請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林增毅(Tzeng-Yih Lam) | |
| dc.contributor.author | Yung-Han Yang | en |
| dc.contributor.author | 楊詠涵 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:40:56Z | - |
| dc.date.available | 2020-01-01 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-06 | |
| dc.identifier.citation | References
Ajayi, S., 2013. Diameter distribution for Gmelina arborea plantations in Ukpon River Forest Reserve, Cross River State, Nigeria. AFRREV STECH 2(1), 64-82. Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle, in: Petrov, B.N., Csaki, B.F. (Eds.), Second International Symposium on Information Theory. AcademiaiKiado: Budapest, pp. 267-281. Avery, T.E., Burkhart, H.E., 2002. Forest Measurements, fifth ed. McGraw-Hill, New York. Bailey, R.L., Dell, T.R., 1973. Quantifying diameter distributions with the Weibull function. For. Sci. 19(2), 97-104. Bliss, C.I., Reinker, K.A., 1964. A lognormal approach to diameter distributions in even-aged stands. For. Sci. 10(3), 350-360. Borders, B.E., Souter, R.A., Bailey, R.L., Ware, K.D., 1987. Percentile-based distributions characterize forest stand tables. For. Sci. 33(2), 570-576. Borders, B.E., Wang, M., Zhao, D., 2008. Problems of scaling plantation plot diameter distributions to stand level. For. Sci. 54(3), 349-355. Bullock, B.P., Boone, E.L., 2007. Deriving tree diameter distributions using Bayesian model averaging. For. Ecol. Manage. 242(2), 127-132. Burkhart, H.E., Tome, M., 2012. Modeling Forest Trees and Stands. Springer, Dordrecht. Burkhart, H.E., Strub, M.R., 1974. A model for simulation of planted loblolly pine stands. J. Fries. Royal College of Forestry, Stockholm, Sweden, pp. 128-135. Burnham, K.P., Anderson, D.R., 2004. Multimodel inference understanding AIC and BIC in model selection. Sociol. Method Res. 33(2), 261-304. Carretero, A.C., Alvarez, E.T., 2013. Modelling diameter distributions of Quercus suber L. stands in “Los Alcornocales” Natural Park (Cadiz-Malaga, Spain) by using the two parameter Weibull functions. For. Syst. 22(1), 15-24. Chang, S.T., Chen, P.F., Chang, S.C., 2000a. Antibacterial activity of essential oils and extractives from Taiwania (Taiwania cryptomerioides Hayata). Q. J. Chin. For. 33, 119-125. Chang, S.T., Chen, P.F., Wang, S.Y., Wu, H.H., 2001a. Antimite activity of essential oils and their constituents from Taiwania cryptomerioides. J. Med. Entomol. 38(3), 455-457. Chang, S.T., Cheng, S.S., Wang, S.Y., 2001b. Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). J. Chem. Ecol. 27(4), 717-724. Chang, S.T., Wang, D.S.Y., Wu, C.L., Shiah, S.G., Kuo, Y.H., Chang, C.J., 2000b. Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 55(3), 227-232. Chang, S.T., Wang, S.Y., Kuo, Y.H., 2003. Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). J. Wood Sci. 49(1), 0001-0004. Chang, S.T., Wang, S.Y., Su, Y.C., Kuo, Y.H., 1999a. Chemical constituents and mechanisms of discoloration of Taiwania (Taiwania cryptomerioides Hayata) heartwood. The structure reconfirmation and conversion mechanism of Taiwanin A. Holzforschung 53(2), 142-146. Chang, S.T., Wang, S.Y., Wu, C.L., Chen, P.F., Kuo, Y.H., 2000c. Comparisons of the antifungal activities of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 54(3), 241-245. Chang, S.T., Wang, S.Y., Wu, C.L., Su, Y.C., Kuo, Y.H., 1999b. Antifungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 53(5), 487-490. Chang, S.T., Wu, C.L., Wang, S.Y., Su, Y.C., Kuo, Y.H., 1998. Studies on the antifungal compounds in the heartwood extractives of Taiwania (Taiwania cryptomerioides Hayata) (I) Isolation and identification of antifungal compounds in hexane soluble fraction. For. Prod. Ind. 17, 287-304. Chen, L.C., Huang, G.M., Chang, T.Y., Horng, F.W., 1996. The effect of planting density on the growth of Taiwania-fir plantations at Lu-Kuei area. Taiwan J. For. Sci. 11(1), 1-11. Chen, Y.H., Yang, M.X., Wang, C.H., 2010. Individual tree diameter growth and mortality models for Chamaecyparis formosensis and Taiwania cryptomerioides plantations. Ilan Univ. J. Bioresources 6(1), 71-77. Chiou, C.R., Cheng, C.P., Yang, S.I., 2013. Application of growth models in tree growth in Taiwan. Q. J. Chin. For. 46(4), 545-558. Chiu, C.M., Chien, C.T., Nigh, G., 2016. Density-dependent mortality in Taiwania cryptomerioides and Chamaecyparis formosensis stands in Taiwan. Cogent Environ. Sci. 2, 1148301. Chiu, C.M., Lin, C.J., Lo-Cho, C.N., Chen, Y.C., 2002. Effects of thinning and pruning on the growth of taiwania (Taiwania Cryptomerioides) plantation in Lu-Kuei area. Q. J. Chin. For. 35(1), 43-54. Chiu, C.M., Nigh, G., Chien, C.T., Ying, C.C., 2010a. Diameter distribution models for thinned taiwania (Taiwania Cryptomerioides) plantations. Aust. For. 73(1), 3-11. Chiu, C.M., Nigh, G., Chien, C.T., Ying, C.C., 2010b. Growth patterns of plantation-grown Taiwania cryptomerioides following thinning. Aust. For. 73(4), 246-253. Clutter, J.L., Bennett, F.A., 1965. Diameter distributions in old-field slash pine plantations. Ga. For. Res. Counc. Rep. 13. Core Team R, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. de Liocourt, F.D., 1898. De l’amenagement des Sapiniers. Bul. Soc. For. Franche-Compteet Belfort. pp. 396-409. Duan, A.G., Zhang, J.G., Zhang, X.Q., He, C.Y., 2013. Stand diameter distribution modelling and prediction based on Richards function. Plos One 8(4), e62605. Dubey, S.D., 1967. Some percentile estimators for Weibull parameters. Technometrics 9(1), 119-129. Eslami, A.R., Karimi, B., Payam, H., Derakhshan, O.K., 2011. Investigation of the structure and distribution diameter classes models in beech forests of northern Iran. Afr. J. Agric. Res. 6(10), 2157-2165. Garcia, O., 1992. What is a diameter distribution?, in: Minowa, M., Tsuyuki, S. (Eds.), Proceedings of the Symposium on Integrated Forest Management Information Systems - An International Symposium. Japan Society of Forest Planning Press, Tokyo, pp. 11-29. Gorgoso, J.J., Rojo, A., Camara-Obregon, A., Dieguez-Aranda, U., 2012. A comparison of estimation methods for fitting Weibull, Johnson’s SB and beta functions to Pinus pinaster, Pinus radiate and Pinus sylvestris stands in northwest Spain. For. Syst. 21(3), 446-459. Gorgoso-Varela, J.J., Rojo-Alboreca, A., Afif-Khouri, E., Barrio-Anta, M., 2008. Modelling diameter distributions of birch (Betula alba L.) and Pedunculate oak (Quercus robur L.) stands in northwest Spain with the beta distribution. Invest. Agrar. Sistemasy Recur. Forestales 17(3), 271-281. Gul, A.U., Misir, M., Misir, N., Yavuz, H., 2005. Calculation of uneven-aged stand structures with the negative exponential diameter distribution and Sterba's modified competition density rule. For. Ecol. Manage. 214(1), 212-220. Hafley, W.L., Schreuder, H.T., 1977. Statistical distributions for fitting diameter and height data in even-aged stands. Can. J. For. Res. 7(3), 481-487. Harter, H.L., 1964. Expected values of exponential, Weibull and gamma order statistics. AEROSPACE RESEARCH LABS WRIGHT-PATTERSON AFB OHIO. 106 pp. Humphrey Igbinosa, A., Godwin Ejakhe, O., 2014. Modeling diameter distribution of the tropical rainforest in Oban Forest Reserve. J. Environ. Ecol. 5(2), 130-143. Husch, B., Beers, T.W., Kershaw, J.A., 2003. Forest Mensuration, fourth ed. John Wiley, New Jersey. Ige, P.O., Akinyemi, G.O., Abi, A., 2013. Diameter distribution models for tropical natural forest trees in Onigambari Forest Reserve. J. Nat. Sci. Res. 3(12), 14-22. Johnson, N.L., 1949a. Systems of frequency curves generated by methods of translation. Biometrika 36(1/2), 149-176. Johnson, N.L., 1949b. Bivariate distributions based on simple translation systems. Biometrika 36(3/4), 297-304. Johnson, N.L., Kitchen, J.O., 1971. Some notes on tables to facilitate fitting SB curves. Biometrika 223-226. Knoebel, B.R., Burkhart, H.E., Beck, D.E., 1986. A growth and yield model of thinned stand of yellow-poplar. For. Sci. 32(2), a0001-z0002. Krishnamoorthy, K., 2006. Handbook of statistical distributions with applications. CRC Press., New York. Kudus, K.A., Ahmad, M.I., Yahya, A.Z., 2000. Modelling diameter distribution in even-aged and uneven-aged forest stands. J. Trop. For. Sci. 669-681. Kuo, Y.H., Yu, M.T., Li, Y.C., Shiu, L.L., 1999. Natural products research in Taiwan V. Formosan Sci. 52, 1-145. Lindsay, S.R., Wood, G.R., Woollons, R.C., 1996. Modelling the diameter distribution of forest stands using the Burr distribution. J. Appl. Stat. 23(6), 609-620. Liu, C.M., Zhang, S.Y., Lei, Y.C., Newton, P.F., Zhang, L.J., 2004. Evaluation of three methods for predicting diameter distributions of black spruce (Picea mariana) plantations in central Canada. Can. J. For. Res. 34(12), 2424-2432. Loetsch, F., Zohrer, F., Haller, K.E., 1973. Forest Inventory, second ed. BLV Verlagsgesellschaft Muenchen, Wien. Loewenstein, E.F., Johnson, P.S., Garrett, H.E., 2000. Age and diameter structure of a managed uneven-aged oak forest. Can. J. For. Res. 30(7), 1060-1070. Maguire, D.A., Kershaw, J.A., Hann, D.W., 1991. Predicting the effects of silvicultural regime on branch size and crown wood core in Douglas-fir. For. Sci. 37(5), 1409-1428. Maltamo, M., Puumalainen. J., Paivinen. R., 1995. Comparison of beta and Weibull functions for modelling basal area diameter distribution in stands of Pinus sylvestris and Picea abies. Scan. J. For. Res. 10(1-4), 284-295. Mateus, A., Tome, M., 2011. Modelling the diameter distribution of eucalyptus plantations with Johnson’s SB probability density function: parameters recovery from a compatible system of equations to predict stand variables. Ann. For. Sci. 68(2), 325-335. Mohammad, A.K.H., Zobeiri, M., Namiranian, M., Hourfar, A., Marvy, M.M., 2009. Fitness of distribution of diameter at breast height by using some statistic distribution models. Iran. J. For. Poplar Res. 17(1), 116-124. Murtaugh, P.A., 2009. Performance of several variable-selection methods applied to real ecological data. Ecol. Lett. 12(10), 1061-1068. Nanang, D.M., 1998. Suitability of the normal, log-normal and Weibull distributions for fitting diameter distributions of neem plantations in northern Ghana. For. Ecol. Manage. 103(1), 1-7. Nelson, T.C., 1964. Diameter distribution and growth of loblolly pine. For. Sci. 10(1), 105-114. Newton, P.F., Lei, Y., Zhang, S.Y., 2005. Stand-level diameter distribution yield model for black spruce plantations. For. Ecol. Manage. 209(3), 181-192. Nord-Larsen, T., Cao, Q.V., 2006. A diameter distribution model for even-aged beech in Denmark. For. Ecol. Manage. 231(1), 218-225. Ogana, F.N., Osho, J.S.A., Gorogoso-Varela, J.J., 2015. Comparison of Beta, Gamma Weibull distributions for characterising tree diameter in Oluwa Forest Reserve, Ondo State, Nigeria. J. Na. Sci. Res. 5(4), 28-36. Ozcelik, R., Fidalgo Fonseca, T.J., Parresol, B.R., Eler, U., 2016. Modeling the diameter distributions of Brutian pine stands using Johnson's SB distribution. For. Sci. 62(6), 587-593. Palahi, M., Pukkala, T., Blasco, E., Trasobares, A., 2007. Comparison of beta, Johnson’s SB, Weibull and truncated Weibull functions for modeling the diameter distribution of forest stands in Catalonia (north-east of Spain). Eur. J. For. Res. 126(4), 563-571. Peng, C., 2000. Growth and yield models for uneven-aged stands: past, present, and future. For. Ecol. Manage. 132(2), 259-279. Porte, A., Bartelink, H.H., 2002. Modelling mixed forest growth: a review of models for forest management. Ecol. Modell. 150(1), 141-188. Qi, L., Liu, X., Jiang, Z., Yue, X., Li, Z., Fu, J., Liu, G., Guo, B., Shi, L., 2016. Combining diameter-distribution function with allometric equation in biomass estimates: a case study of Phyllostachys edulis forests in South Anhui, China. Agroforestry Syst. 1-9. Richards, F.J., 1959. A flexible growth function for empirical use. J. Exp. Bot. 10(2), 290-301. Schnur, G.L., 1937. Yield, Stand, and Volume Tables for Even-Aged Upland Oak Forests. US Department of Agriculture, Washington, DC. Schumacher, F.X., 1939. A new growth curve and its application to timber-yield studies. J. For. 37, 819-820. Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat. 6(2), 461-464. Sheykholeslami, A., Pasha, K.K., Lashaki, A.K., 2011. A study of tree diameter distribution classes in natural forests of Iran (case study: liresara forest). Ann. Biol. Res. 2(5), 283-290. Siipilehto, J., 1999. Improving the accuracy of predicted basal-area diameter distribution in advanced stands by determining stem number. Silva Fenn. 33(4), 281-301. Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London. Sugiura, N., 1978. Further analysis of the data by Akaike’s information criterion and the finite corrections. Commun. Stat. Theory Methods 7(1), 13-26. Toda, T., Kurinobu. S., 2000. Genetic variation in height growth curve observed in three clonal tests of sugi (Cryptomeria japonica D. Don) in Kyushu. J. For. Res. 5(2), 95-98. Tsogt, K., Zandraabal, T., Lin, C., 2013. Diameter and height distributions of natural even-aged pine forests (Pinus sylvestris) in Western Khentey, Mongolia. Taiwan J For. Sci. 28(1), 29-41. Vanclay, J.K., 1994. Modelling forest growth and yield: applications to mixed tropical forests. Sch. Environ. Sci. Manage. 537 pp. Venables, W.N., Ripley, B.D., 2002. Modern Applied Statistics with S, fourth ed. Springer, New York. Vogt, K., Gordon, J., Wargo, J., Vogt, D., Asbjornsen, H., Palmiotto, P.A., Clark, H.J., O’Hara, J.L., Keeton, W.S., Patel-Weynand, T., Witten, E., 2013. Detecting resistance and resilience of ecosystems, in: Garber, R. (Ed.), Ecosystems: Balancing Science with Management. Springer Science & Business Media, New York, pp. 187-266. von Gadow, K., 1984. Die erfassung von durchmesserverteilungen in gleichaltigen kiefernbestanden. Forstweiss Centralbl 103(1), 360-374. Wang, M., Rennolls, K., 2005. Tree diameter distribution modelling: introducing the logitlogistic distribution. Can. J. For. Res. 35(6), 1305-1313. Wang, S.Y., Chang, S.T., Su, Y.C., Kuo, Y.H., 1997. Studies on the extractives of Taiwania (Taiwania cryptomerioides Hayata): a review. Q. J. Exp. For. Natl. Taiwan Univ. 11(4), 67-81. Wang, S.Y., Chiu, C.M., Lin, C.J., 2003a. Application of the drilling resistance method for annual ring characteristics: evaluation of Taiwania (Taiwania cryptomerioides) trees grown with different thinning and pruning treatments. J. Wood Sci. 49(2), 116-124. Wang, S.Y., Lin, C.J., Chiu, C.M., 2003b. Effects of thinning and pruning on knots and lumber recovery of Taiwania (Taiwania cryptomerioides) planted in the Lu-Kuei area. J. Wood Sci. 49(5), 444-449. Wang, S.Y., Lin, C.J., Chiu, C.M., 2005a. Evaluation of wood quality of Taiwania trees growth with different thinning and pruning treatments using ultrasonic-wave testing. Wood Fiber Sci. 37(2), 192-200. Wang, S.Y., Lin, C.J., Chiu, C.M., Chen, J.H., Yung, T.H., 2005b. Dynamic modulus of elasticity and bending properties of young Taiwania trees grown with different thinning and pruning treatments. J. Wood Sci. 51(1), 1-6. Wang, S.Y., Wu, J.H., Shyur, L.F., Kuo, Y.H., Chang, S.T., 2002. Antioxidant activity of abietane-type diterpenes from heartwood of Taiwania cryptomerioides Hayata. Holzforschung 56(5), 487-492. Weibull, W., 1951. A statistical distribution function of wide applicability. J Appl. Mech. 18, 293-297 Weiskittel, A.R., Hann, D.W., Kershaw, J.A., Vanclay, J.K., 2011. Forest Growth and Yield Modeling, second ed. Wiley-blackwell, UK. Westoby, M., 1984. The self-thinning rule. Adv. Ecol. Res. 14, 167-225. Wheeler, B., 2009. Package ‘SuppDists’: supplementary distribution. https://cran.r-project.org/web/packages/SuppDists/SuppDists.pdf/(accessed 15.01.17). Wu, H., Godfrey, A.J.R., Govindaraju, K., Govindaraju, S., 2015. Package ‘ExtDist’: extending the range of functions for probability distributions. https://cran.r-project.org/web/packages/ExtDist/ExtDist.pdf/(accessed 15.01.17). Yang, R.C., Kozak, A., Smith, J.H.G., 1978. The potential of Weibull-type functions as flexible growth curves. Can. J. For. Res. 8(4), 424-431. Zeide, B., 1993. Analysis of growth equations. For. Sci. 39(3), 594-616. Zhang, L., Packard, K.C., Liu, C., 2003. A comparison of estimation methods for fitting Weibull and Johnson's SB distributions to mixed spruce fir stands in northeastern North America. Can. J. For. Res. 33(7), 1340-1347. Zheng, L., Zhou, X., 2010. Diameter distribution of trees in natural stands managed on polycyclic cutting system. For. Stud. China 12(1), 21-25. Zohrer, F., 1972. The beta distribution for best fit of stem diameter distributions. 3rd Conf. Advisory Group For. Stat. Proc. IUFRO, Institut National Recherche Agronomique, Paris, Publ. 72-3. Zutter, B.R., Oderwald, R.G., Murphy, P.A., Farrar, R.M., 1986. Characterizing diameter distributions with modified data types and forms of the Weibull distribution. For. Sci. 32(1), 37-48. 馮豐隆(1989)求蓄積量最有效的方法-直徑分佈法。台灣林業 15(1): 31-35, 43. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59844 | - |
| dc.description.abstract | 直徑分佈模型可用來了解當下及未來可能的森林林分蓄積量,以幫助管理人擬定育林計劃,而機率密度函數(probability density functions,pdf)為最常用來擬合(fit)和模擬(model)直徑分佈模型趨勢的方法。本研究使用兩個參數的Weibull和Johnson’s SB分佈的機率密度函數模擬六龜地區經疏伐臺灣杉人工林的直徑分佈模型,包含估算擬合直徑分佈模型時兩分佈的參數、使用線性迴歸模型(linear regression model)分析參數與已知林分性態值(stand characteristic)的關係和使用赤池信息量(Akaike’s information criterion,AIC)、AICc和貝葉斯信息量(Bayesian information criterion,BIC)比較兩分佈的擬合優良性(goodness-of-fit)。
結果顯示兩種分佈的形狀參數值皆隨林齡增加些微下降,尺度參數值則皆隨林齡增加大幅上升;由各參數離勢(variation)變化可知直徑分佈在疏伐處理後原本並不穩定,但隨時間漸漸趨於穩定。我們也發現多種林分性態值與機率密度函數中的參數呈線性關係,例如:是否經疏伐處理、疏伐強度、疏伐後年數、 疏伐前林分密度和疏伐前後林分斷面積等等;AIC、AICc和BIC結果則顯示 Johnson’s SB 分佈在擬合時有比較好的結果,表示Johnson’s SB 分佈在擬合我們的資料時比兩個參數的Weibull分佈彈性。 | zh_TW |
| dc.description.abstract | Diameter distribution can be used to understand the total growing stock of a forest stand at present and possibly in the future, assisting managers to plan silvicultural treatments. Probability density functions (pdf) are commonly used to fit and model trends of diameter distribution. In this study, parameters in two-parameter Weibull and Johnson’s SB probability density function were estimated and compared when fitted to the diameter distributions of thinned and non-thinned taiwania plantations in Liukuei, and the linear regression models were used to predict the relationships between parameters and stand characteristics. The results showed that shape parameters decreased slightly with stand age while scale parameters increased greatly. The large variations of all parameters indicate that the diameter distribution is initially unstable following thinning treatments but tend to stabilize over time. We further found some stand characteristics such as thinning treatments, thinning intensity, year after thinning treatments, stand density and basal area were related to the parameters in the probability density function. The comparison results in AIC, AICc and BIC indicated Johnson’s SB as more flexible when fitting our diameter data of 35 years old plantations compared to 2Weibull. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:40:56Z (GMT). No. of bitstreams: 1 ntu-106-R03625039-1.pdf: 10444935 bytes, checksum: 4954b6970fe9f0deec1c419c3ab061d6 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
Acknowledgement i Chinese Abstract iii English Abstract v Chapter 1 Introduction 1 1.1 Goal and Objectives 3 Chapter 2 Reviews 5 2.1 Taiwania 5 2.1.1 Beneficial Properties 5 2.1.2 Silviculture and Forest Management Related Reports 6 2.2 Stand Diameter Distribution 8 2.2.1 The Space 10 2.2.2 Statistical Distribution Models 13 2.2.2.1 Beta Distribution 14 2.2.2.2 Weibull Distribution 17 2.2.2.3 Gamma Distribution 20 2.2.2.4 Johnson’s SB Distribution 22 2.3 Evaluation of Functions 24 Chapter 3 Materials and Methods 31 3.1 Materials 31 3.2 Methods 32 3.2.1 Statistical Distributions for Modeling 32 3.2.2 Evaluations for Probability Density Functions 33 3.2.3 Linear Regression Models 34 Chapter 4 Results 35 4.1 Empirical Diameter Distributions of 36 Plots 35 4.2 Parameter Distributions 36 4.2.1 Parameters in 2Weibull 36 4.2.2 Parameters in Johnson’s SB 37 4.3 Comparison of 2Weibull and Johnson’s SB 40 4.4 Linear Regression Models 41 4.4.1 Estimated Coefficients of 2Weibull Parameters between Predictors 41 4.4.2 Estimated Coefficients of Johnson’s SB Parameters between Predictors 41 Chapter 5 Discussion 43 5.1 Thinned and Non-Thinned Plots’ Different Empirical Diameter Distribution Trends 43 5.2 Similar Development Trends of Same-Type Parameters Over Time 44 5.3 The Flexibility of 2Weibull and Johnson’s SB 45 5.4 Relationship Similarities between Stand Characteristics and Same-Type Parameters 46 Chapter 6 Conclusion 49 References 51 Figures 63 Tables 79 Appendix 1: Figures 87 Appendix 2: Tables 91 | |
| dc.language.iso | en | |
| dc.subject | AICc | zh_TW |
| dc.subject | 直徑分佈 | zh_TW |
| dc.subject | 台灣杉 | zh_TW |
| dc.subject | 貝葉斯信息量 | zh_TW |
| dc.subject | 韋伯分佈 | zh_TW |
| dc.subject | 赤池信息量 | zh_TW |
| dc.subject | Johnson’s SB | zh_TW |
| dc.subject | BIC. | en |
| dc.subject | Diameter distribution | en |
| dc.subject | Taiwania cryptomerioides | en |
| dc.subject | Weibull | en |
| dc.subject | Johnson’s SB | en |
| dc.subject | AIC | en |
| dc.subject | AIcc | en |
| dc.title | 臺灣杉經疏伐人工林之林分直徑分佈模型與預測 | zh_TW |
| dc.title | Stand Diameter Distribution Modeling and Prediction of Thinned Taiwania cryptomerioides Plantations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱志明(Chih-Ming Chiu),鹿兒陽(Erh-Yang Lu) | |
| dc.subject.keyword | 直徑分佈,台灣杉,韋伯分佈,Johnson’s SB,赤池信息量,AICc,貝葉斯信息量, | zh_TW |
| dc.subject.keyword | Diameter distribution,Taiwania cryptomerioides,Weibull,Johnson’s SB,AIC,AIcc,BIC., | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU201700377 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-07 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 10.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
