請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59839
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 錢宗良 | |
dc.contributor.author | Wei-Chia Luo | en |
dc.contributor.author | 駱為家 | zh_TW |
dc.date.accessioned | 2021-06-16T09:40:40Z | - |
dc.date.available | 2020-03-01 | |
dc.date.copyright | 2017-03-01 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-07 | |
dc.identifier.citation | Abranches, E., M. Silva, L. Pradier, H. Schulz, O. Hummel, D. Henrique and E. Bekman (2009). 'Neural differentiation of embryonic stem cells in vitro: a road map to neurogenesis in the embryo.' PLoS ONE 4(7): e6286.
Ahn, Y. H., H. Yi, J. Y. Shin, K. D. Lee, S. P. Shin, S. J. Lee, J. Song and K. H. Chun (2012). 'STAT3 silencing enhances the efficacy of the HSV.tk suicide gene in gastrointestinal cancer therapy.' Clin Exp Metastasis 29(4): 359-369. Ayala, G., T. Satoh, R. Li, M. Shalev, Y. Gdor, E. Aguilar-Cordova, A. Frolov, T. M. Wheeler, B. J. Miles, K. Rauen, B. S. Teh, E. B. Butler, T. C. Thompson and D. Kadmon (2006). 'Biological response determinants in HSV-tk + Ganciclovir gene therapy for prostate cancer.' Mol Ther. 13(4): 716-728. Azatian, A., H. Yu, W. Dai, F. I. Schneiders, N. K. Botelho and R. V. Lord (2009). 'Effectiveness of HSV-tk suicide gene therapy driven by the Grp78 stress-inducible promoter in esophagogastric junction and gastric adenocarcinomas.' J Gastrointest Surg 13(6): 1044-1051. Bak, X. Y., J. Yang and S. Wang (2010). 'Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy.' Cancer Gene Ther 17(10): 721-729. Beck, C., S. Cayeux, S. D. Lupton, B. Dorken and T. Blankenstein (1995). 'The thymidine kinase/ganciclovir-mediated 'suicide' effect is variable in different tumor cells.' Hum Gene Ther 6(12): 1525-1530. Besnard, F., M. Brenner, Y. Nakatani, R. Chao, H. J. Purohit and E. Freese (1991). 'Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein.' J Biol Chem 266(28): 18877-18883. Bigner, D. D., S. H. Bigner, J. Ponten, B. Westermark, M. S. Mahaley, E. Ruoslahti, H. Herschman, L. F. Eng and C. J. Wikstrand (1981). 'Heterogeneity of Genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas.' J Neuropathol Exp Neurol 40(3): 201-229. Bleeker, F. E., R. J. Molenaar and S. Leenstra (2012). 'Recent advances in the molecular understanding of glioblastoma.' J. Neuro-Onco, 108(1): 11-27. Bradshaw, A., A. Wickremsekera, S. T. Tan, L. Peng, P. F. Davis and T. Itinteang (2016). 'Cancer stem cell hierarchy in glioblastoma multiforme.' Front. Surg, 3: 21. Brenner, M., W. C. Kisseberth, Y. Su, F. Besnard and A. Messing (1994). 'GFAP promoter directs astrocyte-specific expression in transgenic mice.' J. Neurosci. 14(3): 1030. Camphausen, K., B. Purow, M. Sproull, T. Scott, T. Ozawa, D. F. Deen and P. J. Tofilon (2005). 'Influence of in vivo growth on human glioma cell line gene expression: Convergent profiles under orthotopic conditions.' Proc. natl. acad. sci. 102(23): 8287-8292. Chen, D. and Q. Tang (2010). 'An experimental study on cervix cancer with combination of HSV-TK/GCV suicide gene therapy system and 60Co radiotherapy.' BMC Cancer 10(1): 609. Clark, M. J., N. Homer, B. D. O'Connor, Z. Chen, A. Eskin, H. Lee, B. Merriman and S. F. Nelson (2010). 'U87MG Decoded: The genomic sequence of a cytogenetically aberrant human cancer cell line.' PLoS Genetics 6(1): e1000832. Clarke, M. F. and M. Fuller (2006). 'Stem Cells and Cancer: Two faces of eve.' Cell 124(6): 1111-1115. Dalerba, P., R. W. Cho and M. F. Clarke (2007). 'Cancer stem cells: models and concepts.' Annu Rev Med 58: 267-284. Dekker, J. (2008). 'Gene regulation in the third dimension.' Science 319(5871): 1793-1794. Dragu, D. L., L. G. Necula, C. Bleotu, C. C. Diaconu and M. Chivu-Economescu (2015). 'Therapies targeting cancer stem cells: Current trends and future challenges.' World J. Stem Cells 7(9): 1185-1201. Gallego, O. (2015). 'Nonsurgical treatment of recurrent glioblastoma.' Curr Oncol 22(4): e273-281. Gilbertson, R. J. and D. H. Gutmann (2007). 'Tumorigenesis in the Brain: Location, Location, Location.' Cancer Res 67(12): 5579. Gotoh, A., S. C. Ko, T. Shirakawa, J. Cheon, C. Kao, T. Miyamoto, T. A. Gardner, L. J. Ho, C. B. Cleutjens, J. Trapman, F. L. Graham and L. W. Chung (1998). 'Development of prostate-specific antigen promoter-based gene therapy for androgen-independent human prostate cancer.' J Urol 160(1): 220-229. Guo, M., R. J. Roman, J. R. Falck, P. A. Edwards and A. G. Scicli (2005). ' Human U251 glioma cell proliferation is suppressed by HET0016 [N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine], a selective inhibitor of CYP4A. ' J Pharmacol. Exp Ther. 315(2): 526. Hu, B.-Y., J. P. Weick, J. Yu, L.-X. Ma, X.-Q. Zhang, J. A. Thomson and S.-C. Zhang (2010). 'Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency.' PNAS 107(9): 4335-4340. Inagaki, M., Y. Imakamura, M. Takeda, T. Nishimura and N. Inagaki (1994). 'Glial Fibrillary Acidic Protein: Dynamic Property and Regulation by Phosphorylation.' Brain Pathology 4(3): 239-243. Kang, T.-W., S. W. Choi, S.-R. Yang, T.-H. Shin, H.-S. Kim, K.-R. Yu, I.-S. Hong, S. Ro, J. M. Cho and K.-S. Kang (2014). 'Growth arrest and forced differentiation of human primary glioblastoma multiforme by a novel small molecule.' Sci. Rep. 4: 5546. Karki, R., M. Mariani, M. Andreoli, S. He, G. Scambia, S. Shahabi and C. Ferlini (2013). 'βIII-Tubulin: biomarker of taxane resistance or drug target?' Expert Opinion on Therapeutic Targets 17(4): 461-472. Kondo, T. (2006). 'Brain cancer stem-like cells.' Eur J Cancer 42(9): 1237-1242. Law, B. K. (2005). 'Rapamycin: an anti-cancer immunosuppressant?' critical reviews in oncology/hematology 56(1): 47-60. Linskey, M. E. and M. R. Gilbert (1995). 'Glial differentiation: a review with implications for new directions in neuro-oncology.' Neurosurgery 36(1): 1-21; discussion 21-22. Long, S. S. P., Larry K.; Prober, Charles G. (2012). Principles and Practice of Pediatric Infectious Disease. , Elsevier Health Sciences. Lu, Y., M. Chopp, X. Zheng, M. Katakowski, D. Wang, E. Fraser, M. Nguyen and F. Jiang (2015). 'Overexpression of miR-145 in U87 cells reduces glioma cell malignant phenotype and promotes survival after in vivo implantation.' International Journal of Oncology 46(3): 1031-1038. Matsumura, N., N. Yoshida, A. Ohta, Y. Miyamoto and T. Hisatsune (2003). 'Neural Precursor Cells from Adult Mouse Cerebral Cortex Differentiate into Both Neurons and Oligodendrocytes.' Cytotechnology 43(1-3): 19-25. Matthews, T. and R. Boehme (1988). 'Antiviral activity and mechanism of action of ganciclovir.' Rev Infect Dis 10 Suppl 3: S490-494. McKay, R. (1997). 'Stem cells in the central nervous system.' Science 276(5309): 66. Miura, M., T. Tamura and K. Mikoshiba (1990). 'Cell-specific expression of the mouse glial fibrillary acidic protein gene: identification of the cis- and trans-acting promoter elements for astrocyte-specific expression.' J Neurochem 55(4): 1180-1188. Momma, S., C. B. Johansson and J. Frisen (2000). 'Get to know your stem cells.' Curr Opini Neurobiol 10(1): 45-49. Motaln, H., A. Koren, K. Gruden, Ž. Ramšak, C. Schichor and T. T. Lah (2015). 'Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance.' Oncotarget 6(38). Murat, A., E. Migliavacca, T. Gorlia, W. L. Lambiv, T. Shay, M.-F. Hamou, N. d. Tribolet, L. Regli, W. Wick, M. C. M. Kouwenhoven, J. A. Hainfellner, F. L. Heppner, P.-Y. Dietrich, Y. Zimmer, J. G. Cairncross, R.-C. Janzer, E. Domany, M. Delorenzi, R. Stupp and M. E. Hegi (2008). 'Stem cell–related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma.' J Clin Oncol 26(18): 3015-3024. Naujok, O., J. Kaldrack, T. Taivankhuu, A. Jorns and S. Lenzen (2010). 'Selective Removal of Undifferentiated Embryonic Stem Cells from Differentiation Cultures Through HSV1 Thymidine Kinase and Ganciclovir Treatment.' Stem Cell Rev. Rep. 6(3): 450-461. Nie, X.-h., J. Ou-yang, Y. Xing, D.-y. Li, R.-e. Liu and R.-x. Xu (2016). 'Calycosin inhibits migration and invasion through modulation of transforming growth factor beta-mediated mesenchymal properties in U87 and U251 cells.' Drug Design, Develop and Ther 10: 767-779. Pasleau, F., M. J. Tocci, F. Leung and J. J. Kopchick (1985). 'Growth hormone gene expression in eukaryotic cells directed by the Rous sarcoma virus long terminal repeat or cytomegalovirus immediate-early promoter.' Gene 38(1-3): 227-232. Peltier, J., A. O'Neill and D. V. Schaffer (2007). 'PI3K/Akt and CREB regulate adult neural hippocampal progenitor proliferation and differentiation.' Dev. Neurosci. 67(10): 1348-1361. Pranjol, M. Z. I. and A. Hajitou (2015). 'Bacteriophage-Derived Vectors for Targeted Cancer Gene Therapy.' Viruses 7(1): 268-284. Pranjol, M. Z. I. and A. Hajitou (2015). 'Bacteriophage-Derived vectors for targeted cancer gene therapy.' Viruses 7(1): 268-284. Raff, M. C. (1996). 'Size Control: The regulation of cell numbers in animal development.' Cell 86(2): 173-175. Rakic, P. (1995). 'Radial versus tangential migration of neuronal clones in the developing cerebral cortex.' PNAS 92(25): 11323-11327. Rempel, S. A., W. A. Golembieski, J. L. Fisher, M. Maile and A. Nakeff (2001). 'SPARC Modulates Cell Growth, Attachment and Migration of U87 Glioma Cells on Brain Extracellular Matrix Proteins.' Journal of Neuro-Oncology 53(2): 149-160. Reya, T., S. J. Morrison, M. F. Clarke and I. L. Weissman (2001). 'Stem cells, cancer, and cancer stem cells.' Nature 414(6859): 105-111. Roth, D. B. and J. H. Wilson (1985). 'Relative rates of homologous and nonhomologous recombination in transfected DNA.' Proceedings of the National Academy of Sciences 82(10): 3355-3359. Rutka, J. T., M. Murakami, P. B. Dirks, S. L. Hubbard, L. E. Becker, K. Fukuyama, S. Jung, A. Tsugu and K. Matsuzawa (1997). 'Role of glial filaments in cells and tumors of glial origin: a review.' Journal of Neurosurgery 87(3): 420-430. Sambrook, J. (1989). Molecular Cloning: A Laboratory Manual (2nd ed.), Cold Spring Harbor: Cold Spring Harbor Laboratory Press.: 1.53–51.73. Sanyal, A., B. R. Lajoie, G. Jain and J. Dekker (2012). 'The long-range interaction landscape of gene promoters.' Nature 489(7414): 109-113. Sawyers, C. L., C. T. Denny and O. N. Witte (1991). 'Leukemia and the disruption of normal hematopoiesis.' Cell 64(2): 337-350. Schuldiner, M., J. Itskovitz-Eldor and N. Benvenisty (2003). 'Selective Ablation of Human Embryonic Stem Cells Expressing a “Suicide” Gene.' Stem Cells 21(3): 257-265. Schwartz, P. H., P. J. Bryant, T. J. Fuja, H. Su, D. K. O'Dowd and H. Klassen (2003). 'Isolation and characterization of neural progenitor cells from post-mortem human cortex.' Journal of Neuroscience Research 74(6): 838-851. Shcherbakova, O. G. and M. V. Filatov (2000). 'Camptothecin enhances random integration of transfected DNA into the genome of mammalian cells.' Biochim. Biophy. Acta (BBA) – Mol. Cell Res. 1495(1): 1-3. Stavridis, M. P. and A. G. Smith (2003). 'Neural differentiation of mouse embryonic stem cells.' Biochem. Soc. Trans. 31(1): 45. Su, M., H. Hu, Y. Lee, A. d'Azzo, A. Messing and M. Brenner (2004). 'Expression specificity of GFAP transgenes.' Neurochem Res 29(11): 2075-2093. Su, M., H. Hu, Y. Lee, A. d'Azzo, A. Messing and M. Brenner (2004). 'Expression specificity of GFAP transgenes.' Neurochem Res 29(11): 2075-2093. Tan, B. T., C. Y. Park, L. E. Ailles and I. L. Weissman (2006). 'The cancer stem cell hypothesis: a work in progress.' Lab Invest 86(12): 1203-1207. Tardy, M., C. Fages, H. Riol, G. Le Prince, P. Rataboul, C. Charriere-Bertrand and J. Nunez (1989). 'Developmental Expression of the Glial Fibrillary Acidic Protein mRNA in the Central Nervous System and in Cultured Astrocytes.' Journal of Neurochemistry 52(1): 162-167. Taylor, G., M. S. Lehrer, P. J. Jensen, T.-T. Sun and R. M. Lavker (2000). 'Involvement of follicular stem cells in forming not only the follicle but also the epidermis.' Cell 102(4): 451-461. Xiong, J., W. J. Sun, W. F. Wang, Z. K. Liao, F. X. Zhou, H. Y. Kong, Y. Xu, C. H. Xie and Y. F. Zhou (2012). 'Novel, chimeric, cancer-specific, and radiation-inducible gene promoters for suicide gene therapy of cancer.' Cancer 118(2): 536-548. Zhang, S., R. Xie, F. Wan, F. E. I. Ye, D. Guo and T. Lei (2013). 'Identification of U251 glioma stem cells and their heterogeneous stem-like phenotypes.' Oncology Letters 6(6): 1649-1655. Zhao, Y., D. H. Lam, J. Yang, J. Lin, C. K. Tham, W. H. Ng and S. Wang (2012). 'Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors.' Gene Ther 19(2): 189-200. Zhuang, W., B. Li, L. Long, L. Chen, Q. Huang and Z. Liang (2011). 'Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity.' Int J Cancer 129(11): 2720-2731. Zhuang, W., L. Long, B. Zheng, W. Ji, N. Yang, Q. Zhang and Z. Liang (2012). 'Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy.' Cancer Sci. 103(4): 684-690. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59839 | - |
dc.description.abstract | 神經膠母細胞瘤(glioblastoma)是一種很常見且非常惡性的人體原發性腦瘤,現今療法無法有效控制神經膠母細胞瘤且預後並不樂觀。丙氧鳥苷(ganciclovir, GCV)是一種抗病毒藥物,在丙氧鳥苷/泡疹病毒胸腺嘧啶激酶(Herpes simplex virus thymidine kinase, HSVtk)系統(GCV/HSVtk system)中,作為治療各種癌症的基因療法。由於此系統具有選擇性毒殺表現HSVtk細胞的能力,在轉譯醫學研究領域之細胞療法中,此系統可應用於毒殺未分化之幹細胞。因此,我們認為可藉由調整細胞增生及分化方式,GCV/HSVtk system具有作為治療神經膠母細胞瘤的潛力。本研究中我們主要目的有二:(1)建立以GFAP啟動子調控,且可選擇性毒殺神經膠母細胞瘤之GCV/HSVtk system;(2)並探討此系統促進神經膠母細胞瘤神經分化之能力。
我們以CMV啟動子(cytomegalovirus promoter)調控HSVtk與綠色螢光蛋白(EGFP)作為對照組質體,以GFAP啟動子(glial fibrillary acidic protein promoter)調控者則作為實驗組質體,並將這兩種質體分別轉殖入非神經膠細胞株NIH-3T3纖維母細胞和Neuro 2A神經細胞,以及神經膠母細胞瘤細胞株U251和U87中。經G418藥物篩選後,建立出五株能表現HSVtk的細胞株:N2A-pCMV-HSVtk、N2A-pGFAP-HSVtk、U251-pCMV-HSVtk、U251-pGFAP-HSVtk與U87-pGFAP-HSVtk,並藉由西方墨點法進行HSVtk產物分析。由MTT細胞存活實驗我們訂定了GCV濃度5 μg/ml 作為本研究後續使用之濃度,而在GFAP啟動子調控下只有U251-pGFAP-HSVtk以及U87-pGFAP-HSVtk細胞株會被GCV毒殺,證實了GFAP啟動子能專一性毒殺神經膠母細胞瘤且神經細胞不受其影響。在神經膠母細胞瘤細胞株被GCV處理的七天過程中,經藥物處理後第三天細胞會啟動細胞凋亡,經藥物處理後第五天由Hoechst/PI染色中能觀察到死亡細胞。 下一部份的實驗著重於分析GCV是否能促進神經膠母細胞瘤細胞株進行神經分化,因此我們使用III-tubulin, GFAP, nestin進行免疫螢光染色來鑑定存活的細胞種類。在以GCV處理U251-pGFAP-HSVtk七天的過程中,nestin在細胞中的表現量增加;在除去GCV使細胞生長三天後,我們獲得一群具有腫瘤幹細胞特性的細胞株且表現很強的nestin螢光;GCV能殺死表現GFAP強烈螢光的神經膠母細胞瘤,在以GCV處理第五天之後能找到具神經細胞特性且表現III-tubulin之細胞。同樣的細胞分化情形在對照組細胞株U251-pCMV-HSVtk以及另一實驗組細胞株U87-pGFAP-HSVtk也獲得驗證。 由本研究之結果,我們證實由GFAP 啟動子所調控之GCV/HSVtk系統確實能選擇性毒殺可表現GFAP之神經膠母細胞瘤,且此系統可誘導這些細胞進行神經分化。 | zh_TW |
dc.description.abstract | Glioblastoma is the most common and most malignant primary brain tumor with poor prognosis. Ganciclovir/herpes simple virus thymidine kinase (GCV/HSVtk system), originally comes from an antiviral drug ganciclovir (GCV), has been applied as a clinical gene therapy aimed at the treatment of various types of cancers. Since this system allows selective elimination of HSVtk positive cells, it also has been applied to ablate undifferentiated stem cells in potential cell therapy for translational medicine research. Therefore, GCV/HSVtk system could be a candidate for glioblastoma treatment by regulating cell proliferation and differentiation. In the present study, we aimed to (1) establish a GFAP promoter driven GCV/HSVtk system to selectively ablate glioblastoma and (2) verify its possibility of neural differentiation of glioblastoma under the GCV challenge.
pCMV-HSVtk-P2A and pGFAP-HSVtk-P2A were cloned and transfected into both non-glial (NIH-3T3 and N2A) and glioblastoma cell lines (U251 anU87) to verified the promoter specificity of GFAP in glioblastoma cell lines. N2A-pGFAP-HSVtk, N2A-pCMV-HSVtk, U251-pGFAP-HSVtk, U251-pCMV-HSVtk, and U87-pGFAP-HSVtk stable clones were established after G418 selection and were analyzed by Western blot. MTT assay was applied to obtain an optimal concentration at 5 μg/ml GCV for glioblastoma ablation. Under GFAP promoter control, U251 and U87 stable clones exhibited GCV sensitivity while N2A remained non-reactive. During GCV treatment, cells undergone apoptosis at the 3rd day of treatment and dying cells were identified after the 5th day of treatment by PI/Hoechst staining. In order to further analyze the ability of neural differentiation in these glioblastoma stable clones, the immunocytochemistry ofβIII-tubulin, GFAP, and nestin was performed to characterize the cell status during GCV treatment. Increasing of nestin expression level was observed in the survival cells of U251-pGFAP-HSVtk stable clone during 7-days of GCV treatment. A cancer stem cell-like cell population could be enriched from survival cells, which were recovered after GCV withdrawn. Lower expression level of GFAP was detected in survival cells after GCV treatment. βIII-tubulin positive neuron-like cells could be identified after the 5th day of GCV treatment. Similarly, expression patterns of, GFAP, and nestin were also obtained from positive control cell line U251-pCMV-HSVtk and another experimental stable clone of U87-pGFAP-HSVtk with the same treatment of GCV. In conclusion, we established a GFAP promoter controlled GCV/HSVtk system that could successfully ablate GFAP-positive glioblastoma cells whereas non-glial cells remained intact and our data suggested that the neural differentiation of glioblastoma cells could be promoted after the challenge of GCV/HSVtk system. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:40:40Z (GMT). No. of bitstreams: 1 ntu-106-R03446003-1.pdf: 281547570 bytes, checksum: b1f00be746657e5d189e54416e3dc5e0 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract vi List of Figures xi List of Tables xiii Chapter 1: Introduction 1 1. Glioblastoma 1 2. Glioblastoma cell lines 1 3. Neural differentiation and cancer stem cell differentiation 2 4. GCV/HSVtk system 3 5. Neural markers for identifying the cell differentiation 4 Chapter 2: Materials and Methods 6 1. Plasmid construction 6 2. Plasmids miniprep and midiprep 8 3. Cell culture 9 4. Transient transfection of pCMV-HSVtk-P2A-EGFP and pGFAP-HSVtk-P2A-EGFP into NIH/3T3, Neuron 2A, U251, and U87 cell lines and promoter expression level assay 9 5. Selection and establishment stable cell clones of N2A-pCMV-HSVtk, N2A-pGFAP-HSVtk, U251-pCMV-HSVtk-, U251-pGFAP-HSVtk, U87-pCMV-HSVtk, and U87-pGFAP-HSVtk 12 6. Western blot analysis 12 7. In vitro ganciclovir sensitivity assay 13 8. Cell death analysis 15 9. Immunocytochemistry for βIII-tubulin, GFAP and Nestin 17 10. Recovery U251-pCMV-HSVtk and U251-pGFAP-HSVtk sub-clones establishment and analysis 18 11. Statistical analysis 18 Chapter 3: Results 20 1. Plasmids construction 20 2. Compare the difference of the expression level between CMV promoter and GFAP promoter after transfection of various cell lines 21 3. Establishment of the stable clones and characterization the protein level of HSVtk expression from the stable clones 22 4. In vitro ganciclovir (GCV) sensitivity assays 23 5. Recoverability of U251-pGFAP-HSVtk after GCV ablation and withdrawn and recover sub-clone establishment 26 6. Cell apoptosis assays and cell viability assay after GCV treatment 27 7. The expression pattern of β, GFAP, and Nestin after U251 and U87 stable clones treated with GCV 30 Chapter 4: Discussion 34 1. GFAP promoter expression level in non-glial cell lines 34 2. Promoters to drive GCV/HSVtk system in gene therapy 35 3. Drugs induce neural differentiation of glioblastoma and pathway related to neural differentiation 36 Figure legends 38 Tables 76 References 81 | |
dc.language.iso | en | |
dc.title | 神經膠母細胞瘤細胞株之神經分化研究 | zh_TW |
dc.title | Neural Differentiation of Glioblastoma Cell Lines | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王懷詩,王淑慧 | |
dc.subject.keyword | 神經膠母細胞瘤,丙氧鳥?/泡疹病毒胸腺嘧啶激?系統,GFAP啟動子,神經分化, | zh_TW |
dc.subject.keyword | Glioblastoma,GCV/HSVtk system,GFAP promoter,neural differentiation, | en |
dc.relation.page | 92 | |
dc.identifier.doi | 10.6342/NTU201700378 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-02-07 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 274.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。