請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59881完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 翁啟惠(Chi-Huey Wong) | |
| dc.contributor.author | Yen-Wen Huang | en |
| dc.contributor.author | 黃彥文 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:42:56Z | - |
| dc.date.available | 2019-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-04 | |
| dc.identifier.citation | (1) Fuster, M. M.; Esko, J. D. (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nature reviews. Cancer 5(7):526-542.
(2) Hauselmann, I.; Borsig, L. (2014) Altered tumor-cell glycosylation promotes metastasis. Frontiers in oncology 4:28. (3) Hanson, S. R.; Culyba, E. K.; Hsu, T. L.; Wong, C. H.; Kelly, J. W.; Powers, E. T. (2009) The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proceedings of the National Academy of Sciences of the United States of America 106(9):3131-3136. (4) Moyle, W. R.; Lin, W.; Myers, R. V.; Cao, D.; Kerrigan, J. E.; Bernard, M. P. (2005) Models of glycoprotein hormone receptor interaction. Endocrine 26(3):189-205. (5) Takahashi, M.; Yokoe, S.; Asahi, M.; Lee, S. H.; Li, W.; Osumi, D.; Miyoshi, E.; Taniguchi, N. (2008) N-glycan of ErbB family plays a crucial role in dimer formation and tumor promotion. Biochimica et biophysica acta 1780(3):520-524. (6) Liu, Y. C.; Yen, H. Y.; Chen, C. Y.; Chen, C. H.; Cheng, P. F.; Juan, Y. H.; Chen, C. H.; Khoo, K. H.; Yu, C. J.; Yang, P. C.; Hsu, T. L.; Wong, C. H. (2011) Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America 108(28):11332-11337. (7) Parodi, A. J. (2000) Protein glucosylation and its role in protein folding. Annual review of biochemistry 69:69-93. (8) Parodi, A. J. (2000) Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. The Biochemical journal 348 Pt 1:1-13. (9) Helenius, A.; Aebi, M. (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annual review of biochemistry 73:1019-1049. (10) Hebert, D. N.; Lamriben, L.; Powers, E. T.; Kelly, J. W. (2014) The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nature chemical biology 10(11):902-910. (11) Walsh, G.; Jefferis, R. (2006) Post-translational modifications in the context of therapeutic proteins. Nature biotechnology 24(10):1241-1252. (12) Kornfeld, R.; Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annual review of biochemistry 54:631-664. (13) Gavel, Y.; von Heijne, G. (1990) Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein engineering 3(5):433-442. (14) Schwarz, F.; Aebi, M. (2011) Mechanisms and principles of N-linked protein glycosylation. Current opinion in structural biology 21(5):576-582. (15) High, S.; Lecomte, F. J.; Russell, S. J.; Abell, B. M.; Oliver, J. D. (2000) Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS letters (16) Petrescu, S. M.; Branza-Nichita, N.; Negroiu, G.; Petrescu, A. J.; Dwek, R. A. (2000) Tyrosinase and glycoprotein folding: roles of chaperones that recognize glycans. Biochemistry 39(18):5229-5237. (17) Wormald, M. R.; Petrescu, A. J.; Pao, Y. L.; Glithero, A.; Elliott, T.; Dwek, R. A. (2002)Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR,X-ray crystallography, and molecular modelling.Chemical reviews 102(2):371-386. (18) Xu, C.; Ng, D. T. (2015) Glycosylation-directed quality control of protein folding. Nature reviews. Molecular cell biology 16(12):742-752. (19) Petrescu, A. J.; Milac, A. L.; Petrescu, S. M.; Dwek, R. A.; Wormald, M. R. (2004) Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14(2):103-114. (20) Zielinska, D. F.; Gnad, F.; Wisniewski, J. R.; Mann, M. (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141(5):897-907. (21) Hutchinson, E. G.; Thornton, J. M. (1994) A revised set of potentials for beta-turn formation in proteins. Protein science : a publication of the Protein Society 3(12):2207-2216. (22) A.Abbadi, M.Mcharfi, A.Aubry, S.Premilat, G.Boussard, M.Marraud(1991) Involvement of side functions in peptide structures: the Asx turn. Occurrence and conformational aspects Journal of the American Chemical Society 113(7):2729-2735. (23) Barbara I. (1997) Protein glycosylation: The Clash of the Titans Accounts of Chemical Research 30(11):452-459. (24) Kowarik, M.; Young, N. M.; Numao, S.; Schulz, B. L.; Hug, I.; Callewaert, N.; Mills, D. C.; Watson, D. C.; Hernandez, M.; Kelly, J. F.; Wacker, M.; Aebi, M. (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25(9):1957-1966. (25) Nothaft, H.; Szymanski, C. M. (2013) Bacterial protein N-glycosylation: new perspectives and applications. The Journal of biological chemistry 288(10):6912-6920. (26) Culyba, E. K.; Price, J. L.; Hanson, S. R.; Dhar, A.; Wong, C. H.; Gruebele, M.; Powers, E. T.; Kelly, J. W. (2011) Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science 331(6017):571-575. (27) Chen, W.; Enck, S.; Price, J. L.; Powers, D. L.; Powers, E. T.; Wong, C. H.; Dyson, H. J.; Kelly, J. W. (2013) Structural and energetic basis of carbohydrate-aromatic packing interactions in proteins. Journal of the American Chemical Society 135(26):9877-9884. (28) Price, J. L.; Culyba, E. K.; Chen, W.; Murray, A. N.; Hanson, S. R.; Wong, C. H.; Powers, E. T.; Kelly, J. W. (2012) N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 98(3):195-211. (29) Price, J. L.; Powers, D. L.; Powers, E. T.; Kelly, J. W. (2011) Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proceedings of the National Academy of Sciences of the United States of America 108(34):14127-14132. (30) Murray, A. N.; Chen, W.; Antonopoulos, A.; Hanson, S. R.; Wiseman, R. L.; Dell, A.; Haslam, S. M.; Powers, D. L.; Powers, E. T.; Kelly, J. W. (2015) Enhanced Aromatic Sequons Increase Oligosaccharyltransferase Glycosylation Efficiency and Glycan Homogeneity. Chemistry & biology 22(8):1052-1062. (31) Aguila, S.; Martinez-Martinez, I.; Dichiara, G.; Gutierrez-Gallego, R.; Navarro-Fernandez, J.; Vicente, V.; Corral, J. (2014) Increased N-glycosylation efficiency by generation of an aromatic sequon on N135 of antithrombin. PloS one 9(12):e114454. (32) Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Gallo Cassarino, T.; Bertoni, M.; Bordoli, L.; Schwede, T. (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252-258. (33) Huang, H. W.; Chen, C. H.; Lin, C. H.; Wong, C. H.; Lin, K. I. (2013) B-cell maturation antigen is modified by a single N-glycan chain that modulates ligand binding and surface retention. Proceedings of the National Academy of Sciences of the United States of America 110(27):10928-10933. (34) Hsu, C. H.; Park, S.; Mortenson, D. E.; Foley, B. L.; Wang, X.; Woods, R. J.; Case, D. A.; Powers, E. T.; Wong, C. H.; Dyson, H. J.; Kelly, J. W. (2016) The Dependence of Carbohydrate-Aromatic Interaction Strengths on the Structure of the Carbohydrate. Journal of the American Chemical Society 138(24):7636-7648. (35) Hymowitz, S. G.; Patel, D. R.; Wallweber, H. J.; Runyon, S.; Yan, M.; Yin, J.; Shriver, S. K.; Gordon, N. C.; Pan, B.; Skelton, N. J.; Kelley, R. F.; Starovasnik, M. A. (2005) Structures of APRIL-receptor complexes: like BCMA, TACI employs only a single cysteine-rich domain for high affinity ligand binding. The Journal of biological chemistry 280(8):7218-7227. (36) Rinderknecht, E.; O'Connor, B. H.; Rodriguez, H. (1984) Natural human interferon-gamma. Complete amino acid sequence and determination of sites of glycosylation. The Journal of biological chemistry 259(11):6790-6797. (37) Sareneva, T.; Pirhonen, J.; Cantell, K.; Julkunen, I. (1995) N-glycosylation of human interferon-gamma: glycans at Asn-25 are critical for protease resistance. The Biochemical journal 308 ( Pt 1):9-14. (38) Sareneva, T.; Pirhonen, J.; Cantell, K.; Kalkkinen, N.; Julkunen, I. (1994) Role of N-glycosylation in the synthesis, dimerization and secretion of human interferon-gamma. The Biochemical journal 303 ( Pt 3):831-840. (39) Lizak, C.; Gerber, S.; Michaud, G.; Schubert, M.; Fan, Y. Y.; Bucher, M.; Darbre, T.; Aebi, M.; Reymond, J. L.; Locher, K. P. (2013) Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. Nature communications 4:2627. (40) Elliott, S.; Lorenzini, T.; Asher, S.; Aoki, K.; Brankow, D.; Buck, L.; Busse, L.; Chang, D.; Fuller, J.; Grant, J.; Hernday, N.; Hokum, M.; Hu, S.; Knudten, A.; Levin, N.; Komorowski, R.; Martin, F.; Navarro, R.; Osslund, T.; Rogers, G.; Rogers, N.; Trail, G.; Egrie, J. (2003) Enhancement of therapeutic protein in vivo activities through glycoengineering. Nature biotechnology 21(4):414-421. (41) Glaspy, J.; Jadeja, J. S.; Justice, G.; Kessler, J.; Richards, D.; Schwartzberg, L.; Rigas, J.; Kuter, D.; Harmon, D.; Prow, D.; Demetri, G.; Gordon, D.; Arseneau, J.; Saven, A.; Hynes, H.; Boccia, R.; O'Byrne, J.; Colowick, A. B. (2001) A dose-finding and safety study of novel erythropoiesis stimulating protein (NESP) for the treatment of anaemia in patients receiving multicycle chemotherapy. British journal of cancer 84 Suppl 1:17-23. (42) Vansteenkiste, J.; Pirker, R.; Massuti, B.; Barata, F.; Font, A.; Fiegl, M.; Siena, S.; Gateley, J.; Tomita, D.; Colowick, A. B.; Musil, J.; Aranesp 980297 Study, G. (2002) Double-blind, placebo-controlled, randomized phase III trial of darbepoetin alfa in lung cancer patients receiving chemotherapy. Journal of the National Cancer Institute 94(16):1211-1220. (43) Brennan, A. M.; Mantzoros, C. S. (2006) Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications. Nature clinical practice. Endocrinology & metabolism 2(6):318-327. (44) Kasturi, L.; Chen, H.; Shakin-Eshleman, S. H. (1997) Regulation of N-linked core glycosylation: use of a site-directed mutagenesis approach to identify Asn-Xaa-Ser/Thr sequons that are poor oligosaccharide acceptors. The Biochemical journal 323 ( Pt 2):415-419. (45) Igura, M.; Kohda, D. (2011) Quantitative assessment of the preferences for the amino acid residues flanking archaeal N-linked glycosylation sites. Glycobiology 21(5):575-583. (46) Larkin, A.; Imperiali, B. (2011) The expanding horizons of asparagine-linked glycosylation. Biochemistry 50(21):4411-4426. (47) Ghaderi, D.; Taylor, R. E.; Padler-Karavani, V.; Diaz, S.; Varki, A. (2010) Implications of the presence of N-glycolylneuraminic acid in recombinant therapeutic glycoproteins. Nature biotechnology 28(8):863-867. (48) Vogt, G.; Chapgier, A.; Yang, K.; Chuzhanova, N.; Feinberg, J.; Fieschi, C.; Boisson-Dupuis, S.; Alcais, A.; Filipe-Santos, O.; Bustamante, J.; de Beaucoudrey, L.; Al-Mohsen, I.; Al-Hajjar, S.; Al-Ghonaium, A.; Adimi, P.; Mirsaeidi, M.; Khalilzadeh, S.; Rosenzweig, S.; de la Calle Martin, O.; Bauer, T. R.; Puck, J. M.; Ochs, H. D.; Furthner, D.; Engelhorn, C.; Belohradsky, B.; Mansouri, D.; Holland, S. M.; Schreiber, R. D.; Abel, L.; Cooper, D. N.; Soudais, C.; Casanova, J. L. (2005) Gains of glycosylation comprise an unexpectedly large group of pathogenic mutations. Nature genetics 37(7):692-700. (49) Imperiali, B.; Rickert, K. W. (1995) Conformational implications of asparagine-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America 92(1):97-101. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59881 | - |
| dc.description.abstract | N-醣基化是一種很重要的轉譯後修飾,這種修飾可以調控醣蛋白多種功能並且影響醣蛋白藥物的發展。N-醣基化的發生是當胺基酸在內質網合成時,此時寡醣轉接酵素OST會辨認共識蛋白質序列NXS/T,並且接上寡醣前驅物。但是並不是所有的共識蛋白質序列會被接上寡醣,大約只有65%會被接上,其中真正的機制還尚未清楚。過去研究指出,三個胺基酸片段為OST最簡單的受質,並且形成β-turn 和Asx-turn這兩種可區分的形狀,此外,之前研究發展出一個預測的方式,包括Phe-X-Asn-X-Thr和Phe-X-X-Asn-X-Thr的序列,讓我們有更進一步的了解。為了要深入的了解在醣基化的Asn附近其他胺基酸,是否會影響醣基化的效率,我們使用人類T細胞上抗原蛋白CD2的黏著片段當作本實驗的模型,我們使用階梯式的掃描方式,來檢視醣基化Asn(0)附近其他胺基酸(-2,-1,+1,+2) 是否會影響其效率。我們發現帶有芳香環官能基特別是Trp和硫官能基的氨基酸在醣化Asn上游前兩個位置(-2)可以促進醣化的效率,然而帶有正電的氨基酸具有相反的效果,官能基具有硫,氫氧,脂肪族官能基的氨基酸在-1的位置有高的醣化效率,尤其Cys可以恢復醣化效率即使在Arg在的-2位置,小分子量的氨基酸和Ser在+1的位置可以有效的促進醣化的效率。根據這些不同胺基酸片段組合所產生的效率比例,我們能利用SAS軟體建立一種運算方式,是根據胺基酸組合的片段來預測醣基化的效率。為了證明優化片段能夠促進醣化的效率,我們在其他具有N-醣化的蛋白中將優化片段置換原本的片段,結果促進醣化效率和人類CD2模型的結果一致。最後使用電腦模擬的方式可以發現優化片段和人類OST亞基具有高度的親和力和相互作用。我們的發現提供一個預測N-醣基化效率的指引,可以針對我們有興趣的醣化蛋白上的醣化位置去做基因工程,改變成促進或是抑制醣化的效率,此實驗讓我們對於OST所催化的醣化有更進一步的了解。 | zh_TW |
| dc.description.abstract | N-glycosylation is an important co-translational modification that regulates diverse glycoprotein functions and influences the development of glycoprotein pharmaceuticals. N-glycosylation happens in endoplasmic reticulum (ER) when nascent peptide synthesis. The oligosaccharyltransferase (OST) recognizes the consensus sequon Asn-X-Ser/Thr (NXS/T) to link dolichol-linked precursor oligosaccharide. However, only 65% of the consensus sequences are be glycosylated and this mechanisms are still unclear. It is known that tripeptides, NXS/T, are the substrate of OST and form two distinct structures as β-turn and Asx-turn. Furthermore, previous work on the development of a predictive rule to identify a sequon for N-glycosylation, including the aromatic sequons Phe-X-Asn-X-Thr and Phe-X-X-Asn-X-Thr has advanced our understanding of N-glycosylation. To further investigate the influence of sequence variation on N-glycosylation efficiency in the context of a pentapeptide enhanced aromatic sequon and to use human CD2 adhesion domain (hCD2ad) to screen the -2, -1, +1 and +2 residues flanking Asn at position 0 in a stepwise manner to identify the optimal sequon for N-glycosylation. It was found that aromatic, especially the Trp residue, and sulfur-containing residues at the -2 position upstream of the sequon Asn residue improved N-glycosylation efficiency, while positive-charge residues such as Arg had a negative effect. The thiol, hydroxyl, and aliphatic residues at the -1 position had higher N-glycosylation efficiency, and Cys, in particular, restored the negative effect of Arg at the -2 position. Small residues and Ser at the +1 position downstream of Asn increased the likelihood of N-glycosylation. Based on the degree of glycosylation of various sequences, we devised an algorithm for prediction of N-glycosylation efficiency using the SAS software. As a proof-of-concept, we introduced the optimized sequons to other glycoproteins and found enhancement in glycosylation, with a modeling support to show the high-affinity interactions between the optimized sequence on hCD2ad and an OST subunit. Our findings in this study provide a better understanding of the OST-catalyzed N-glycosylation and a predictive guide for glycoprotein design to introduce or suppress N-glycosylation at a site of interest. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:42:56Z (GMT). No. of bitstreams: 1 ntu-106-D01B46013-1.pdf: 3715201 bytes, checksum: b28267ac3dce61ef6cba689f26d007a3 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | CHAPTER 1: Introduction.................................1
1.1 What is N-glycosylation?............................2 1.2 N-glycosylation Sequons.............................3 1.3 N-glycosylation and Protein Stability...............4 1.4 Rationale and Significance..........................5 CHAPTER 2: Materials and Methods........................7 2.1 Establishment of Saturation Mutagenesis Library of hCD2ad..............................................8 2.2 Binding Interaction between OST and Acceptors.......9 2.3 Cell Culture.......................................10 2.4 Protein Expression and Western Blotting............10 2.5 Statistically analysis for mutagenesis library.....11 CHAPTER 3: Results.....................................14 3.1 Establishment of Pentapeptide Sequon Library.......15 3.2 Establishment of Screening Methods: High Throughput and Stepwise Screening.............................16 3.3 Aromatic Residues and Sulfur-containing Residues At the -2 Position Enhance the N-Glycosylation Efficiency, While Positively Charged Residues Show Inhibition.........................................18 3.4 Cys at the -1 Position Increased the N-Glycosylation Efficiency.........................................19 3.5 Hydoxyl and Small Amino Acids at +1 Position Enhanced the Glycan Occupancy...............................20 3.6 The Correlation Between the Characteristics of Pentapeptides Library and N-glycosylation Efficiency.........................................21 3.7 Determinants and the Algorithm for Prediction of the N-glycosylation Efficiency.........................22 3.8 Expansion of the Predictive Sequons to Other Glycoproteins......................................27 3.9 Computer Simulation of Docking Between Optimized Sequon and Human OST subunit.......................29 CHAPTER 4: Discussion..................................31 CHAPTER 5: Figures.....................................38 CHAPTER 6: Supplementary figures.......................63 CHAPTER 7: Tables......................................66 CHAPTER 8: Refences....................................73 CHAPTER 9: Apendix.....................................79 | |
| dc.language.iso | en | |
| dc.subject | 醣蛋白基因工程 | zh_TW |
| dc.subject | N-醣基化 | zh_TW |
| dc.subject | NXS/T片段 | zh_TW |
| dc.subject | 飽和點突變 | zh_TW |
| dc.subject | SAS統計軟體 | zh_TW |
| dc.subject | 預測醣化效率模型 | zh_TW |
| dc.subject | 電腦模擬 | zh_TW |
| dc.subject | SAS Prediction model | en |
| dc.subject | glycoprotein-engineer | en |
| dc.subject | NXS/T sequon | en |
| dc.subject | computer simulation | en |
| dc.subject | Site-direct mutagenesis | en |
| dc.subject | N-glycosylation | en |
| dc.subject | Saturation mutagenesis | en |
| dc.title | 鄰近胺基酸對蛋白質N-醣基化效率的影響 | zh_TW |
| dc.title | Effect of Neighboring Residues on Protein N-glycosylation Efficiency | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊懷壹(Hwai-I Yang),吳盈達(Ying-Ta Wu),吳宗益(Chung-Yi Wu),王惠鈞(Andrew Hui-Jun Wang) | |
| dc.subject.keyword | N-醣基化,NXS/T片段,飽和點突變,SAS統計軟體,預測醣化效率模型,電腦模擬,醣蛋白基因工程, | zh_TW |
| dc.subject.keyword | N-glycosylation,NXS/T sequon,Site-direct mutagenesis,Saturation mutagenesis,SAS Prediction model,computer simulation,glycoprotein-engineer, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201700310 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
