAUS, A. D. & FOUCHIER, R. A. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814-20.
ZUMLA, A., HUI, D. S. & PERLMAN, S. (2015). Middle East respiratory syndrome. The Lancet 386, 995-1007
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59924-
dc.description.abstract研究背景
過去呼吸道傳染病的數學模式大多以決定性微分方程為基礎,由於此類傳染病牽涉到為數眾多的易感族群,因此與其相關的參數如基礎再生數相對穩定。然而,近來新興傳染病(如中東呼吸症候群冠狀病毒感染症)及現行流行性感冒的監測則卻因病毒基因變異頻繁而增加其複雜性,也因此,需要利用隨機性微分方程模式處理此類傳染病在族群中的異質性,如個案共病症有無及家戶間的異質性等。
就方法學觀點而論,利用隨機微分方程模型過去往往遭遇求解困難。本論文利用貝氏馬可夫蒙地卡羅方法以電腦模擬方式得到相關參數的事後分佈,除了可以推導基礎再生數,估計傳染病絕跡的機率之外,尚可進行局部和全球的漸進穩定性和平衡點的評估分析,並據此發展傳染病動態過程的電腦輔助應用工具。
研究目的
本論文研究目的在應用隨機微分方程模式於傳染病SIR或其他相關模式,發展貝氏馬可夫蒙地卡羅電腦模擬程式用以估計呼吸道傳染病之基礎再生數及相關統計量如傳染病絕跡機率以作為傳染病監視之用,本論文以新興中東呼吸道症候群及現存的流行性感冒為例。特定研究目的如下:
(1) 發展貝氏馬可夫蒙地卡羅程式多階層多區間模式(包括SIR模式及出生-死亡模式型)以評估共病症等變項對感染者復原率的影響;
(2) 發展貝氏馬可夫蒙地卡羅程式用於微分方程多區間隨機過程,以中東呼吸道症候群為例估計基礎再生數及傳染病絕跡機率,並與傳統最大概似方法(非微分方程為基礎)做比較;
(3) 利用(2)的結果評估局部和全球的漸進穩定性和平衡點;
(4) 利用(2)的結果發展傳染病動態過程的電腦輔助,並考量部份免疫力及疫苗的影響。
材料與方法
1. 實證資料
(1) 流行性感冒
本研究流行性感冒資料來自健保申報資料,個案層級資料包括性別、年齡、是否施打疫苗及感冒就診日期,此外,亦收集家戶資料用以建構多階層隨機模型。
(2) 中東呼吸症候群冠狀病毒感染症(MERS)
本研究MERS資料取自於Rambaut 依據世界衛生組織公告的各國感染症資訊及文獻資料整理而得的線上資料庫。
2. 模式建構及統計分析
  本研究發展一系列貝氏馬可夫蒙地卡羅電腦語法,在SAS環境下完成以下模型建構:
(1) 多階層二階段馬可夫模型
(A) 建立以貝氏多階層之離散狀態連續時間馬可夫模型為基礎之二階段多階層模型,評估影響多國家流行的中東呼吸道症候群死亡風險之因素。
(B) 建立以貝氏架構為基礎之貝塔-二項分佈迴歸模型運用於流行性感冒家戶資料,評估個人之罹病危險與基礎再生數(R0)。
(2) 本研究發展出一系列微分方程隨機過程傳染病數學模式,如SIR模式及生死過程等,並應用於中東呼吸道症候群之流行資料,用以推估其基礎再生數,並透過負二項分佈的性質推算傳染病絕跡的機率。
(3) 運用(2)估計所得的參數,進行中東呼吸道症候群局部和全球的漸進穩定性和平衡點的評估。
(4) 在微軟Excel的環境之下發展傳染病動態過程的電腦輔助,並考量部份免疫力及疫苗的影響。
結果
1. 發展多階層二階段馬可夫模型運用於傳染病實證資料
(1) 中東呼吸症候群的流行
MERS 致死率為32.1% (95%CI: 29.9-34.3%),死亡風險在第一周平均增加率為每日13%,其後2周則為3%。在考慮共病以及年齡之影響並考量國家間的異質性後,具有共病者其死亡風險為未有共病者之4倍(aHR: 3.6,95% CI: 2.46-5.33)。
(2) 流行性感冒
罹病危險隨傳染世代增加而增加,與第一世代相較,第二到第四世代之罹病危險分別為35%、52%以及約兩倍。施打疫苗者之罹病危險較低(OR: 0.96,95%CI: 0.9-1.04)。R¬0於第一世代之1.76增加至至第四世代之3.64。在同一世代中,施打疫苗者相較於未施打者其R¬0 較低。以第一世代為例,施打疫苗者與未施打者其R0分別為1.70 (95% CI: 1.35-2.04) 與1.76 (95% CI: 1.40-2.12)。
2. 利用隨機過程傳染病數學模式估計中東呼吸症候群的流行
(1) 以非微分方程為基礎的貝氏蒙地卡羅馬可夫鏈模型估計中東呼吸症候群的流行,結果發現在不同國家,不同城市的不同時間點,若疾病流行已經結束,則所得的基礎再生數約略相同,皆在1左右。然而若是疾病仍在流行,基礎再生數則會大於1。吉達(2014/3-6)、利雅德(1, 2014/3-6)、利雅德(2, 2015/6-9)和南韓(2014/5-8)的基礎再生數分別為1.003、2.14、1.04和1.04。第60天中東呼吸症候群可滅絕的預測機率分別為72%、29%、71%及75%。
(2) 使用以微分方程為基礎的貝氏蒙地卡羅馬可夫鏈模型解三間隔的微分方程時,基礎再生數在在吉達(2014/3-6)、利雅德(1, 2014/3-6)、利雅德(2, 2015/6-9)和南韓(2014/5-8)分別為2.3、10.8、2.4及2.6。第60天中東呼吸症候群可滅絕的預測機率分別為41%、9%、36%及38%。
3. 局部和全球的漸進穩定性和平衡點的評估分析
不論利用非微分方程為基礎或以隨機微分方程為基礎的貝氏蒙地卡羅估計在四個區域均顯示平衡點僅針對無病個案(且估計結果不穩定),因此中東呼吸症候群的流行不會被滅絕,且可能變成地方性流行或者流行性傳染病。
4. 傳染病動態過程的電腦輔助應用工具設計
電腦輔助應用工具之發展及呈現以中東呼吸道症候群及流行性感冒為例,藉由傳染病動力曲線呈現兩種傳染病在不同傳染動力模型下,模擬族群在可感染、感染及復原間隨時間的動態變化,基礎有效再生數亦可產生以評估疾病傳播快慢。疾病在傳染期間之可感染、感染及復原人數亦可透過此應用工具預測各階段人數。
結論
本論文發展以貝氏馬可夫蒙地卡羅方法為基礎的傳染病模式,包括多階層模式及隨機微分方程模型,並將之應用於流行性感冒及中東呼吸道症候群實證資料,推導其基礎再生數及傳染病絕跡機率,最後則根據上述研究架構開發傳染病動態過程電腦輔助工具以作為疾病監測之依據。
zh_TW
dc.description.abstractBackground
Mathematical modelling for elucidating respiratory infectious disease used to rely on deterministic differential equation model as preventive strategies (such as vaccination, isolation, and quarantine) for containing such a kind of infectious disease often involves a large susceptible population that renders the parameter of interest i.e. basic reproduction number (R0) rather stable. Nonetheless, the surveillance of the emerging infectious disease such as MERS-CoV and the existing disease like influenza that is highly variable in mutation suggests that the deterministic one may need to be supplanted by the stochastic one because heterogeneity observed in these types of infectious diseases. For example, the sequale of susceptible with co-morbid diseases would be different from that of those without. The cause of heterogeneity may be also attributed to small proportion of susceptible clustering in the same setting (such as household), which makes the variation change from cluster to cluster.
From the viewpoint of methodology, the use of stochastic equation is faced with intractable solution or estimation of a string of differential equations. The recently proposed Bayesian Markov Chain Monte Carlo (MCMC) provides an opportunity to solve this issue but this has been never addressed before. The development of feasible and efficient computer algorithms for these ODEs play an important role in the estimation of basic reproduction number, the evaluation of the local and the global stability with respect to the equilibrium process, and the development of computer-aided tool of dynamic epidemic process of infection.
Objectives
The objectives of the thesis are therefore to apply stochastic ODE to the SIR or related models and to develop computer algorithms with Bayesian MCMC underpinning so as to to estimate the basic reproduction number and other interests of statistics such as the probability of extinction for the surveillance of respiratory infectious diseases with two illustrations, the emerging MERS and the commonly seen influenza. The specific aims are to
(1) develop Bayesian MCMC computer algorithms for multi-level compartment model to assess the effect of covariate of interest (such as co-morbidity) on the infected state and the recovery state using the SIR model or birth-and-death process;
(2) develop Bayesian MCMC computer algorithms for ODE-based compartment stochastic process in comparison with conventional maximum likelihood (non-ODE based) approach to data of MERS for estimating infection rate, the discharge rate, and death rate so as to derive and the probability of extinction through negative binomial transformation;
(3) evaluate local and global asymptotic stability and equilibrium based on (2);
(4) develop a computer-aided tool for dynamic epidemic process of infection based on (2) under consideration partial immunity and vaccination.
Materials and Methods
1. Empirical Data
(1) Influenza epidemic
Data on whether subjects developed influenza-like symptoms were derived from the National Health Insurance database. Information on the characteristics of the subjects, such as age, sex, vaccination status, and date of diagnosis were collected. Household information was also collected for the construction of multi-level stochastic model. .
(2) MERS-CoV
Data on reported cases of MERS cases since April, 2012 were derived from a web-based line list maintained by Rambaut with reference to the published literatures and the announcement of the disease information system of each country and WHO.
2. The Development of Bayesian MCMC Computer Algorithms
This thesis developed a series of Bayesian MCMC computer algorithms with SAS environment for the following proposed model.
(1) Multilevel Two-state Process
(A) We proposed a Bayesian multilevel model with discrete-state and continuous-time Markov model to assess the risk of death of MERS infective cases across continent countries.
(B) We developed a Beta-binomial model with Bayesian underpinning to assess the effect of individual level factors on the risk of contracting influenza and to derive the individualized basic reproduction number (R0) considering randomness of household.
(2) Stochastic processes with ordinary differential equation like the SIR model or birth-and-death process were propose and applied to epidemic of MERS CoV so as to derive and the probability of extinction through negative binomial transformation.
3. Using the estimated parameters obtained above, local and global asymptotic stability and equilibrium analysis of MERS-CoV were assessed.
4. Finally, a computer-aided tool for dynamic epidemic process of infection under consideration of partial immunity and vaccination by Microsoft Excel 2016 was developed.
Results
1. Bayesian MCMC Multilevel Compartment Model
(1) MERS-CoV
The fatality rate of MERS cases was 32.1% (95% confidence interval: 29.9%, 34.3%). Notably, the incremental change of daily death rate was most prominent during the first week since disease onset with an average increase of 13%, but then stabilized in the remaining two weeks when it only increased 3% on average. After adjusting for age and making allowance for the heterogeneity across countries with random-effect, MERS patients with comorbidity had around 4 times the risk for fatal infection than those without (adjusted hazard ratio of 3.60 (95% confidence interval: 2.46, 5.33)).
(2) Influenza
The risk of developing into influenza cases was increased with generation, compared with the first generation, the increased proportions for the second to fourth generation were 35%, 52% and around two-fold, respectively. Those who were vaccinated had a lower risk of developing into influenza cases (Odds ratio (OR): 0.96, 95% CI: 0.90-1.04)).
  The R0 increased from around 1.76 in the first generation to around 3.64 for the fourth generation. The vaccinated group had a lower R0 than those without for the same generation. For example, the R0 estimates during the first generation were estimated as 1.70 (95% CI: 1.35-2.04) for the vaccinated group and 1.76 (95% CI: 1.40-2.12) for the unvaccinated group, respectively.
2. Bayesian MCMC Stochastic Process Applied to MERS-CoV Epidemic
(1) Using non-ODE-based MCMC method, the estimated basic reproduction number estimates were around unity and similar in different countries/cities in different time periods.. The reproduction number in Jeddah (2014/3-6), Riyadh (1, 2014/3-6), Riyadh (2, 2015/6-9), and South Korea (2014/5-8) were 1.003, 2.14, 1.04, and 1.04, respectively. The corresponding probabilities of extinction at day 60 were 72%, 29%, 71%, and 75%.
(2) The estimated reproduction numbers with ODE-based MCMC method in Jeddah (2014/3-6), Riyadh (1, 2014/3-6), Riyadh (2, 2015/6-9), and South Korea (2014/5-8) were 2.3, 10.8, 2.4, and 2.6, respectively. The corresponding probabilities of extinction at day 60 were 41%, 9%, 36%, and 38%.
3. Evaluation of local and global asymptotic stability and equilibrium analysis
As all the estimated reproduction number were greater than unity regardless of non-ODE- or ODE-based methods and the equilibrium point was only for disease free but unstable, the MERS-CoV infection would not be eradicated and may become endemic or epidemic.
4. Computer-aided tool of dynamic epidemic process of infection
The developed application was demonstrated with illustrations of MERS and influenza A. Evolution of susceptible, infective and recovery by different dynamic epidemic models was characterized by kinetic epidemic curves. Basic and effective reproduction number (R0) was calculated to provide an quantitative measure for assessing the spread of disease. The predicted number of different compartments in dynamic process of infection during the epidemic period could be obtained.
Conclusions
The novel computer algorithms for stochastic ordinary differential equation (ODE) model and multi-level model with Bayesian MCMC underpinning has been developed and applied to influenza and MERS-CoV to demonstrate how to derive basic reproduction number and the extinction probability in a stochastic manner so as to develop computer-aided tools for the surveillance of dynamic epidemics of respiratory infectious disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:45:20Z (GMT). No. of bitstreams: 1
ntu-106-D99849008-1.pdf: 5627632 bytes, checksum: e3392cc261c0d239eb6338e1897c48af (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 i
ABSTRACT v
CONTENTS xi
List of Tables xiii
List of Figures xv
Chapter 1 Introduction 1
1.1 Infectious Diseases and Mathematical Models 1
1.2 Multi-level Property of Infectious Disease 2
1.3 Stochastic Models for Infectious Diseases 3
1.4 Ordinary Differential Equation (ODE) in Stochastic Process for Modelling Infectious Diseases 4
1.5 Local and global asymptotic stability 5
1.6 Computer-aided Stochastic ODE applications 6
1.7 Objectives 7
Chapter 2 Literature Review on Infectious Disease Model 9
2.1 Epidemic Threshold Theory and Basic Reproduction Number 9
2.2 Deterministic Models for Infectious Disease 11
2.3 Stochastic Differential Equation Models 21
2.4 Birth-death Process 27
2.5 Bayesian Markov Chain Monte Carlo (MCMC) Method 35
2.6 Computer-aided Applications for Modelling Dynamic Epidemiological Process of Infectious Diseases 39
Chapter 3 Computer Algorithms for Infectious Disease Models Applied to MERS-Cov and Influenza 41
3.1 Multilevel Two-state compartment Markov model 41
3.2 Computer Algorithms for ODE-based Multi-state Compartment Model 52
3.3 Evaluation of local and global stability and equilibrium 63
Chapter 4 Data Source 69
4.1 Empirical Data- influenza epidemic in Taiwan, 2001 69
4.2 Newly Infectious Disease – MERS 71
Chapter 5 Results 80
5.1 Results on multilevel two-state compartment Markov models 80
5.2 Results of global and local stability analysis and equilibrium analysis 135
5.3 Results of computer-aided tool of dynamic epidemic process of infection 138
Chapter 6 Discussion 146
6.1 Breakthroughs on the development of computer algorithms 146
6.2 Applications to influenza and MERS-CoV 149
6.3 Bayesian MCMC method for birth-death process applied to MERS-CoV 159
6.4 Evaluation of global and local stability and equilibrium analysis 161
6.5 The development of computer-aided tool for dynamic epidemic process of infectious diseases 163
6.6 Limitations 167
6.7 Conclusions 169
REFERENCE 170
dc.language.isoen
dc.title以貝氏馬可夫蒙地卡羅方法估計隨機微分方程呼吸道傳染病模式zh_TW
dc.titleStochastic Differential Equation Model for Respiratory Infectious Disease Using Bayesian Markov Chain Monte Carlo (MCMC) Methoden
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee張淑惠,陳立昇,潘信良,王振泰,王森德
dc.subject.keyword隨機過程,傳染病,中東呼吸症候群冠狀病毒感染症,基礎再生數,局部和全球的漸進穩定,平衡分析,zh_TW
dc.subject.keywordstochastic process,infectious disease,MERS-CoV,basic reproduction number,local and global stability,equilibrium analysis,en
dc.relation.page181
dc.identifier.doi10.6342/NTU201700245
dc.rights.note有償授權
dc.date.accepted2017-01-25
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved