Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59876
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊全(Chiun-Chuan Chen)
dc.contributor.authorHsin-Lun Lien
dc.contributor.author李欣倫zh_TW
dc.date.accessioned2021-06-16T09:42:39Z-
dc.date.available2019-02-16
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-02-04
dc.identifier.citation[1] Xuerong Mao (2007), Stochastic di erential equations and applications
Second edition
[2] Arnold, L. (1974), Stochastic Di erential Equations: Theory and
Applications, John Wiley and Sons.
[3] Arnold, L. and Crauel, H. (1991), Random dynamical system, Lecture
Notes in Mathematics 1486, pp1{22.
[4] Arnold, L. and Kliemann, W. (1987), On unique ergodicity for degenerate
di usions, Stochastics 21, pp41{61.
[5] Arnold, L., Oeljeklaus, E. and Pardoux, E. (1984), Almost sure and
moment stability for linear It^o equations, Lecture Note in Math.
1186, pp129{159.
[6] Bahar, A. and Mao, X. (2004a), Stochastic delay population dynamics,
Journal of International Applied Math. 11(4),pp377{400.
[7] Bahar, A. and Mao, X. (2004b), Stochastic delay Lotka-Volterra
model, J. Math. Anal. Appl. 292, pp364{380.
[8] Baxendale, P. (1994), A stochastic Hopf bifurcation, Probab. Theory
Relat. Fields 99, pp581{616.
[9] Baxendale, P. and Henning, E.M. (1993), Stabilization of a linear
system, Random Comput. Dyn. 1(4), pp395{421.
[10] Beckenbach, E.F. and Bellman, R. (1961), Inequalities, Springer.
[11] Bell, D.R. and Mohammed, S.E.A. (1989), On the solution of
stochastic di erential equations via small delays, Stochastics and
Stochastics Reports 29, pp293{299.
[12] Bellman, R. and Cooke, K.L. (1963), Di erential{Di erence Equations,
Academic Press.
[13] Bensoussan, A. (1982), Lectures on stochastic control, Lecture Notes
in Math. 972, Springer.
[14] Bihari, I. (1957), A generalization of a lemma of Bellman and its
application to uniqueness problem of di erential equations, Acta
Math. Acad. Sci. Hungar. 7, pp71{94.
[15] Bismut, J.M. (1973), Theorie probabiliste du contr^ole des di usions,
Mem. Amer. Math. Soc. No. 176.
[16] Black, F. and Scholes, M. (1973), The prices of options and corporate
liabilities, J. Political Economy 81, 637{654.
[17] Brayton, R.(1976), Nonlinear oscillations in a distributed network,
Quart. Appl. Math. 24, pp289{301.
[18] Bucy, H.J. (1965), Stability and positive supermartingales, J. Differential
Equation 1, pp151{155.
[19] Carmona, R. and Nulart, D. (1990), Nonlinear Stochastic Integrators,
Equations and Flows, Gordon and Breach.
[20] Chan, K.C., Karolyi, G.A., Longsta , F.A. and Sanders, A.B.
(1992), An empirical comparison of alternative models of the short
term interest rate, Journal of Finance 47, pp1209{1227.
[21] Chow, P. (1982), Stability of nonlinear stochastic evolution equations,
J. Math. Anal. Appl. 89, pp400{419.
[22] Coddington, R.F. and Levinson, N. (1955), Theory of Ordinary Differential
Equations, McGraw{Hill.
[23] Curtain, R.F. and Pritchard, A.J. (1978), In nite Dimensional Linear
System Theory, Lecture Notes in Control and Information Sciences
8, Springer.
[24] Da Prato, G. and Zabczyk, J. (1992), Stochastic Equations in In -
nite Dimensions, Cambridge University Press.
[25] Davis, M. (1994), Linear Stochastic Systems, Chapman and Hall.
[26] Dellacherie, C. and Meyer, P.A. (1980), Probabilites et Potentiels,
2e edition, Chapitres V{VIII, Hermann.
[27] Denker, J.S.(1986), Neural Networks for Computing, Proceedings of
the Conference on Neural Networks for Computing (Snowbird, UT,
1986), AIP, New York, 1986.
[28] Doleans-Dade, C. and Meyer, P.A. (1977), Equations Di erentilles
Stochastiques, Sem. Probab. XI, Lect. Notes in Math. 581.
[29] Doob, J.L. (1953), Stochastic Processes, John Wiley.
[30] Driver, R.D. (1963), A functional di erential system of neutral type
arising in a two-body problem of classical electrodynamics, in Nonlinear
Di erential Equations and Nonlinear Mechanics,' Academic
Press, pp474{484.
[31] Dunkel, G. (1968), Single-species model for population growth depending
on past history, Lecture Notes in Math. 60, pp92{99.
[32] Dynkin,E.B. (1963), The optimum choice of the instant for stopping
a Markov process, Soviet Mathematics 4, 627{629.
[33] Dynkin, E.B. (1965), Markov Processes, Vol.1 and 2, Springer.
[34] Elliott, R.J. (1982), Stochastic Calculus and Applications, Springer.
[35] Elworthy, K.D. (1982), Stochastic Di erential Equations on Manifolds,
London Math. Society, Lect. Notes Series 70, C. U. P.
[36] Ergen, W.K. (1954), Kinetics of the circulating fuel nuclear reaction,
J. Appl. Phys. 25, pp702{711.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59876-
dc.description.abstract於此篇文章我們將透過週期性成長之隨機延遲物種系統探討物種的延
續與滅絕並探討在什麼情形下物種得以延續,什麼情形下物種會滅絕
以及物種在不同情形下的表現。
zh_TW
dc.description.abstractIn this say, we probe the persistence and extinction of species via Stochastic Delay Lotka-Volterra model with periodic functions to depict seasonal growth of species. We will discuss under what circumstances the solution
to the model is positive almost surely and under what circumstances it exterminates. We also probe properties of the solution to the model under different circumstances.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:42:39Z (GMT). No. of bitstreams: 1
ntu-106-R03221008-1.pdf: 791344 bytes, checksum: 9f1a6e3e1c6c2dab99425d4bf28031b3 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要I
英文摘要II
1 Introduction p1
1.1 Background . . . . . . . . . .. . . . . . . . . . . 1
1.2 Prerequisites . . . . . . . . . .. . . . . . . . . . 2
1.2.1 Theorem 1.1 . . . . . . . . . . . . . . . . . . . 3
1.2.2 Theorem 1.2 . . . . . . . . . . . . . . . . . . . 3
1.2.3 Theorem 1.3 . . . . . . . .. . . . . . . . . . . . 3
1.2.4 Lemma . . . . . . . . . . . . . . . . . . . . . . 3
2 Main Theorems p4
2.1 Outline . . . . . . . . . .. . . . .. . . . . . . . 4
2.2 Statements and Proofs . . . . . . . . . . . . . . . 4
2.2.1 Theorem 1 . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Theorem 2 . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Theorem 3 . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Theorem 4 . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Theorem 5 . . . . . . . . . . . . . . . . . . . . 12
2.2.6 Theorem 6 . . . . . . . . . . . . . . . . . . . . 15
2.2.7 Theorem 7 . . . . . . . . . . . . . . . . . . . . 17
2.2.8 Theorem 8 . . . . . . . . . . . . . . . . . . . . 20
2.2.9 Theorem 9 . . . . . . . . . . . . . . . . . . . . 23
2.2.10 Theorem 10 . . . . . . . . . . . . . . . . . . . 25
2.2.11 Theorem 11 . . . . . . . . . . . . . . . . . . . 28
3 Conclusion p30
References p31
dc.language.isoen
dc.subject強大數法則zh_TW
dc.subject布朗運動zh_TW
dc.subjectGronwall不等式zh_TW
dc.subjectIto不等式zh_TW
dc.subject隨機延遲物種系統zh_TW
dc.subjectIto formulaen
dc.subjectStrong law of large numbersen
dc.subjectStochastic Delay Population Systemen
dc.subjectBrownian motionen
dc.subjectGronwall inequalityen
dc.title週期性成長之隨機延遲物種系統zh_TW
dc.titleSTOCHASTIC DELAY POPULATION SYSTEMS
WITH PERIODIC GROWTH RATE
en
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王振男(Jenn-Nan Wang),夏俊雄(Chun-Hsiung Hsia)
dc.subject.keyword布朗運動,Gronwall不等式,Ito不等式,隨機延遲物種系統,強大數法則,zh_TW
dc.subject.keywordBrownian motion,Gronwall inequality,Ito formula,Stochastic Delay Population System,Strong law of large numbers,en
dc.relation.page33
dc.identifier.doi10.6342/NTU201700338
dc.rights.note有償授權
dc.date.accepted2017-02-06
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
772.8 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved