請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59814完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童心欣(Hsin-hsin Tung) | |
| dc.contributor.author | Chun-Chun Chang | en |
| dc.contributor.author | 張淳淳 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:39:21Z | - |
| dc.date.available | 2018-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-08 | |
| dc.identifier.citation | 1. Forstner, U.; Muller, G., Heavy metal accumulation in river sediments: A response to environmental pollution. Geoforum 1973, 4 (2), 53-61.
2. Cheng, W.; Zhang, J.; Wang, Z.; Wang, M.; Xie, S., Bacterial communities in sediments of a drinking water reservoir. Annals of Microbiology 2014, 64 (2), 875-878. 3. 行政院環境保護署, 二仁溪污染底泥整治模場試驗計畫. 行政院環境保護署, Ed. 行政院環境保護署: 2011. 4. 行政院環境保護署, 底泥污染風險評估平台建置計畫. 行政院環境保護署, Ed. 行政院環境保護署: 2015. 5. Reinharz, E. Animal Sediment Relationships: A Case Study of the Patapsco River; PB-83-207001; U. S. Environmental Protection Agency: United States, 1982. 6. Parvez, S.; Venkataraman, C.; Mukherji, S., A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International 2006, 32 (2), 265-268. 7. 行政院環境保護署, 底泥生物慢毒性檢測技術之建立與應用. 環境檢驗所, Ed. 行政院環境保護署: 2013; p 256. 8. Ronnpagel, K.; LiB, W.; Ahlf, W., Microbial Bioassays to Assess the Toxicity of Solid-Associated Contaminants. Ecotoxicol. Environ. Saf. 1995, 31, 99-103. 9. Bitton, G.; Koopman, B., Bacterial and Enzymatic Bioassays for Toxicity Testing in the Environment. In Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews, Ware, G. W., Ed. Springer New York: New York, NY, 1992; pp 1-22. 10. Blaise, C., Microbiotests in aquatic ecotoxicology: Characteristics, utility, and prospects. Environ. Toxicol. Water Qual. 1991, 6 (2), 145-155. 11. U.S. Environmental Protection Agency, ARCS Assessment Guidance Document. USEPA, Ed. USEPA: Chicago, IL, 1994. 12. Deutsches Institut fur Normung, Soil quality- Quality of solid samples- Solid contact test using the dehydrogenase activity of Arthrobacter globiformis (ISO/DIS 18187:2014). DIN: 2014; Vol. DIN ISO 18187:2014-11. 13. Organisation for Economic Cooperation and Development, Test No. 218: Sediment-Water Chironomid Toxicity Using Spiked Sediment. OECD Publishing: Paris, 2004; p 21. 14. 土壤及地下水污染整治法. 民99年2月3日. 15. U.S. Environmental Protection Agency, Selecting Remediation Technique for Contaminated Sediment. USEPA: 1993. 16. American Society for Testing and Materials, Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxicological Testing and for Selection of Samplers Used to Collect Benthic Invertebrates. ASTM International: West Conshohocken, PA, 2008; Vol. E1391-03. 17. 邱廷熙, 底泥重金屬化學指標與生物毒性之比較. In 環境工程所, 國立交通大學: 2001; Vol. 碩士. 18. Singh, K. P.; Mohan, D.; Singh, V. K.; Malik, A., Studies on distribution and fractionation of heavy metals in Gomti river sediments - A tributary of the Ganges, India. Journal of Hydrology 2005, 312 (1-4), 14-27. 19. U.S. Environmental Protection Agency, EPA's Contaminated Sediment Management Strategy. USEPA: 1998. 20. 底泥品質指標之分類管理及用途限制辦法. 行政院環境保護署, Ed. 民101年1月4日. 21. Kahapanagiotis, N. K.; Steheitt, R. M.; Lester, J. N., Heavy metal complexation in sludge‐amended soil. The role of organic matter in metal retention. Environ. Technol. 1991, 12 (12), 1107-1116. 22. Acosta, J. A.; Jansen, B.; Kalbitz, K.; Faz, A.; Martinez-Martinez, S., Salinity increases mobility of heavy metals in soils. Chemosphere 2011, 85 (8), 1318-1324. 23. Alvarez, E. A.; Mochon, M. C.; Sanchez, J. C. J.; Rodrı́guez, M. T., Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere 2002, 47 (7), 765-775. 24. Calmano, W.; Hong, J.; Forstner, U., Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Science & Technology 1993, 28 (8-9), 223-235. 25. Gould, M. S.; Genetelli, E. I., Heavy metal complexation behavior in anaerobically digested sludges. Water Res. 1978, 12 (8), 505-512. 26. Elliott, H. A.; Liberati, M. R.; Huang, C. P., Competitive Adsorption of Heavy Metals by Soils1. Journal of Environmental Quality 1986, 15 (3), 214-219. 27. Hatje, V.; Payne, T. E.; Hill, D. M.; McOrist, G.; Birch, G. F.; Szymczak, R., Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environment International 2003, 29 (5), 619-629. 28. Paalman, M. A. A.; Van Der Weijden, C. H.; Loch, J. P. G., Sorption of cadmium on suspended matter under estuarine conditions; competition and complexation with major sea-water ions. Water, Air, Soil Pollut. 1994, 73 (1), 49-60. 29. John, D. A.; Leventhal, J. S. Bioavailability of Metals; U.S. Department of the Interior: Denver, Colorado, 1995; pp 10-18. 30. Helmke, P. A., Chemistry of Cadmium in Soil Solution. In Cadmium in Soils and Plants, McLaughlin, M. J.; Singh, B. R., Eds. Springer Netherlands: Dordrecht, 1999; pp 39-64. 31. Du Laing, G.; De Meyer, B.; Meers, E.; Lesage, E.; Van de Moortel, A.; Tack, F. M. G.; Verloo, M. G., Metal accumulation in intertidal marshes: Role of sulphide precipitation. Wetlands 2008, 28 (3), 735-746. 32. Simpson, S. L.; Rosner, J.; Ellis, J., Competitive displacement reactions of cadmium, copper, and zinc added to a polluted, sulfidic estuarine sediment. Environ. Toxicol. Chem. 2000, 19 (8), 1992-1999. 33. Millward, G. E.; Liu, Y. P., Modelling metal desorption kinetics in estuaries. Sci. Total Environ. 2003, 314–316, 613-623. 34. Lin, J.-G.; Chen, S.-Y., The relationship between adsorption of heavy metal and organic matter in river sediments. Environment International 1998, 24 (3), 345-352. 35. Alloway, B. J., Soil processes and the behavior of metals. In Heavy Metals in Soils, 2 ed.; Springer Netherlands: 1995; pp 11-35. 36. Stamoulis, S.; Gibbs, R. J.; Menon, M. G., Geochemical phases of metals in Hudson River estuary sediments. Environment International 1996, 22 (2), 185-194. 37. Young, S. D., Chemistry of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability, Alloway, J. B., Ed. Springer Netherlands: Dordrecht, 2013; pp 51-95. 38. Bruemmer, G. W.; Gerth, J.; Herms, U., Heavy metal species, mobility and availability in soils. Zeitschrift fur Pflanzenernahrung und Bodenkunde 1986, 149 (4), 382-398. 39. McBride, M. B., Toxic Metal Accumulation from Agricultural Use of Sludge: Are USEPA Regulations Protective? Journal of Environmental Quality 1995, 24 (1), 5-18. 40. 行政院環境保護署 環境毒物名詞解釋. http://www.epa.gov.tw/ct.asp?xItem=8316&ctNode=31459&mp=epa. 41. Rodriguez-Romero, A.; Khosrovyan, A.; Del Valls, T. A.; Obispo, R.; Serrano, F.; Conradi, M.; Riba, I., Several benthic species can be used interchangeably in integrated sediment quality assessment. Ecotoxicology and Environmental Safety 2013, 92, 281-288. 42. Kaiser, K. L. E., Correlations of Vibrio fischeri bacteria test data with bioassay data for other organisms. Environ. Health Perspect. 1998, 106 (Suppl 2), 583-591. 43. Kaiser, K. L. E.; McKinnon, M. B.; Fort, F. L., Interspecies toxicity correlations of rat, mouse and Photobacterium phosphoreum. Environ. Toxicol. Chem. 1994, 13 (10), 1599-1606. 44. Feiler, U.; Hoss, S.; Ahlf, W.; Gilberg, D.; Hammers-Wirtz, M.; Hollert, H.; Meller, M.; Neumann-Hensel, H.; Ottermanns, R.; Seiler, T. B.; Spira, D.; Heininger, P., Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environ. Toxicol. Chem. 2013, 32 (1), 144-55. 45. Benton, M. J.; Malott, M. L.; Knight, S. S.; Cooper, C. M.; Benson, W. H., Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria. Environ. Toxicol. Chem. 1995, 14 (3), 411-414. 46. Simpson, S. L.; Angel, B. M.; Jolley, D. F., Metal equilibration in laboratory-contaminated (spiked) sediments used for the development of whole-sediment toxicity tests. Chemosphere 2004, 54 (5), 597-609. 47. Environment Canada, Guidance document on measurement of toxicity test precision using control sediments spiked with a reference toxicant. Environment Canada. Environmental Technology Centre.: 1995; p 69. 48. Burgess, R. M.; Morrison, G. E., A short-exposure, sublethal, sediment toxicity test using the marine bivalveMulinia lateralis: Statistical design and comparative sensitivity. Environ. Toxicol. Chem. 1994, 13 (4), 571-580. 49. Doe, K.; Murdoch, A. Environment Canada, personal commuication; 1994. 50. 行政院環境保護署, 底泥污染來源及傳輸模式調查計劃-以重點河川為例. 行政院環境保護署: 2013. 51. Neumann-Hensel, H.; Melbye, K., Optimisation of the Solid-Contact Test with Arthrobacter globiformis (7 pp). Journal of Soils and Sediments 2006, 6 (4), 201-207. 52. Ahtiainen, J., Microbiological tests and measurements in the assessment of harmful substances and pollution. Helsinki Finnish Environment Inst. 2002: 2002; Vol. 22. 53. O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F., Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267 (17), 5421-5426. 54. Engelke, M.; Koser, J.; Hackmann, S.; Zhang, H.; Madler, L.; Filser, J., A miniaturized solid contact test with Arthrobacter globiformis for the assessment of the environmental impact of silver nanoparticles. Environ. Toxicol. Chem. 2014, 33 (5), 1142-1147. 55. Promega Corporation. CellTiter-BlueR Cell Viability Assay Technical Bulletin 2016. https://worldwide.promega.com/resources/protocols/technical-bulletins/101/celltiter-blue-cell-viability-assay-protocol/. 56. Tamizh, M. M., Kesavan, D., Sivakumar, P. M., Mereiter, K., Deepa, M., Kirchner, K., Doble, M. and Karvembu, R., Antibacterial Activities of 4-Substituted-2-[(E)-{(1S,2R)/(1R,2S)-1-Hydroxy-1-Phenylpropan-2-Ylimino}Methyl]Phenol. Chemical Biology and Drug Design 2012, 79, 177-185. 57. 行政院環境保護署, 水中鹽度檢測方法-導電度法. 行政院環境保護署環境檢驗所: 2003; Vol. NIEA W447.20C. 58. 行政院環境保護署, 土壤重金屬檢測方法-微波輔助王水消化法. 行政院環境保護署環境檢驗所: 2015. 59. Nelson, D. W.; Sommers, L. E., Total Carbon, Organic Carbon, and Organic Matter1. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Page, A. L., Ed. American Society of Agronomy, Soil Science Society of America: Madison, WI, 1982; pp 539-579. 60. 行政院農業委員會, 土壤有機質測定方法-燃燒紅外線測定法. 行政院農業委員會農業試驗所: 2013. 61. 行政院環境保護署, 火焰式原子吸收光譜法. 行政院環境保護署環境檢驗所: 2012. 62. 行政院環境保護署, 感應耦合電漿原子發射光譜法. 行政院環境保護署環境檢驗所: 2013. 63. International Union of Pure and Applied Chemistry, Compendium of Chemical Terminology (the 'Gold Book'). 2 ed.; Blackwell Scientific Publications: Oxford, 1997. 64. Hassen, A.; Saidi, N.; Cherif, M.; Boudabous, A., Resistance of environmental bacteria to heavy metals. Bioresour. Technol. 1998, 64 (1), 7-15. 65. Neumegen, R. A.; Fernandez-Alba, A. R.; Chisti, Y., Toxicities of triclosan, phenol, and copper sulfate in activated sludge. Environmental Toxicology 2005, 20 (2), 160-164. 66. Naeimi, M.; Zehtabian, G., The Review of Saline Water in Desert Management. International Journal of Environmental Science and Development 2011, 2 (6). 67. 行政院環境保護署 98年河川環境水體整體調查監測計畫; 行政院環境保護署: 2009. 68. 行政院環境保護署, 污泥廢棄物中總固體、固定性及揮發性固體含量檢測方法. 行政院環境保護署環境檢驗所: 2014. 69. Gjengedal, E.; Steinnes, E., Uptake of metal ions in moss from artificial precipitation. Environ. Monit. Assess. 1990, 14 (1), 77-87. 70. 鄧屬予, 西部麓山帶與海岸平原. In 臺灣地質系列第9號:臺灣的沉積岩, 經濟部中央地質調查所: 新北市中和區, 1997; p 50. 71. Alloway, B. J., Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils, 3 ed.; Springer Netherlands: 2013; pp 11-50. 72. Kokovides, K.; Loizidou, M.; Haralambous, K. J.; Moropoulou, T., Environmental study of the marinas Part I. A study on the pollution in the marinas area. Environ. Technol. 1992, 13 (3), 239-244. 73. Srikanth, R.; Reddy, S. R. P., Lead, cadmium and chromium levels in vegetables grown in urban sewage sludge—Hyderabad, India. Food Chem. 1991, 40 (2), 229-234. 74. Davis, A.; Ruby, M. V.; Bergstrom, P. D., Factors controlling lead bioavailability in the Butte mining district, Montana, USA. Environ. Geochem. Health 1994, 16 (3), 147-157. 75. Zhang, Y.; Cai, X.; Lang, X.; Qiao, X.; Li, X.; Chen, J., Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture. Environ. Pollut. 2012, 166, 48-56. 76. Lores, E. M.; Pennock, J. R., The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere 1998, 37 (5), 861-874. 77. Mantoura, R. F. C.; Dickson, A.; Riley, J. P., The complexation of metals with humic materials in natural waters. Estuarine and Coastal Marine Science 1978, 6 (4), 387-408. 78. Coquery, M.; Welbourn, P. M., The relationship between metal concentration and organic matter in sediments and metal concentration in the aquatic macrophyte Eriocaulon septangulare. Water Res. 1995, 29 (9), 2094-2102. 79. Irving, H.; Williams, R. J. P., The stability of transition-metal complexes. Journal of the Chemical Society (Resumed) 1953, (0), 3192-3210. 80. Pardo, R.; Barrado, E.; Lourdes, P.; Vega, M., Determination and speciation of heavy metals in sediments of the Pisuerga river. Water Res. 1990, 24 (3), 373-379. 81. Fadiran, A. O.; Tiruneh, A. T.; Mtshali, J. S., Assessment of Mobility and Bioavailability of Heavy Metals in Sewage Sludge from Swaziland through Speciation Analysis. American Journal of Environmental Protection 2014, 3 (4), 198-208. 82. Smith, K. S.; Balistrieri, L. S.; Todd, A. S., Using biotic ligand models to predict metal toxicity in mineralized systems. Appl. Geochem. 2015, 57, 55-72. 83. Mccord, J. M.; Fridovich, I., Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244 (22), 6049-55. 84. Di Giulio, R. T.; Washburn, P. C.; Wenning, R. J.; Winston, G. W.; Jewell, C. S., Biochemical responses in aquatic animals: A review of determinants of oxidative stress. Environ. Toxicol. Chem. 1989, 8 (12), 1103-1123. 85. 成嘉; 符貴紅; 劉芳; 唐建洲; 李基光; 張建社, 重金屬鉛對鯽魚乳酸脫氫酶和過氧化氫酶活性的影響. 生命科學研究 2006, 10 (4), 372-376. 86. Macnair, M. R., The genetics of metal tolerance in vascular plants. New Phytologist 1993, 124 (4), 541-559. 87. Stebbing, A. R. D., Hormesis — The stimulation of growth by low levels of inhibitors. Sci. Total Environ. 1982, 22 (3), 213-234. 88. Southam, C. M.; Ehrlich, J., Effects of Extract of Western Red-cedar Heartwood on Certain Wood-decaying Fungi in Culture. Phytopathology 1943, 33, 517-524. 89. Blumberg, A. J.; Loefer, J. B., Effect of Neomycin on Two Species of Free-Living Protozoa. Physiological Zoology 1952, 25 (3), 276-282. 90. Browne, C. L.; Davis, L. E., Cellular mechanisms of stimulation of bud production in Hydra by low levels of inorganic lead compounds. Cell and Tissue Research 1977, 177 (4), 555-570. 91. Jones, G. E., Metal organic complexes formed by marine bacteria. In Symposium on Organic Matter in Natural Waters, Hood, D. W., Ed. Institute Of Marine Science University Of Alaska: College, Alaska, 1970; pp 301-319. 92. Calabrese, E. J.; Howe, K. J., Stimulation of Growth of Peppermint (Mentha piperita) by Phosfon, a Growth Retardant. Physiol. Plant. 1976, 37 (2), 163-165. 93. Calabrese, E. J., Evidence That Hormesis Represents an “Overcompensation” Response to a Disruption in Homeostasis. Ecotoxicology and Environmental Safety 1999, 42 (2), 135-137. 94. Calabrese, E. J.; Baldwin, L. A., Reevaluation of the Fundamental Dose–Response Relationship: A new database suggests that the U-shaped, rather than the sigmoidal, curve predominates. BioScience 1999, 49 (9), 725-732. 95. Stebbing, A. R. D., A theory for growth hormesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 1998, 403 (1–2), 249-258. 96. Chlopecka, A., Forms of Cd, Cu, Pb, and Zn in soil and their uptake by cereal crops when applied jointly as carbonates. Water, Air, Soil Pollut. 1996, 87 (1), 297-309. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59814 | - |
| dc.description.abstract | 水域環境中的底泥對許多化學物質具有沉澱、吸附與錯合等固定作用,因而常成為水中污染物的最終受體。然而,原本存在底泥中的污染物卻可能在環境擾動時再度被釋出並污染水質,產生龐大的環境風險。污染物對生物的毒性並不能單純從化學分析直接反映出來,相關的毒性研究與試驗仍是必須的。目前,國內公告的底泥污染物生物毒性檢測法只有一種,即端足蟲更水式法。而微生物的操作普遍具有成本較低、試驗時間較短與操作相對容易等特點。若能引進或開發利用微生物來進行水域底泥污染物的毒性檢測,勢必有助於提高國內環境風險評估的效益。
本研究欲探討德國DIN ISO 18187的「Arthrobacter globiformis固相接觸測試法」實際應用於評估國內現地環境底泥生物毒性的可能性與適用性。藉由添加硫酸銅作為代表性污染物,檢測當不同底泥環境因子(鹽度與有機質含量)存在下,不同濃度硫酸銅對A. globiformis的毒性影響。根據實驗結果,本研究建立出硫酸銅添加底泥的急毒性迴歸模型,並利用此模型成功將現地底泥的生物毒性加以量化。最後,經過量化的現地底泥生物毒性,也將與底泥中所含重金屬的實際濃度進行比對與討論。 在不同鹽度含量的硫酸銅添加底泥暴露實驗中,可發現隨著鹽度增加,相同硫酸銅濃度的底泥生物毒性也隨之增加。而在不同有機質含量的硫酸銅添加底泥暴露實驗中,隨著有機質增加,相同硫酸銅濃度的底泥生物毒性隨之減少。 在套用以鹽度為環境干擾因子所建立的急毒性迴歸模型後,觀察到現地底泥樣本的生物急毒性與其中重金屬實際濃度的相關性較低。這顯示,一方面來看,由鹽度擬合的模型對於底泥中生物毒性的詮釋性較低;另一方面,底泥中的鹽度雖然會影響其中重金屬的生物毒性,影響的效果仍不顯著。相反地,在套用以有機質為環境因子所建立的急毒性迴歸模型後,結果顯示出現地底泥的生物毒性與其中銅、鋅、鎳等三種重金屬及總金屬的實際濃度具高度正相關。這意謂著,底泥中的有機質含量確實是影響其生物毒性的重要環境因子。同時,底泥的污染狀況也能如實反映在其生物毒性上。綜合以上的結果顯示,在納入適當的環境因子考慮後,A. globiformis固相接觸測試法可以應用於國內現地底泥生物毒性的檢測與評估上。 | zh_TW |
| dc.description.abstract | Sediment in the aquatic environment can immobilization many chemical substances through precipitation, absorption and complexation, usually serving as the terminal acceptor of contaminants. However, pre-existing contaminants in sediments could be released and re-contaminate the water when disturbance occurs, raising significant environmental risk. Simply employing chemical analysis does not necessarily reflect the biological toxicity of the contaminants, which means the research regarding toxicology of the contaminants is essential. Currently, only one standard regarding biological toxicity assay for sediments exists and it uses Hyalella azteca as the test organism. Assay methods with microorganisms are generally low-cost, quick and easy-to-operate. Thus, developing a biological toxicity assay with microorganisms as the test organism for contaminants in aquatic sediments will help to enhance the efficiency of evaluating environmental risk in Taiwan.
The purpose of this study is to evaluate the plausibility and suitability of the Germany standard: Soil Quality— Contact Test for Solid Samples using the Hydrogenase Activity of Arthrobacter globiformis (DIN ISO 18187: 2014-11 Draft) when this method is being applied to assess biological toxicity of natural sediments in Taiwan. By analyzing artificial sediments spiked with copper sulfate, which are used as the representative contaminant, this study discusses the toxic effects to A. globiformis caused by different concentration of copper sulfate when different environmental factors like salinity or organic matter are involved. The regression models of artificial sediments spiked with copper sulfate are established, and successfully applied to quantify biological toxicity of natural sediments. Finally, the outcomes of quantified biological toxicity are then employed to compare with the real content of heavy metals in natural sediments. Using artificial sediments spiked with copper sulfate under varying salinity, results show that with increasing salinity, the biological toxicity of sediments spiked with the copper sulfate increases as well. The artificial sediments spiked with copper sulfate under different concentrations of organic matter show that with increasing organic matter concentration, the biological toxicity of sediments spiked with the copper sulfate decreases. After applying the regression model of biological acute toxicity established by taking salinity as an environmental factor affecting natural sediments, results suggest that the correlation between the acute toxicity and the total amount of the eight regulated heavy metals in natural sediments is weak. In other words, the salinity regression model deviates from true biological toxicity of natural sediments. Despite that salinity content itself showed high correlation to biological toxicity, the effect of salinity content to biological is not significant. On the contrary, when implementing the regression model of biological acute toxicity established by taking organic matter as an environmental factor affecting natural sediments, the acute toxicity is highly correlated to copper, zinc, nickel concentrations and the total amount of the eight regulated heavy metals, indicating that the organic matter content is a significant factor related to biological toxicity in sediments. At the same time, the simulated concentration of contaminants with biological toxicity could reflect in situ contaminant levels. To summarize the results above, when involving appropriate environmental factors, this A. globiformis solid contact test can be applied to analyze and evaluate the environmental risk of natural sediments in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:39:21Z (GMT). No. of bitstreams: 1 ntu-106-R03541210-1.pdf: 6976908 bytes, checksum: dcbd517bd01d3319867fd891460ebe24 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III ABSTRACT V 目錄 VII 表目錄 X 圖目錄 XII Chapter 1 前言 1 1.1 研究背景 1 1.2 研究目的 4 Chapter 2 文獻回顧 5 2.1 底泥 5 2.2 底泥中的污染物質 5 2.3 環境因子對底泥中重金屬的影響 9 2.3.1 鹽度對重金屬的影響 9 2.3.2 有機質對重金屬的影響 10 2.4 底泥生物毒性檢測 11 2.5 底泥添加試驗 15 2.6 底泥銅污染現況 19 2.7 Arthrobacter globiformis固相接觸測試 21 Chapter 3 實驗與方法 24 3.1 實驗架構 24 3.2 Arthrobacter globiformis固相接觸生物急毒性測試 26 3.2.1 Arthrobacter globiformis的培養 26 3.2.2 試驗設計 29 3.2.3 刃天青染劑配製 30 3.2.4 硫酸銅對Arthrobacter globiformis活性之劑量-反應關係確認 31 3.2.5 微孔盤全底泥暴露系統建立 33 3.2.6 數據計算分析 35 3.3 OECD 218合成底泥暴露系統配製 36 3.4 水體之鹽度分析 41 3.5 底泥之有機質含量分析 43 3.6 底泥之重金屬全量濃度分析 45 3.7 統計分析 48 3.7.1 半效應濃度計算 48 3.7.2 相關分析 49 Chapter 4 結果與討論 51 4.1 硫酸銅對Arthrobacter globiformis活性之劑量-反應關係 51 4.2 現地底泥採樣 52 4.3 現地底泥分析結果 57 4.3.1 鹽度與有機質分析結果 57 4.3.2 重金屬全量分析結果 61 4.3.3 生物急毒性分析結果 65 4.3.4 相關分析結果 68 4.4 以鹽度建立之硫酸銅生物急毒性迴歸模型 73 4.4.1 添加不同鹽度之硫酸銅急毒性迴歸模型 73 4.4.2 鹽度擬合平面污染模擬量與重金屬全量分析之比較 82 4.5以有機質建立之硫酸銅生物急毒性迴歸模型 86 4.5.1添加不同有機質之硫酸銅急毒性迴歸模型 86 4.5.2有機質擬合平面污染模擬量與重金屬全量分析之比較 93 Chapter 5 結論與建議 98 5.1 結論 98 5.2 建議 100 5.3 應用 103 參考文獻 104 附錄一 115 鹽度與有機質分析結果 115 重金屬全量分析結果 116 附錄二 117 Arthrobacter globiformis固相接觸測試分析結果 117 Arthrobacter globiformis固相接觸測試之品保及品管 120 附錄三 126 硫酸銅對Arthrobacter globiformis之EC50 126 附錄四 130 硫酸銅生物急毒性三維平面迴歸模型之MATLABR擬合結果 130 | |
| dc.language.iso | zh-TW | |
| dc.subject | 相關分析 | zh_TW |
| dc.subject | 底泥 | zh_TW |
| dc.subject | 生物毒性 | zh_TW |
| dc.subject | 微生物 | zh_TW |
| dc.subject | Arthrobacter globiformis | zh_TW |
| dc.subject | 重金屬 | zh_TW |
| dc.subject | Correlation analysis | en |
| dc.subject | Arthrobacter globiformis | en |
| dc.subject | Microbial | en |
| dc.subject | Biological toxicity | en |
| dc.subject | Sediment | en |
| dc.subject | Heavy metal | en |
| dc.title | 應用Arthrobacter globiformis檢測底泥中銅之生物毒性 | zh_TW |
| dc.title | Using Arthrobacter globiformis to Determine the Copper Toxicity in Sediments | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝季吟(Chi-Ying Hsieh),陳佩貞(Pei-Jen Chen),任秀慧(Sau-Wai Yam) | |
| dc.subject.keyword | 底泥,生物毒性,微生物,Arthrobacter globiformis,重金屬,相關分析, | zh_TW |
| dc.subject.keyword | Sediment,Biological toxicity,Microbial,Arthrobacter globiformis,Heavy metal,Correlation analysis, | en |
| dc.relation.page | 137 | |
| dc.identifier.doi | 10.6342/NTU201700419 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
