Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59898
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻
dc.contributor.authorCHIANG I-NIen
dc.contributor.author姜宜妮zh_TW
dc.date.accessioned2021-06-16T09:43:53Z-
dc.date.available2020-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-01-26
dc.identifier.citation1. Barrett KE BS, Barman SM, Brooks HL. Overview. Renal Physiology. 2012. In: Ganong's Review of Medical Physiology, 24e [Internet]. New York: McGraw-Hill.
2. Daniel A. Shoskes M, MSc, FRCSC, Alan W. McMahon, MD. Renal Physiology and Pathophysiology. 2012. In: Campbell-Walsh Urology [Internet]. Philadelphia, PA 19103-2899: Elsevier Saunders. 10.
3. Nielsen S, T-HK, HD, MS, Frøkiær aJ. Aquaporin Water Channels in Mammalian Kidney 2013. In: Seldin and Giebisch's The Kidney [Internet]. Elsevier. 5. [1405-39].
4. Xie Z, Cai T. Na+-K+--ATPase-mediated signal transduction: from protein interaction to cellular function. Molecular interventions. 2003;3(3):157-68.
5. Xie JX, Li X, Xie Z. Regulation of renal function and structure by the signaling Na/K-ATPase. IUBMB life. 2013;65(12):991-8.
6. Jaitovich A, Bertorello AM. Salt, Na+,K+-ATPase and hypertension. Life sciences. 2010;86(3-4):73-8.
7. Wang CH, Chang RW, Ko YH, Tsai PR, Wang SS, Chen YS, et al. Prevention of arterial stiffening by using low-dose atorvastatin in diabetes is associated with decreased malondialdehyde. PLoS One. 2014;9(3):e90471.
8. Okumura N, Hirano H, Numata R, Nakahara M, Ueno M, Hamuro J, et al. Cell surface markers of functional phenotypic corneal endothelial cells. Invest Ophthalmol Vis Sci. 2014;55(11):7610-8.
9. Lever JE. Regulation of dome formation in kidney epithelial cell cultures. Annals of the New York Academy of Sciences. 1981;372:371-83.
10. Lever JE. Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK). Proceedings of the National Academy of Sciences of the United States of America. 1979;76(3):1323-7.
11. Herrera-Perez Z, Gretz N, Dweep H. A Comprehensive Review on the Genetic Regulation of Cisplatin-induced Nephrotoxicity. Curr Genomics. 2016;17(3):279-93.
12. Yang L. Acute Kidney Injury in Asia. Kidney Dis (Basel). 2016;2(3):95-102.
13. Jin DC, Yun SR, Lee SW, Han SW, Kim W, Park J. Current characteristics of dialysis therapy in Korea: 2015 registry data focusing on elderly patients. Kidney Res Clin Pract. 2016;35(4):204-11.
14. Rathinam R, Ghosh S, Neumann WL, Jamesdaniel S. Cisplatin-induced apoptosis in auditory, renal, and neuronal cells is associated with nitration and downregulation of LMO4. Cell Death Discov. 2015;1.
15. Astashkina AI, Jones CF, Thiagarajan G, Kurtzeborn K, Ghandehari H, Brooks BD, et al. Nanoparticle toxicity assessment using an in vitro 3-D kidney organoid culture model. Biomaterials. 2014;35(24):6323-31.
16. Astashkina AI, Mann BK, Prestwich GD, Grainger DW. Comparing predictive drug nephrotoxicity biomarkers in kidney 3-D primary organoid culture and immortalized cell lines. Biomaterials. 2012;33(18):4712-21.
17. Astashkina AI, Mann BK, Prestwich GD, Grainger DW. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials. 2012;33(18):4700-11.
18. Jang KJ, Mehr AP, Hamilton GA, McPartlin LA, Chung S, Suh KY, et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integrative biology : quantitative biosciences from nano to macro. 2013.
19. Takahashi H, Sawada K, Kakuta T, Suga T, Hanai K, Kanai G, et al. Evaluation of bioartificial renal tubule device prepared with human renal proximal tubular epithelial cells cultured in serum-free medium. Journal of artificial organs : the official journal of the Japanese Society for Artificial Organs. 2013;16(3):368-75.
20. Vinay P, Gougoux A, Lemieux G. Isolation of a pure suspension of rat proximal tubules. The American journal of physiology. 1981;241(4):F403-11.
21. Vesey DA, Qi W, Chen X, Pollock CA, Johnson DW. Isolation and primary culture of human proximal tubule cells. Methods in molecular biology. 2009;466:19-24.
22. Terryn S, Jouret F, Vandenabeele F, Smolders I, Moreels M, Devuyst O, et al. A primary culture of mouse proximal tubular cells, established on collagen-coated membranes. American journal of physiology Renal physiology. 2007;293(2):F476-85.
23. Humes HD, Fissell WH, Weitzel WF. The bioartificial kidney in the treatment of acute renal failure. Kidney Int Suppl. 2002(80):121-5.
24. Subramanian B, Ko WC, Yadav V, DesRochers TM, Perrone RD, Zhou J, et al. The regulation of cystogenesis in a tissue engineered kidney disease system by abnormal matrix interactions. Biomaterials. 2012;33(33):8383-94.
25. International Commission on Non-Ionizing Radiation P. ICNIRP statement on far infrared radiation exposure. Health Phys. 2006;91(6):630-45.
26. Yang CS, Yeh CH, Tung CL, Chen MY, Jiang CH, Yeh ML. Impact of far-infrared ray exposure on the mechanical properties of unwounded skin of rats. Experimental biology and medicine. 2010;235(8):952-6.
27. Chen YC, Lai LC, Tu YP, Wu SD, Chen CF, Li B. Far infrared ray irradiation attenuates apoptosis and cell death of cultured keratinocytes stressed by dehydration. Journal of photochemistry and photobiology B, Biology. 2012;106:61-8.
28. Leung TK. In Vitro and In Vivo Studies of the Biological Effects of Bioceramic (a Material of Emitting High Performance Far-Infrared Ray) Irradiation. The Chinese journal of physiology. 2015;58(3):147-55.
29. Toyokawa H, Matsui Y, Uhara J, Tsuchiya H, Teshima S, Nakanishi H, et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Experimental biology and medicine. 2003;228(6):724-9.
30. Lin YH, Li TS. The Application of Far-Infrared in the Treatment of Wound Healing: A Short Evidence-Based Analysis. J Evid Based Complementary Altern Med. 2015.
31. Yu SY, Chiu JH, Yang SD, Hsu YC, Lui WY, Wu CW. Biological effect of far-infrared therapy on increasing skin microcirculation in rats. Photodermatol Photoimmunol Photomed. 2006;22(2):78-86.
32. Herzog J, Ehrlich SM, Pfitzer L, Liebl J, Frohlich T, Arnold GJ, et al. Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1alpha: a novel approach for inhibiting angiogenesis in hepatocellular carcinoma. Oncotarget. 2016.
33. Ma SK, Joo SY, Choi HI, Bae EH, Nam KI, Lee J, et al. Activation of G-protein-coupled receptor 40 attenuates the cisplatin-induced apoptosis of human renal proximal tubule epithelial cells. Int J Mol Med. 2014;34(4):1117-23.
34. Bastepe M. The GNAS Locus: Quintessential Complex Gene Encoding Gsalpha, XLalphas, and other Imprinted Transcripts. Curr Genomics. 2007;8(6):398-414.
35. Perez-Nanclares G, Velayos T, Vela A, Munoz-Torres M, Castano L. Pseudohypoparathyroidism type Ib associated with novel duplications in the GNAS locus. PLoS One. 2015;10(2):e0117691.
36. Shoback DM, Bilezikian JP, Costa AG, Dempster D, Dralle H, Khan AA, et al. Presentation of Hypoparathyroidism: Etiologies and Clinical Features. J Clin Endocrinol Metab. 2016:jc20153909.
37. Turan S, Bastepe M. GNAS Spectrum of Disorders. Curr Osteoporos Rep. 2015;13(3):146-58.
38. Pankow K, Wang Y, Gembardt F, Krause E, Sun X, Krause G, et al. Successive action of meprin A and neprilysin catabolizes B-type natriuretic peptide. Circ Res. 2007;101(9):875-82.
39. Khan AA, Sandhya VK, Singh P, Parthasarathy D, Kumar A, Advani J, et al. Signaling Network Map of Endothelial TEK Tyrosine Kinase. J Signal Transduct. 2014;2014:173026.
40. Inoue S, Kabaya M. Biological activities caused by far-infrared radiation. Int J Biometeorol. 1989;33(3):145-50.
41. Chang SH, Chiang IN, Chen YH, Young TH. Serum-free culture of rat proximal tubule cells with enhanced function on chitosan. Acta biomaterialia. 2013;9(11):8942-51.
42. Aleo MD, Taub ML, Nickerson PA, Kostyniak PJ. Primary cultures of rabbit renal proximal tubule cells: I. Growth and biochemical characteristics. In vitro cellular & developmental biology : journal of the Tissue Culture Association. 1989;25(9):776-83.
43. Vatansever F, Hamblin MR. Far infrared radiation (FIR): its biological effects and medical applications. Photonics & lasers in medicine. 2012;4:255-66.
44. Terada Y, Inoue K, Matsumoto T, Ishihara M, Hamada K, Shimamura Y, et al. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo. PLoS One. 2013;8(12):e80850.
45. Van der Hauwaert C, Savary G, Gnemmi V, Glowacki F, Pottier N, Bouillez A, et al. Isolation and characterization of a primary proximal tubular epithelial cell model from human kidney by CD10/CD13 double labeling. PLoS One. 2013;8(6):e66750.
46. Qi W, Johnson DW, Vesey DA, Pollock CA, Chen X. Isolation, propagation and characterization of primary tubule cell culture from human kidney. Nephrology. 2007;12(2):155-9.
47. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Human reproduction. 2007;22(5):1304-9.
48. Lechner J, Hekl D, Gatt H, Voelp M, Seppi T. Monitoring of the dynamics of epithelial dome formation using a novel culture chamber for long-term continuous live-cell imaging. Methods in molecular biology. 2011;763:169-78.
49. Schwarz N, Leube RE. Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function. Cells. 2016;5(3).
50. Yang TL. Chitin-based Materials in Tissue Engineering: Applications in Soft Tissue and Epithelial Organ. International journal of molecular sciences. 2011;12(3):1936-63.
51. Rodriguez-Vazquez M, Vega-Ruiz B, Ramos-Zuniga R, Saldana-Koppel DA, Quinones-Olvera LF. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. Biomed Res Int. 2015;2015:821279.
52. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnology advances. 2008;26(1):1-21.
53. Fakhry A, Schneider GB, Zaharias R, Senel S. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials. 2004;25(11):2075-9.
54. Yang TL, Lin L, Hsiao YC, Lee HW, Young TH. Chitosan biomaterials induce branching morphogenesis in a model of tissue-engineered glandular organs in serum-free conditions. Tissue engineering Part A. 2012;18(21-22):2220-30.
55. Wang TJ, Wang IJ, Chen S, Chen YH, Young TH. The phenotypic response of bovine corneal endothelial cells on chitosan/polycaprolactone blends. Colloids and surfaces B, Biointerfaces. 2012;90:236-43.
56. Peloso A, Katari R, Murphy SV, Zambon JP, DeFrancesco A, Farney AC, et al. Prospect for kidney bioengineering: shortcomings of the status quo. Expert opinion on biological therapy. 2015;15(4):547-58.
57. Kim S, Fissell WH, Humes DH, Roy S. Current strategies and challenges in engineering a bioartificial kidney. Frontiers in bioscience. 2015;7:215-28.
58. Humes HD, Buffington D, Westover AJ, Roy S, Fissell WH. The bioartificial kidney: current status and future promise. Pediatr Nephrol. 2014;29(3):343-51.
59. MacKay SM, Funke AJ, Buffington DA, Humes HD. Tissue engineering of a bioartificial renal tubule. ASAIO J. 1998;44(3):179-83.
60. Shen C, Zhang G, Wang Q, Meng Q. Fabrication of Collagen Gel Hollow Fibers by Covalent Cross-Linking for Construction of Bioengineering Renal Tubules. ACS Appl Mater Interfaces. 2015;7(35):19789-97.
61. Zhang H, Tasnim F, Ying JY, Zink D. The impact of extracellular matrix coatings on the performance of human renal cells applied in bioartificial kidneys. Biomaterials. 2009;30(15):2899-911.
62. Ni M, Teo JC, Ibrahim MS, Zhang K, Tasnim F, Chow PY, et al. Characterization of membrane materials and membrane coatings for bioreactor units of bioartificial kidneys. Biomaterials. 2011;32(6):1465-76.
63. Gstraunthaler G. Alternatives to the use of fetal bovine serum: serum-free cell culture. Altex. 2003;20(4):275-81.
64. Gonlusen G, Ergin M, Paydas S, Tunali N. The expression of cytoskeletal proteins (alpha-SMA, vimentin, desmin) in kidney tissue: a comparison of fetal, normal kidneys, and glomerulonephritis. International urology and nephrology. 2001;33(2):299-305.
65. Blume LF, Denker M, Gieseler F, Kunze T. Temperature corrected transepithelial electrical resistance (TEER) measurement to quantify rapid changes in paracellular permeability. Die Pharmazie. 2010;65(1):19-24.
66. Wilmes A, Aschauer L, Limonciel A, Pfaller W, Jennings P. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel. Toxicology and applied pharmacology. 2014;279(2):163-72.
67. Vilar Junior JC, Ribeaux DR, Alves da Silva CA, De Campos-Takaki GM. Physicochemical and Antibacterial Properties of Chitosan Extracted from Waste Shrimp Shells. Int J Microbiol. 2016;2016:5127515.
68. Liu H, Du Y, Yang J, Zhu H. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohydrate Polymers. 2004;55(3):291-7.
69. Chen YH, Chang SH, Wang TJ, Wang IJ, Young TH. Cell fractionation on pH-responsive chitosan surface. Biomaterials. 2013;34(4):854-63.
70. Funderburgh JL, Funderburgh ML, Mann MM, Corpuz L, Roth MR. Proteoglycan expression during transforming growth factor beta -induced keratocyte-myofibroblast transdifferentiation. J Biol Chem. 2001;276(47):44173-8.
71. Romanova OA, Grigor'ev TE, Goncharov ME, Rudyak SG, Solov'yova EV, Krasheninnikov ST, et al. Chitosan as a Modifying Component of Artificial Scaffold for Human Skin Tissue Engineering. Bull Exp Biol Med. 2015;159(4):557-66.
72. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England journal of medicine. 2004;351(12):1187-96.
73. Cogan MG. Disorders of proximal nephron function. The American journal of medicine. 1982;72(2):275-88.
74. Bonanno JA. Molecular mechanisms underlying the corneal endothelial pump. Experimental eye research. 2012;95(1):2-7.
75. Hogan BL. Morphogenesis. Cell. 1999;96(2):225-33.
76. Watanabe R, Hayashi R, Kimura Y, Tanaka Y, Kageyama T, Hara S, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue engineering Part A. 2011;17(17-18):2213-9.
77. Wang TJ, Wang IJ, Lu JN, Young TH. Novel chitosan-polycaprolactone blends as potential scaffold and carrier for corneal endothelial transplantation. Molecular vision. 2012;18:255-64.
78. Ruini F, Tonda-Turo C, Chiono V, Ciardelli G. Chitosan membranes for tissue engineering: comparison of different crosslinkers. Biomed Mater. 2015;10(6):065002.
79. Chiang IN, Huang WC, Huang CY, Pu YS, Young TH. Development of a chitosan-based tissue-engineered renal proximal tubule conduit. J Biomed Mater Res B Appl Biomater. 2016.
80. Kleinsoyer C, Hemmendinger S, Cazenave JP. Culture of Human Vascular Endothelial-Cells on a Positively Charged Polystyrene Surface, Primaria - Comparison with Fibronectin-Coated Tissue-Culture Grade Polystyrene. Biomaterials. 1989;10(2):85-90.
81. Steele JG, Dalton BA, Johnson G, Underwood PA. Polystyrene chemistry affects vitronectin activity: an explanation for cell attachment to tissue culture polystyrene but not to unmodified polystyrene. Journal of biomedical materials research. 1993;27(7):927-40.
82. Steele JG, Johnson G, Griesser HJ, Underwood PA. Mechanism of initial attachment of corneal epithelial cells to polymeric surfaces. Biomaterials. 1997;18(23):1541-51.
83. Shakhbazau A, Potapnev M. Autologous mesenchymal stromal cells as a therapeutic in ALS and epilepsy patients: Treatment modalities and ex vivo neural differentiation. Cytotherapy. 2016.
84. Okumura N, Kinoshita S, Koizumi N. Cell-based approach for treatment of corneal endothelial dysfunction. Cornea. 2014;33 Suppl 11:S37-41.
85. Berry CA, Rector FC, Jr. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney. Seminars in nephrology. 1991;11(2):86-97.
86. Dominguez JH, Camp K, Maianu L, Feister H, Garvey WT. Molecular adaptations of GLUT1 and GLUT2 in renal proximal tubules of diabetic rats. The American journal of physiology. 1994;266(2 Pt 2):F283-90.
87. Kao WW, Liu CY. Corneal morphogenesis during development and wound healing. Japanese journal of ophthalmology. 2010;54(3):206-10.
88. Schedl A. Renal abnormalities and their developmental origin. Nature reviews Genetics. 2007;8(10):791-802.
89. Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, et al. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol. 2012;227(3):1257-68.
90. Thiagarajah JR, Verkman AS. Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling. J Biol Chem. 2002;277(21):19139-44.
91. Riley MV, Winkler BS, Peters MI, Czajkowski CA. Relationship between Fluid Transport and in-Situ Inhibition of Na+-K+ Adenosine-Triphosphatase in Corneal Endothelium. Investigative Ophthalmology & Visual Science. 1994;35(2):560-7.
92. de Groot BL, Grubmuller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science. 2001;294(5550):2353-7.
93. Tamma G, Procino G, Svelto M, Valenti G. Cell culture models and animal models for studying the patho-physiological role of renal aquaporins. Cell Mol Life Sci.69(12):1931-46.
94. Kuang K, Yiming M, Wen Q, Li Y, Ma L, Iserovich P, et al. Fluid transport across cultured layers of corneal endothelium from aquaporin-1 null mice. Experimental eye research. 2004;78(4):791-8.
95. Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. The New England journal of medicine. 2000;343(2):86-93.
96. Ohki T, Yamato M, Murakami D, Takagi R, Yang J, Namiki H, et al. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. Gut. 2006;55(12):1704-10.
97. Kuncova-Kallio J, Kallio PJ. PDMS and its suitability for analytical microfluidic devices. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2486-9.
98. Zhou J, Ellis AV, Voelcker NH. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis. 2010;31(1):2-16.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59898-
dc.description.abstract近端腎小管細胞負責接受腎絲球過濾液,具有再吸收的功能,藉以維持生物體內水分和電解質的平衡,是腎臟中相當重要的細胞組成。然而近端腎小管細胞相當脆弱,感染發炎、氧氣不足、環境內的毒物、肥胖和糖尿併發症都會造成近端腎小管細胞的損傷。因此近端腎小管的再生與組織工程亦是一個具有發展性的研究課題。對於近端腎小管的再生與組織工程來說,足量的細胞來源和正常的細胞功能是最重要的。許多學者投入心力研究培養近端腎小管細胞的培養液、培養液補充成分、分離取下細胞的消化酶和用以培養細胞的細胞外間質,希望能更有效率地培養出具有正常功能的近端腎小管細胞。
遠紅外線是自然界光譜中的一個分支,目前已被證實有助於組織修復、抗發炎、促進細胞生長、調控睡眠品質、加速末梢血液循環和緩解疼痛。本研究嘗試將遠紅外線應用於近端腎小管細胞的培養,觀察遠紅外線定期照射下,細胞的生長分化、功能特性和免疫螢光表現。本研究顯示,培養兔近端腎小管細胞時,每日接受三十分鐘遠紅外線照射的組別,其細胞活性顯著高於沒有照射遠紅外線的組別。且經細胞染色和西方點墨法證實,接受遠紅外線照射的近端腎小管細胞會表現出顯著較強的細胞特性,包括:鈉鉀幫浦和葡萄糖運輸子。本研究進一步培養人類近端腎小管細胞株作藥毒性實驗。在近端腎小管細胞的培養液中加入具有腎毒性的化療藥物順鉑會造成細胞活性降低和細胞凋亡。若給予細胞株每日三十分鐘的遠紅外線照射,加入順鉑後雖然細胞活性也會下降,但其活性下降幅度和細胞凋亡的比例都會低於沒有照射的組別。根據本研究的結果,遠紅外線照射有助於近端腎小管細胞培養,可增加細胞活性,並且可藉由降低細胞凋亡,來減少腎毒性藥物順鉑對近端腎小管細胞造成的腎毒性。
本研究同時也在尋找適合近端腎小管細胞生長分化的生醫材料。過去的文獻中,通常使用膠原蛋白作為培養近端腎小管細胞的基底。然而膠原蛋白的機械強度不高,且將近端腎小管細胞培養於膠原蛋白上,需另外加入血清以促進細胞的生長分化,考量到異體血清可能帶來排斥和感染的問題,本研究嘗試將近端腎小管細胞培養在幾丁聚醣薄膜上,並使用無血清培養液,人類近端腎小管細胞可生長於幾丁聚醣薄膜上,維持長達一百五十天的穩定活性。幾丁聚醣是培養上皮細胞和軟組織的新興生醫材料,具有以下優點:生物相容性、可分解、抗菌和促進傷口癒合。本研究比較近端腎小管細胞分別培養在膠原蛋白和幾丁聚醣薄膜上的生長分化,發現培養於幾丁聚醣上的細胞表現出較高的鈉鉀幫浦、較低的纖維母細胞相關因子和較低的電阻,此結果顯示近端腎小管細胞於無血清的環境中生長於幾丁聚醣薄膜上具有較好的功能性。除了將近端腎小管細胞養於平面薄膜之外,本研究亦將幾丁聚醣製成細管,將近端腎小管細胞培養於幾丁聚醣管腔中,細胞於幾丁聚醣管內生長良好。
除了以幾丁聚醣為基底的近端腎小管培養之外,本研究也常是將近端腎小管細胞用於自體細胞治療。角膜內皮細胞和近端腎小管細胞一樣具有調控水分的功能並且都具有鈉鉀幫浦和水通道。本研究在兔模組上將自體近端腎小管細胞培養於幾丁聚醣薄膜上植入修補受損的角膜內皮細胞。植入一周後,自體近端腎小管細胞仍在眼球中存活。
然而,兔眼球在植入近端腎小管細胞/幾丁聚醣複合體後,眼球呈現不透明和腫脹的情況。因此進一步比較了有機矽膜和幾丁聚醣膜植入眼球內的組織變化。有機矽膜植入後直觀上角膜的透明度較佳,因此進一步將人類近端腎小管細胞培養餘有機矽膜上植入兔眼球,植入十天後進行解剖,發現人類近端腎小管細胞仍能存活於兔眼球中。後續仍將繼續此研究,希望能改善細胞/有機矽膜與眼球的貼附度,並期望能進行更多功能性的試驗。
本研究以近端腎小管細胞為主軸,藉由照光和改變培養細胞之生醫材料來改善細胞培養,並嘗試將培養之近端腎小管細胞應用於藥毒性觀察、培養於薄膜和管狀鷹架上,並嘗試用於自體細胞治療,以近端腎小管細胞修復受損之角膜內皮細胞。
zh_TW
dc.description.abstractRenal proximal tubule cells (RPTCs) are responsible for glomerular filtration and maintenance of water/electrolyte balance. RPTCs are vulnerable to infections, hypoxia, environmental toxins, obstetric, and diabetic complications. To regenerate a proximal tubule, sufficient cell numbers and normal cell function are requisite. Efforts have been made to improve RPTC cultivation with medium adjustment, medium supplements, digesting methods, and pre-coated extracellular matrix (ECM)
Far infrared radiation (FIR), a subdivision of the electromagnetic spectrum, has been proved to be beneficial for long-term effects of tissue healing, anti-inflammation, promoting growth, modulating sleep, acceleration of microcirculation, and pain relief. We attempt to study whether FIR would be beneficial RPTC cultivation and renal tissue engineering. We observed the beneficial effects of FIR on RPTCs, including cell viability, functional characteristics, immunofluorescence presentations, and subcellular findings. And the FIR protective effects were further examined with HK-2 cell (Human proximal tubule cell line) against cisplatin, a nephrotoxic agent. Our study showed that daily exposure to FIR for 30 minutes could significantly increase rabbit RPTC viability in vitro. FIR is not only beneficial in RPTC cell viability. RPTCs with FIR exposure presented higher expression of Na-K ATPase and GLUT1 (Glucose Transporter 1). The finding was documented with western blot analysis with statistical significance. With Q-PCR, CDK5R1, GNAS, NPPB, and TEK expressions were significantly enhanced. With HK-2 cell, the proximal tubule cell line, FIR had protective effects against cisplatin nephrotoxicity through reducing apoptosis. FIR is a potential photomodulation therapy to facilitate RPTC cultivation and would possibly be applied in further nephrotoxicity protection and other cisplatin-sensitive cell protection.
As for choosing a suitable biomaterial as the substrate, we compared human RPTCs (HRPTCs) cultivated on collagen and chitosan. Collagen has been routinely used as a substrate for culturing HRPTCs. However, HRPTCs cultivation on collagen requires serum addition, which brings the concerns of infection and immune responses. Chitosan is a promising biomaterial in tissue engineering approaches for primary culture of epithelial cells and soft tissue due to its biocompatibility, biodegradability, antibacterial, and wound healing activity. In this study, primary HRPTCs retrieved were cultivated on chitosan as a substrate in serum-free condition for up to 150 days. HRPTCs could maintain a typical epithelial morphology and the specific differentiation feature of transporting epithelia with dome formation after such long-term culture. As compared to HRPTCs cultivated on collagen, those cultivated on chitosan showed more dome formation, higher Na-K ATPase expression, lower vimentin expression, and lower transepithelial electrical resistance (TEER), indicating that HRPTCs cultivated on chitosan presented better differentiation status and would be more functional with better active transportation. Thus, the study indicates that chitosan is suitable for HRPTC cultivation in serum-free condition. We further cultivated HRPTCs on a 3D chitosan tubular scaffold, a chitosan conduit. HRPTCs also grew to confluence and differentiated with dome formation in the 3D chitosan tubular scaffold to form a chitosan-based tissue-engineered renal proximal tubule conduit.
After completing stationary RPTC cultivation, we further came up with the idea of autologous cell therapy. RPTCs and CECs are both capable of water pumping, which is a very unique ability in the same way. Since CECs and RPTCs share similar physiological property in water balance, presentations of Na-K ATPase and aquaporin-1 (AQP-1). We tried to use the autologous expanded RPTCs to replace dysfunctional CECs with a biodegradable carrier in a rabbit model. Autologously derived RPTCs cultivated on chitosan membrane were used to repair damaged cornea endothelium. The RPTC/chitosan construct was still viable with functional characteristics after one week transplantation
However, in the rabbit model with RPTC/chitosan construct, the eye transparency was not satisfying. We further compared biocompatibility of chitosan membrane and poly-dimethylsiloxane (PDMS) membrane. The transparency of the cornea was better with PDMS implantation. Thus, we cultivated HRPTCs on PDMS membrane to fabricate a HRPTC/PDMS construct for implantation. With the HRPTC/PDMS implantation, HRPTCs are viable in the rabbit eye after 10-day implantation. We would progress the study in the future to improve the attachment between cornea and the HRPTC/PDMS construct and to observe the functions of the implanted construct.
The study was mainly about RPTCs. We improve RPTC cultivation with FIR and different biomaterials. Further applications in nephrotoxicity assay, RPTC/biomaterial constructs, and autologous cell therapy would be investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:43:53Z (GMT). No. of bitstreams: 1
ntu-106-D99548014-1.pdf: 3564191 bytes, checksum: 2fb1bfafd84f10d57b0fd6538241079b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 vii
誌謝 vii
中文摘要 ix
英文摘要 xi
Chapter 1. Introduction...1
Chapter 2. Far infrared radiation and rabbit RPTC cell viability...5
Chapter 3. Protective effects of FIR against cisplatin nephrotoxicity...19
Chapter 4. The effect of chitosan on human RPTC cultivation...29
Chapter 5. Cornea endothelium repair with autologous RPTCs in a rabbit model...56
Chapter 6. Cornea endothelium repair with human RPTCs in a rabbit model...74
Conclusion and Perspectives...91
參考文獻...93
附錄...106
dc.language.isoen
dc.subject角膜內皮細胞zh_TW
dc.subject近端腎小管細胞、組織工程zh_TW
dc.subject遠紅外線zh_TW
dc.subject幾丁聚醣zh_TW
dc.subjectchitosanen
dc.subjectcorneal endothelial cellen
dc.subjectrenal proximal tubule cellen
dc.subjecttissue engineeringen
dc.subjectfar infrared radiationen
dc.title近端腎小管細胞之組織工程研究zh_TW
dc.titleTissue Engineering of Renal Proximal Tubule Cellen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee蒲永孝,王一中,林宏殷,李玫樺,李亦淇
dc.subject.keyword近端腎小管細胞、組織工程,遠紅外線,幾丁聚醣,角膜內皮細胞,zh_TW
dc.subject.keywordrenal proximal tubule cell,tissue engineering,far infrared radiation,chitosan,corneal endothelial cell,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201700273
dc.rights.note有償授權
dc.date.accepted2017-01-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved