請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59910完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝宏昀 | |
| dc.contributor.author | Hung-Yi Hsu | en |
| dc.contributor.author | 徐宏鎰 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:44:33Z | - |
| dc.date.available | 2017-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-01-25 | |
| dc.identifier.citation | [1] Y. Saito and Y. Kishiyama, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, June 2013, pp. 1–5.
[2] J. Schaepperle and A. Ruegg, “Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling,” Bell Labs Technical Journal, no. 4, pp. 59–77, WInter 2009. [3] Y. Kishiyama, A. Benjebbour, H. Ishii, and T. Nakamur, “Evolution concept and candidate technologies for future steps of LTE-A,” in Communication Systems (ICCS), 2012 IEEE Conference on, Nov 2012, pp. 473–477. [4] D. N. Tse, “Optimal power allocation over parallel gaussian broadcast channels,” in Proceedings of IEEE International Symposium on Information Theory, Jun 1997, pp. 27–. [5] Physical Channels and Modulation, 3GPP, Evolved Univerdal Terrestrial Radio Access (E-UTRA), Sept. 2011, technical Report 36.211 v10.3.0. [6] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 528–541, March 2006. [7] W. Ni, Z. Chen, H. Suzuki, and I. B. Collings, “On the performance of semiorthogonal user selection with limited feedback,” IEEE Communications Letters, vol. 15, no. 12, pp. 1359–1361, December 2011. [8] B. Kimy, S. Lim, H. Kim, S. Suh, J. Kwun, S. Choi, C. Lee, S. Lee, and D. Hong, “Non-orthogonal multiple access in a downlink multiuser beamforming system,” in MILCOM 2013 - 2013 IEEE Military Communications Conference, Nov 2013, pp. 1278–1283. [9] D. Tse and P. Viswanath, “Fundamentals of wireless communications,” 2004. [10] Multiplexing and channel coding, 3GPP, Evolved Univerdal Terrestrial Radio Access (E-UTRA), Dec. 2014, technical Report 36.212 v12.3.0. [11] J. Lee and J.-K. Han, “MIMO technologies in 3GPP LTE and LTEadvanced,” EURASIP Journal on Wireless Communications and Networking, March 2009. [12] F. G. Fernandes, R. da Rocha Lopes, and D. Z. Filho, “Sinr bounds for broadcast channels with zero-forcing beamforming and limited feedback,” IEEE Transactions on Communications, vol. 60, no. 7, pp. 1772–1776, July 2012. [13] A. Enjebbour and A. Li, “System-level performance of downlink NOMA for future LTE enhancements,” in Globecom Workshops (GC Wkshps), 2013 IEEE, Dec 2013, pp. 66–70. [14] S. Timotheou, “Fairness for non-orthogonal multiple access in 5G systems,” Signal Processing Letters, IEEE, no. 10, pp. 1647–1651, Oct 2015. [15] Z. Ding and Z. Yang, “On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users,” Signal Processing Letters, IEEE, no. 12, pp. 1501–1505, Dec 2014. [16] B. Kim and S. Lim, “Non-orthogonal multiple access in a downlink multiuser beamforming system,” in Military Communications Conference, MILCOM 2013 - 2013 IEEE, Nov 2013, pp. 1278–1283. [17] A. Lin and A. Benjebbour, “Performance evaluation of non-orthogonal multiple access combined with opportunistic beamforming,” in Vehicular Technology Conference (VTC Spring), 2014 IEEE 79th, May 2014, pp. 1–5. [18] B. Kim and S. Lim, “Non-orthogonal multiple access in a downlink multiuser beamforming system,” in Military Communications Conference, MILCOM 2013 - 2013 IEEE, Nov 2013, pp. 1278–1283. [19] Z. Ding and F. Adachi, “The application of MIMO to non-orthogonal multiple access,” CoRR, 2015. [20] M. Costa, “Writing on dirty paper (corresp.),” IEEE Transactions on Information Theory, vol. 29, no. 3, pp. 439–441, May 1983. [21] G. Dimic and N. D. Sidiropoulos, “On downlink beamforming with greedy user selection: performance analysis and a simple new algorithm,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 3857–3868, Oct 2005. [22] M. Trivellato, F. Boccardi, and F. Tosato, “User selection schemes for mimo broadcast channels with limited feedback,” in 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring, April 2007, pp. 2089–2093. [23] M. Wang, F. Li, and J. S. Evans, “Modified semi-orthogonal user scheduling scheme with optimized user selection parameter,” in 2013 Australian Communications Theory Workshop (AusCTW), Jan 2013, pp. 111–115. [24] C. W. Hu, “Proportional fair scheduling for non-orthogonal multiple access in multiple antenna system,” pp. 37–43, July 2015. [25] IT++. Online Available at: http://itpp.sourceforge.net [26] P. Frenger, P. Orten, T. Ottosson, and A. Svensson, “Multi-rate convolutional codes,” Department of Signals and Systems, Chalmers University of Technology, Tech. Rep., 1998. [27] Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulation, 3GPP, Sept. 2003, technical Report 25.996 v6.1 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59910 | - |
| dc.description.abstract | 在本篇著作中,我們將半正交使用者選擇(SUS)排程演算法實作在多天線非正交多工多重接取(NOMA-MIMO)系統中,並考慮迫零預編碼(Zero Forcing Beamforming)和假設傳送端完美(Perfect CIST)的知道整個通道的狀況。而多天線非正交多工的基本概念為傳送端將多個使用者的訊號於一個束波中重疊,並在接收端使以疊代干擾消除(SIC)技術正確的資料解調。而在多天線正交多工系統中,由於不同束波之間存在干擾,因此束波間的相關性是個相當重要的議題。此外,在零迫預編碼的情境中,雖然可藉由向量投影消除使用者干擾,若將兩個非正交的使用者排程在一起,仍會因投影而造成有效通道增益的降低。因此,半正交使用者排程演算法會考慮束波相關性之下排程使用者,並且只需要相當低的運算複雜度。就公平性而言,我們採用比例公平調度的模型作為最佳化的目標函數來評估系統效能。我們首先在多天線正交多工系統中實作半正交使用者選擇排程,並且提出傳輸率限制方法來改善半正交使用者排程考慮公平性模式。而後,我
們將半正交使用者排程考慮公平性模式實作在多天線非正交多工接取系統中。然而,原先的半正交使用者排程考慮公平性模式在此系統中的效能增益並不佳,因此我們提出三個使用者選擇方法來改善演算法的排程效能。 這篇著作主要的貢獻為將低複雜度演算法實作在作在多天線非正交多工多重接取系統中,並考慮公平性進行只用者排程的最佳化。 | zh_TW |
| dc.description.abstract | In this work, we investigate the non-orthogonal multiple access multiple-input multiple-output (NOMA-MIMO) based on the semi-orthogonal selection (SUS) scheduling scheme with zero-forcing (ZF) beamforming in the assumption of perfect CSIT. The basic concept of NOMA-MIMO is to superpose multiple user signals within a beam at the transmitter and apply successive interference cancellation (SIC) at the user terminal. The correlation among beams is a critical issue in the orthogonal multiple access (OMA) system due to the loose constraint of the correlation would cause the serious inter-beam interference. Besides, in the ZF beamforming scenario, selecting a non-orthogonal user degrades the e↵ective channel gains. Therefore, the SUS is a scheduling scheme which selects the user set considering the correlation among beams with low computation complexity.
In terms of fairness and sum rate, the proportional fair (PF) scheduling model is adopted to evaluate system performance. We first implement the SUS-MS and SUS-PF algorithm into the OMA-MIMO system, and the rate constraint method are proposed to solve the performance decreasing phenomenon as the orthogonality factor increasing especially in SUS-PF. After that, the SUS-PF are implemented into the NOMA-MIMO system. However, the original SUS has poor performance in NOMA-MIMO system. Therefore, three user selection metric are proposed to improve this problem. The main contribution of this work is the improvement of the SUS-PF method in both OMA-MIMO system and the NOMA-MIMO system under the objective to maximize the proportional fairness(PF). Simulation results show that the proposed method can reduce the computational complexity without lost too much performance compared to the optimal solution. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:44:33Z (GMT). No. of bitstreams: 1 ntu-106-R03942102-1.pdf: 5770504 bytes, checksum: 603b4fe2ba5044ccb73406809b4b9994 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | ABSTRACT .................................. ii
LIST OF TABLES .............................. v LIST OF FIGURES ............................. vi CHAPTER 1 INTRODUCTION .................... 1 CHAPTER 2 BACKGROUND AND RELATED WORK ..... 4 2.1 Semi-Orthogonal User Selection Algorithm ............. 4 2.2 Single Antenna NOMA System Overview .............. 6 2.3 Related Work ............................. 8 2.3.1 Orthogonal Multiple Access .................. 8 2.3.2 MU-MIMO Combined with NOMA ............. 8 2.3.3 User Selection Problem Under ZFBF in MIMO system ... 9 CHAPTER 3 SCENARIO AND PROBLEM FORMULATION . 12 3.1 Network Model of OMA-MIMO ................... 12 3.1.1 Transceiver Model in OMA-MIMO system ......... 13 3.2 Network Model of NOMA-MIMO .................. 15 3.3 System Scenario ............................ 17 3.4 Problem Formulation ......................... 18 3.4.1 User Scheduling Constraints ................. 18 3.4.2 Power Allocation Constraints ................. 20 3.4.3 Precoding Setting Constraints ................ 21 3.4.4 Adaptive MCS Constraints .................. 22 3.4.5 Objective Function ...................... 23 3.4.6 Problem Relaxation ...................... 23 CHAPTER 4 SOLVING THE SCHEDULING PROBLEM IN OMAMIMO SYSTEM .............................25 4.1 Precoding Setting ........................... 25 4.2 Semi-Orthogonal User Selection Algorithm Considered Fairness Issue 26 4.3 Modified SUS algorithm ........................ 27 CHAPTER 5 EXTENDING THE SUS ALGORITHM INTO THE NOMA-MIMO SCENARIO ......................32 5.1 Precoding Sub-problem in NOMA-MIMO Scenario ......... 32 5.2 Power Allocation Sub-problem of SIC ................ 32 5.3 User Pairing Scheme in NOMA-MIMO system ........... 34 5.4 The Overall Algorithm of the SUS-PF in NOMA-MIMO ...... 36 5.5 Modifying the SUS-PF User Selection Criteria in NOMA Scenario 37 5.5.1 Weighted Temp Sum-rate Estimation ............ 38 5.5.2 Weighted Capacity Estimation ................ 38 5.5.3 Combination of Capacity Estimation and Orthogonality Vector ............................. 39 CHAPTER 6 PERFORMANCE EVALUATION ..........41 6.1 Physical Layer Simulation Setting of NOMA-MOMO ........ 41 6.2 Simulation Results ........................... 45 6.2.1 Evaluation of the Original SUS Algorithm in OMA-MIMO System ............................. 45 6.2.2 Comparison of the Rate Constraint Method in OMA-MIMO System ............................. 46 6.2.3 SUS in NOMA-MIMO Scenario ............... 53 6.2.4 Comparing with the Complexity Reduction Method Implemented in Previous Work ................... 58 CHAPTER 7 CONCLUSION AND FUTURE WORK ......62 | |
| dc.language.iso | en | |
| dc.subject | 多天線非正交多工接取 | zh_TW |
| dc.subject | semi-orthogonal user selection | en |
| dc.title | 多天線非正交多工接取之低複雜度排程演算法研究 | zh_TW |
| dc.title | Low-Complexity Scheduling for Non-Orthogonal Multiple Access in Multiple-Input Multiple-Output Systems based on Semi-Orthogonal User Selection | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇炫榮,葉丙成 | |
| dc.subject.keyword | 多天線非正交多工接取, | zh_TW |
| dc.subject.keyword | semi-orthogonal user selection, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201700261 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-01-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
