Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59921
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林裕彬
dc.contributor.authorPei-Chi Chenen
dc.contributor.author陳珮琦zh_TW
dc.date.accessioned2021-06-16T09:45:10Z-
dc.date.available2022-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-24
dc.identifier.citationArabi, M., Govindaraju, R. S., & Hantush, M. M. (2007). A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. Journal of Hydrology, 333(2), 459-471.
Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). Large area hydrologic modeling and assessment part I: Model development1: Wiley Online Library.
Aylward et al (2010) UNDP Hydro Services Draft
Bergstrom, S. (1976). Development and application of a conceptual runoff model for Scandinavian catchments.
Beven, K., & Kirkby, M. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrological Sciences Journal, 24(1), 43-69.
Bohensky, E.L. , Reyer s, B. , Van J . , Alber t S. (2006) . Future ecosys tem services in a Southern Af r ican r iver bas in: a scenar io planning approach to uncer tainty. Conservat ion Biology, 20(4) , 1051 -1061.
Brauman, K.A., 2015. Hydrologic ecosystem services: linking ecohydrologic processes to human well-being in water research and watershed management. Wiley Interdiscip. Rev. Water 2, 345-358.
Brauman, K. A., Daily, G. C., Duarte, T. K. E., & Mooney, H. A. (2007). The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu. Rev. Environ. Resour., 32, 67-98.
Briassoulis, H. (2000). Analysis of land use change: theoretical and modeling approaches.
Brogna, D., Vincke, C., Brostaux, Y., Soyeurt, H., Dufrêne, M., & Dendoncker, N. (2017). How does forest cover impact water flows and ecosystem services? Insights from “real-life” catchments in Wallonia (Belgium). Ecological Indicators, 72, 675-685.
Castella, J.-C., & Verburg, P. H. (2007). Combination of process-oriented and pattern-oriented models of land-use change in a mountain area of Vietnam. Ecological Modelling, 202(3), 410-420.
Chiang, L. C., Lin, Y. P., Huang, T., Schmeller, D. S., Verburg, P. H., Liu, Y. L., & Ding, T. S. (2014). Simulation of ecosystem service responses to multiple disturbances from an earthquake and several typhoons. Landscape and Urban Planning, 122, 41-55.
Daily, G.C., 1997. Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press, Washington, D.C.
DeFries, R., & Eshleman, K. N. (2004). Land‐use change and hydrologic processes: A major focus for the future. Hydrological processes, 18(11), 2183-2186.
Dennedy-Frank, P. J., Muenich, R. L., Chaubey, I., & Ziv, G. (2016). Comparing two tools for ecosystem service assessments regarding water resources decisions. Journal of environmental management, 177, 331-340.
Di Luzio, M., Srinivasan, R., & Arnold, J. G. (2004). A GIS‐coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS, 8(1), 113-136.
Donohue, R. J., M. L. Roderick, and T. R. McVicar (2012), Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model, Journal of Hydrology, 436-437, 35-50
Ennaanay, Driss. 2006. Impacts of Land Use Changes on the Hydrologic Regime in the Minnesota River Basin. Ph.D. thesis, graduate School, University of Minnesota.
Fohrer, N., Möller, D., & Steiner, N. (2002). An interdisciplinary modelling approach to evaluate the effects of land use change. Physics and Chemistry of the Earth, Parts A/B/C, 27(9), 655-662.
Gassman, P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211-1250.
Gebre, S., & Ludwig, F. (2015). Hydrological Response to Climate Change of the Upper Blue Nile River Basin: Based on IPCC Fifth Assessment Report (AR5). J Climatol Weather Forecasting, 3(121), 2.
Haith, D. A., & Shoenaker, L. L. (1987). Generalized Watershed Loading Functions for Stream Flow Nutrients1: Wiley Online Library.
Hamel, P., & Guswa, A. J. (2015). Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina. Hydrology and Earth System Sciences, 19(2), 839-853.
Hargreaves, G. L., Hargreaves, G. H., & Riley, J. P. (1985). Agricultural benefits for Senegal River basin. Journal of irrigation and Drainage Engineering, 111(2), 113-124.
Hundecha, Y., & Bárdossy, A. (2004). Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 292(1), 281-295.
Keeler, B.L., Polasky, S., Brauman, K.A., Johnson, K.A., Finlay, J.C., O’Neill, A., Kovacs, K., Dalzell, B., 2012. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl. Acad. Sci., 109 (45), 18619–18624.
Kilsby, C., Jones, P., Burton, A., Ford, A., Fowler, H., Harpham, C., . . . Wilby, R. (2007). A daily weather generator for use in climate change studies. Environmental Modelling & Software, 22(12), 1705-1719.
Lautenbach, S., Kugel, C., Lausch, A., Seppelt, R. (2011). Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecological Indicator s, 11(2), 676 -687.
Lehner, B., Döll, P., Alcamo, J., Henrichs, T., Kaspar, F. (2006) Estimating the impact of global change on fiood and drought risks in Europe: a continental, integrated analysis. Climalic Change, 75, 273-299.
Yu-Pin, L. (2012). Sustainability of Ecosystem Services in a Changing World. Journal of Ecosystem & Ecography.
Lin, Y. P., Hong, N. M., Chiang, L. C., Liu, Y. L., & Chu, H. J. (2012). Adaptation of land-use demands to the impact of climate change on the hydrological processes of an urbanized watershed. International journal of environmental research and public health, 9(11), 4083-4102.
Lin, Y.-P., Verburg, P. H., Chang, C.-R., Chen, H.-Y., & Chen, M.-H. (2009). Developing and comparing optimal and empirical land-use models for the development of an urbanized watershed forest in Taiwan. Landscape and Urban Planning, 92(3), 242-254.
Liu, S.C., Shiu, C.J., Chen, J.P., Fu, C.B., “Changes of precipitation intensity in East Asia, ” 2008 Symposium of Climate Changes in Taiwan, Taipei, pp. 6, 2008.
Liu, T. M., Tung, C. P., Ke, K. Y., Chuang, L. H., & Lin, C. Y. (2009). Application and development of a decision-support system for assessing water shortage and allocation with climate change. Paddy and Water Environment, 7(4), 301-311.
MA (Millennium Ecosystem Assessment), 2005. Ecosystems and Human Wellbeing: Synthesis. Island Press, Washington, D.C.
Martin-Ortega, J., Ojea, E., & Roux, C. (2013). Payments for water ecosystem services in Latin America: a literature review and conceptual model. Ecosystem Services, 6, 122-132.
Monteith, J. (1965). Evaporation and environment. Paper presented at the Symp. Soc. Exp. Biol.
Mulligan, M. (2013). WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrology Research, 44(5), 748-769.
Neitsch, S., Arnold, J., Kiniry, J., Williams, J., & King, K. (2002). Soil and Water Assessment Tool (Version 2000)—theoretical documentation. College Station, TX, Texas Water Research Institute.
Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D.R., Kareiva, P.M. (2009). Model ing mul t iple ecosys tem services, biodiver s i ty conservat ion, commodi ty product ion, and t radeoff s at landscape scales. Front ier s in Ecology and the Envi ronment, 7(1), 4 -11.
Nicholson, E., Mace, G. M., Armsworth, P. R., Atkinson, G., Buckle, S., Clements, T., ... & Grenyer, R. (2009). Priority research areas for ecosystem services in a changing world. Journal of Applied Ecology, 46(6), 1139-1144.
Niehoff, D., Fritsch, U., & Bronstert, A. (2002). Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. Journal of Hydrology, 267(1), 80-93.
Overmars, K. P., & Verburg, P. H. (2007). Comparison of a deductive and an inductive approach to specify land suitability in a spatially explicit land use model. Land use policy, 24(3), 584-599.
Pandeya, B., Buytaert, W., Zulkafli, Z., Karpouzoglou, T., Mao, F., & Hannah, D. M. (2016). A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions. Ecosystem Services.
Park, J., Park, M., Joh, H., Shin, H., Kwon, H., Srinivasan, R., & Kim, S. (2011). Assessment of MIROC 3. 2 HiRes climate and CLUE-s land use change impacts on watershed hydrology using SWAT. Transactions of the ASABE, 54(5), 1713-1724.
Parker, D. C., Manson, S. M., Janssen, M. A., Hoffmann, M. J., & Deadman, P. (2003). Multi-agent systems for the simulation of land-use and land-cover change: a review. Annals of the association of American Geographers, 93(2), 314-337.
Priestley, C., & Taylor, R. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.
Racsko, P., Szeidl, L., & Semenov, M. (1991). A serial approach to local stochastic weather models. Ecological Modelling, 57(1), 27-41.
Raudsepp-Hearne, C., Peter son, G.D., & Bennett, EM. (2010). Ecosystem service bundles for analyzing tradeoff s in diver se landscapes. Proceedings of the National Academy of Sciences, 107(11), 5242 -5247.
Refshaard, J., Storm, B., & Singh, V. (1995). MIKE SHE. Computer models of watershed hydrology., 809-846.
Reyers, B., O'Farrell, Patrick J ., Cowling, R.M., Egoh, B.N., Le Maitre, David C., Vlok, J.H.J., (2009) . Ecosystem services, land -cover change, and stakeholders: finding a sustainable foothold for a semiarid biodiversity hot spot .
Richardson, C. W. (1981). Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resources Research, 17(1), 182-190.
Semenov, M. A., Brooks, R. J., Barrow, E. M., & Richardson, C. W. (1998). Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Climate research, 10(2), 95-107.
Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel, P., Vogl, A.L., Rogers, L., and Bierbower, W. 2015. InVEST 3.2.0 User’s Guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
Solomon, S. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press.
Terrado, M., Acuña, V., Ennaanay, D., Tallis, H., & Sabater, S. (2014). Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin. Ecological Indicators, 37, 199-209.
Tung, C.-P., & Haith, D. A. (1995). Global-warming effects on New York streamflows. Journal of Water Resources Planning and Management, 121(2), 216-225.
Tung, C. P., Liu, T. M., Szu-Wei, C., Kai-Yuan, K., & Ming-Hsu, L. (2014). Carrying Capacity and Sustainability Appraisals on Regional Water Supply Systems under Climate Change. British Journal of Environment and Climate Change, 4(1), 27.
Turner, B. L., Skole, D., Sanderson, S., Fischer, G., Fresco, L., & Leemans, R. (1995). Land-use and land-cover change. Science/Research Plan. Global Change Report (Sweden).
Veldkamp, A., & Fresco, L. (1996). CLUE: a conceptual model to study the conversion of land use and its effects. Ecological Modelling, 85(2), 253-270.
Veldkamp, A., & Verburg, P. (2004). Modelling land use change and environmental impact. Journal of Environmental Management, 72(1), 1-3.
Verburg, P. H., Eickhout, B., & van Meijl, H. (2008). A multi-scale, multi-model approach for analyzing the future dynamics of European land use. The Annals of Regional Science, 42(1), 57-77.
Verburg, P. H., & Overmars, K. P. (2009). Combining top-down and bottom-up dynamics in land use modeling: exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landscape ecology, 24(9), 1167-1181.
Verburg, P. H., Schot, P. P., Dijst, M. J., & Veldkamp, A. (2004). Land use change modelling: current practice and research priorities. GeoJournal, 61(4), 309-324.
Verburg, P. H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V., & Mastura, S. S. (2002). Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental management, 30(3), 391-405.
Verburg, P. H., & van Keulen, H. (1999). Exploring changes in the spatial distribution of livestock in China. Agricultural systems, 62(1), 51-67.
Vigerstol, K. L., & Aukema, J. E. (2011). A comparison of tools for modeling freshwater ecosystem services. Journal of environmental management, 92(10), 2403-2409.
Wu, C. F., Lin, Y. P., Chiang, L. C., & Huang, T. (2014). Assessing highway's impacts on landscape patterns and ecosystem services: a case study in Puli Township, Taiwan. Landscape and Urban Planning, 128, 60-71.
Xiyong, H., Bin, C., & Xinfang, Y. (2004). Land use change in Hexi corridor based on CA-Markov methods [J]. Transactions of The Chinese Society of Agricultural Engineering, 5, 065.
Yan, D., Schneider, U. A., Schmid, E., Huang, H. Q., Pan, L., & Dilly, O. (2013). Interactions between land use change, regional development, and climate change in the Poyang Lake district from 1985 to 2035. Agricultural systems, 119, 10-21.
方琮雅. (2001). 桃園臺地水域用地空間結構變遷之研究, 臺灣大學農業工程學研究所碩士論文.
王中根, 刘昌明, & 黄友波. (2003). SW AT 模型的原理, 结构及应用研究. 地理科学进展, 22(1), 79-861.
王彥覃. (2008). 應用自上而下與自下而上土地利用及降雨-逕流模式模擬土地利用變遷與水文量-以寶橋集水區為例. 臺灣大學生物環境系統工程學研究所學位論文, 1-109.
史朗祺. (2013). 氣候變遷對都市雨水利用之影響-以斯尼蘭卡哥倫坡市及臺灣臺北市作對比研究.
汪靜明, 國立臺灣師範大學, 環境保護中心, &淡水文基金會. (2003). 全國生態工法博覽會:大屯溪生態工法教育研討會論文集. 2003年:臺灣師範大學環境保護中心.
呂仲耿. (2002). 利用空間資訊探討水源涵養保安林地景變遷.
李克里. (2013). 氣候變遷與土地利用變遷對集水區流量衝擊評估-以聖文森蒙特婁集水區為例; EFFECTS OF CLIMATE AND LAND USE CHANGE ON THE STREAMFLOW IN THE MONTREAL WATERSHED, ST. VINCENT.
吳志剛. (2000). 國立成功大學水利與海洋工程研究所碩士論文.
吳佩蓉. (2008). 整合土地利用模式與水文模式於集水區景觀生態規劃管理. 臺灣大學生物環境系統工程學研究所學位論文, 1-96.
吳振發. (2006). 土地利用變遷與景觀生態評估方法之建立: 國立臺北大學都市計劃研究所博士論文.
吳振發. (2011). 臺灣鄉村景觀變遷模擬之 CLUE-s 模式最佳參數試驗.
吳政緯. (2010). 翡翠水庫營養鹽之總最大日負荷規劃. 臺北科技大學土木與防災研究所學位論文, 1-100.
吳俊鋐、張延光、朱家興、陳樹群(2010),「以莫拉克颱風災害談台灣集水區保育治理未來方向」,九十九年度農業工程研討會,台南。
吳承寰. (2012). 應用適合度曲線與遺傳規劃法於河川魚類棲地模擬-分類流況法. 臺灣大學生物環境系統工程學研究所學位論文, 1-100.
林子平. (2015). 土地與氣候變遷情境對流量之影響-以大屯溪流域為例. 臺灣大學生物環境系統工程學研究所學位論文, 1-102.
林裕彬, 吳振發, &鄧東坡. (2004). 景觀生態面指數分析汐止地區 1990~2001年土地利用時空間鑲嵌特徵. Journal of City and Planning, 31(3), 239-268.
范正成, 楊智翔, & 劉哲欣. (2009). 臺北地區降雨沖蝕指數推估公式之建立及歷年變化趨勢分析.
施恆益. (2013). 應用概似不確定性估計 (GLUE) 於集水區營養鹽總最大日負荷規劃.
連宛渝. (2013). 氣象合成與水文模式之發展及因應氣候變遷之供水系統調適能力建構. 臺灣大學生物環境系統工程學研究所學位論文, 1-280.
陳正達. (2013). 利用臺灣長期氣候資料建立本土氣候變遷分析與推估方法. 交通部中央氣象局.
陳亮全、林李耀、陳永明、張志新、陳韻如、江申、于宜強、周仲島、游保杉(2011),臺灣氣候變遷科學報告,311-356
陳虹螢. (2010). 整合土地利用與水文模式於集水區規劃管理之研究-以臺北都會區為例. 臺灣大學生物環境系統工程學研究所學位論文, 1-111.
陳琦玲, 漆匡時, & 林正錺. (1991). 氣象預測模式之測試分析. 中華農業研究, 40(3), 351-363.
陳癸月. (2002). 中國文化大學地學研究所碩士論文.
陳宥任. (1999). 都市土地使用與運輸網路動態關係--以宮格自動體 (Cellular Automat) 為基礎之探索. 碩士論文, 國立台北大學都市計劃研究所.
陳憲宗, 曾宏偉, 林錦源, 楊道昌, & 游保杉. (2011). 氣候變遷情境下曾文水庫集水區水文乾旱特性推估. 農業工程學報, 57(3), 44-60.
黃書禮, & 蔡靜如. (2000). 台北盆地土地利用變遷趨勢之研究. 都市與計劃, 27(1), 1-23.
馮豐隆, & 高堅泰. (1999). 應用克立金推估模式於降雨製圖.
童慶彬, 林嘉佑. (2015). IPCC提供RCP情境中適合台灣GCM之挑選. 氣候變遷調適科技整合研究計畫-跨領域脆弱度評估與回復力建構科技發展計畫.
童慶斌, 劉子明, 李明旭, 洪念民, 宋睿唐, 林嘉佑, & 曹榮軒. (2013). 氣候變遷下區域水資源供水承載力整合評估之研究. Journal of Taiwan Water Conservancy, 61(3).
趙紀翔. (2012). 氣候變遷對蘭陽溪流域影響評估.
賴進貴. (2000). 宮格自動機與地理資訊系統結合之初探研究. 中國地理學學會會刊.
鍾侑達, 郭峻菖, & 陳昶憲. (2009). 台灣區域降雨趨勢分析. 農業工程學報, 55(4), 1-18.
經濟部水利規劃試驗所. (2009). 強化高屏溪流域水資源供水系統因應氣候變遷之調適能力.
韓宛容. (2012). 應用氣候統計降尺度預報資料推估石門水庫入流量; Apply Statistical-Downscaling Climate Forecasts for Estimating Shihmen Reservoir Inflows.
蕭戎雯. (2013). 不同單元尺度對土地利用及生態系統服務模擬之影響-以大屯溪流域為例. 臺灣大學生物環境系統工程學研究所學位論文, 1-126.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59921-
dc.description.abstract水是對生物最重要的自然資源之一,其提供廣泛人類和生態系統基本功能的行為稱之為水文服務。土地利用改變,加上氣候變遷影響,深深的影響著水文服務,為了實現環境資源永續發展,如何把土地利用變遷和氣候變遷對水文服務的影響,做量化評估是一個重要的問題。為了評估土地利用變遷與氣候變遷兩者的影響,本研究以大屯溪為例模擬出結果。首先,本研究使用IPCC第五次評估報告(AR5)中五個情境預測的未來氣候數據,然後採用其變異係數最大者為代表,接著採用CLUE-s模型將氣候因子加入來預測土地利用的變化,本研究設定六種情境:2008年現況、土地利用改變情境一、土地利用改變情境二、氣候變遷、氣候變遷下土地利用改變情境一、氣候變遷下土地利用改變情境二,最後使用傳統水文模式-SWAT(Soil and Water Assessment Tool)模式及新興生態系統服務模式-InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)模式來計算水文服務,如出水量和泥砂量,並對兩種模式結果做比較,列出各自優缺點。
在近未來年中,出水量部分,SWAT模式在土地利用變遷下改變甚小,甚至使豐水期枯水期流量皆增加,其原因可能是因為大屯溪流域在未來土地利用改變中,減少的農地有接近一半轉變成水土保持優良的林地,一半轉變成不透水的建地,中和了整體流域的水文變化。而六個情境中,以豐枯水差距而言,土地利用情境一模擬未來流量結果最佳,而單純氣候變遷模擬未來流量結果最差;以年總流量而言,氣候變遷加情境一2030年流量結果最差。InVEST模式,在氣候變遷下出水量的空間分佈將有所改變,出水量六個情境結果,其空間分佈以氣候變遷加土地利用變遷情境一最為破碎,且其總年出水量最小,而數值上以2008年出水量最多。泥砂量部分,SWAT模式在土地利用改變下,泥砂量輸出有減少趨勢,氣候變遷情境下其結果亦有減少趨勢,以總體泥砂出輸量而言,2008年泥砂量輸出最多,氣候變遷加土地利用變遷情境一泥砂量輸出最少。InVEST模式結果之空間分佈整體泥砂量輸出分布變化趨勢一致,但受氣候因子影響,土地利用變遷情境下上游泥沙量輸出明顯較少,中下游段有明顯增加並集中趨勢;以整體泥砂量輸出數值而言,與SWAT模式結果一致,2008年泥砂量輸出最多,氣候變遷加土地利用變遷情境一泥砂量輸出最少。
SWAT模式與InVEST模式模擬結果比較中,出水量的部分,兩模式模擬結果趨勢成高度一致性,SWAT模式模擬結果多略高於InVEST模式模擬結果;在泥砂量輸出部分,兩模式模擬結果趨勢成一致性,SWAT模式模擬結果多高於InVEST模式模擬結果,且結果較為分散;但兩模式模擬泥砂量留存數值結果大相逕庭。
zh_TW
dc.description.abstractWater is the most important natural resource, providing a wide range of fundamental functions –hydrological services-- to both humanity and ecological systems alike. Unfortunately, hydrological services have been strongly affected by climate change and land-use change. Therefore, it is crucial to quantify how the hydrological services have been affected by atmospheric change and land-use change. This study aims to quantify hydrological services by using two models – one is a traditional hydrologic model – SWAT model and another is a new ecosystem model – InVEST model. Our study area is Datuan river watershed, which is located in the northern part of Taiwan. First, we used IPCC fifth assessment report(AR5) scenarios of RCP2.6, RCP4.5, RCP6.0 and RCP8.5 as components of the future precipitation regimes, and we use CLUE-s model to predict future land-use change. Then we use SWAT model and InVEST model to calculate the hydrological services, including water yield and sediment. Finally, we contrast SWAT model and InVEST model results.
The results show that water yield in both wet season and dry season will be extremely high in the near future. Moreover, the simulated results show that water yields derived from the InVEST model will be more significantly affected by climate change than those predicted by the SWAT model. Sediment retention will be less affected by climate change based on the results from the InVEST model. To sum up, by comparing results between two models, hydrological services analysis indicates that climate change will not only have a huge impact on overall hydrological services, particularly water yield, but also on the distribution of such services.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:45:10Z (GMT). No. of bitstreams: 1
ntu-106-R03622016-1.pdf: 4129555 bytes, checksum: f4b93a8975eda20208d97fb709a7eee4 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻回顧 5
2.1 水文服務定義 5
2.2 氣候變遷回顧 6
2.3 CLUE-s模式 10
2.4 水文服務模式 13
第三章 理論與方法 18
3.1 研究區域介紹-大屯溪流域 18
3.2 氣候變遷情境 21
3.2.1 氣候變遷情境介紹 21
3.2.2 GCMs模式挑選 23
3.2.3 未來氣象資料產生 23
3.3 土地利用模式--CLUE-s模式 27
3.2.1 模式架構(Model Structure): 27
3.2.2 土地利用模擬情境設定 32
3.4 InVEST模式 36
3.4.1 InVEST模式介紹 36
3.4.2 InVEST模式之輸入資料 40
3.5 SWAT模式 42
3.5.1 SWAT模式介紹 42
3.5.2 模式計算 43
3.5.3 輸入參數資料 47
第四章 結果分析 51
4.1 情境結果分析 51
4.1.1 氣候變遷情境 51
4.1.2 土地利用變遷情境 58
4.2 水文服務模式結果分析 63
4.2.1 SWAT模式之流量率定驗證 63
4.2.2 SWAT模式之四種水文服務模擬結果 64
4.2.3 InVEST模式之流量率定驗證 71
4.2.4 InVEST模式之四種水文服務模擬結果 72
4.2.5 InVEST模式與SWAT模式比較 87
第五章 結論與建議 92
5.1 結論 92
5.2 建議 94
參考文獻 95
dc.language.isozh-TW
dc.subjectInVEST模式zh_TW
dc.subject水文服務zh_TW
dc.subject氣候變遷模式zh_TW
dc.subjectCLUE-s模式zh_TW
dc.subjectSWAT模式zh_TW
dc.subjectSWAT modelen
dc.subjectland-use changeen
dc.subjectclimate changeen
dc.subjectInVEST modelen
dc.subjecthydrological servicesen
dc.title氣候變遷與土地利用變遷對水文服務的影響-以大屯溪流域為例zh_TW
dc.titleImpacts of Climate Change and Land Use Change on Hydrological Services- A Case Study of Datuan Watersheden
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee童慶斌,陳彥璋,李明旭
dc.subject.keyword水文服務,氣候變遷模式,CLUE-s模式,SWAT模式,InVEST模式,zh_TW
dc.subject.keywordhydrological services,SWAT model,InVEST model,climate change,land-use change,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201603527
dc.rights.note有償授權
dc.date.accepted2017-01-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved