請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59795完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃銓珍 | |
| dc.contributor.author | Chun-Shiu Wu | en |
| dc.contributor.author | 吳淳繡 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:38:23Z | - |
| dc.date.available | 2020-02-17 | |
| dc.date.copyright | 2017-02-17 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-09 | |
| dc.identifier.citation | Aizawa H, Bianco IH, Hamaoka T, Miyashita T, Uemura O, et al. 2005. Laterotopic Representation of Left-Right Information onto the Dorso-Ventral Axis of a Zebrafish Midbrain Target Nucleus. Current Biology 15: 238-43
Aizawa H, Goto M, Sato T, Okamoto H. 2007. Temporally Regulated Asymmetric Neurogenesis Causes Left-Right Difference in the Zebrafish Habenular Structures. Developmental Cell 12: 87-98 Aquilina-Beck A, Ilagan K, Liu Q, Liang JO. 2007. Nodal signaling is required for closure of the anterior neural tube in zebrafish. BMC developmental biology 7: 126 Araya C, Tawk M, Girdler GC, Costa M, Carmona-Fontaine C, Clarke JD. 2014. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo. Neural development 9: 9 Beck F, Erler T, Russell A, James R. 1995. Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Developmental dynamics : an official publication of the American Association of Anatomists 204: 219-27 Beck F, Stringer EJ. 2010. The role of Cdx genes in the gut and in axial development. Biochemical Society transactions 38: 353-7 Beck S, Le Good JA, Guzman M, Ben Haim N, Roy K, et al. 2002. Extraembryonic proteases regulate Nodal signalling during gastrulation. Nature cell biology 4: 981-5 Bennett JT, Stickney HL, Choi WY, Ciruna B, Talbot WS, Schier AF. 2007. Maternal nodal and zebrafish embryogenesis. Nature 450: E1-2; discussion E2-4 Bianco IH, Carl M, Russell C, Clarke JD, Wilson SW. 2008. Brain asymmetry is encoded at the level of axon terminal morphology. Neural development 3: 9 Bianco IH, Wilson SW. 2009. The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 364: 1005-20 Bisgrove BW, Essner JJ, Yost HJ. 2000. Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127: 3567-79 Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. 1997. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386: 84-7 Chen Y, Schier AF. 2001. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411: 607-10 Chen YH, Lu YF, Ko TY, Tsai MY, Lin CY, et al. 2009. Zebrafish cdx1b regulates differentiation of various intestinal cell lineages. Developmental dynamics : an official publication of the American Association of Anatomists 238: 1021-32 Cheng AM, Thisse B, Thisse C, Wright CV. 2000. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L-R axis development in xenopus. Development 127: 1049-61 Cheng P-Y, Lin C-C, Wu C-S, Lu Y-F, Lin CY, et al. 2008. Zebrafish cdx1b regulates expression of downstream factors of Nodal signaling during early endoderm formation. Development 135: 941-52 Chu M, Wang L, Wang H, Shen T, Yang Y, et al. 2014. A novel role of CDX1 in embryonic epicardial development. PloS one 9: e103271 Concha ML, Bianco IH, Wilson SW. 2012. Encoding asymmetry within neural circuits. Nat Rev Neurosci 13: 832-43 Concha ML, Russell C, Regan JC, Tawk M, Sidi S, et al. 2003. Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality. Neuron 39: 423-38 Concha ML, Signore IA, Colombo A. 2009. Mechanisms of directional asymmetry in the zebrafish epithalamus. Seminars in Cell & Developmental Biology 20: 498-509 Concha ML, Wilson SW. 2001. Asymmetry in the epithalamus of vertebrates. Journal of anatomy 199: 63-84 Davidson AJ, Ernst P, Wang Y, Dekens MP, Kingsley PD, et al. 2003. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425: 300-6 Davidson AJ, Zon LI. 2006. The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. Developmental Biology 292: 506-18 Davis NM, Kurpios NA, Sun X, Gros J, Martin JF, Tabin CJ. 2008. The chirality of gut rotation derives from left-right asymmetric changes in the architecture of the dorsal mesentery. Dev Cell 15: 134-45 Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS. 2003. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130: 1837-51 Dreosti E, Vendrell Llopis N, Carl M, Yaksi E, Wilson Stephen W. 2014. Left-Right Asymmetry Is Required for the Habenulae to Respond to Both Visual and Olfactory Stimuli. Current Biology 24: 440-45 Duprey P, Chowdhury K, Dressler GR, Balling R, Simon D, et al. 1988. A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes & development 2: 1647-54 Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ. 2005. Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132: 1247-60 Faas L, Isaacs HV. 2009. Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. Developmental dynamics : an official publication of the American Association of Anatomists 238: 835-52 Feldman B, Concha ML, Saúde L, Parsons MJ, Adams RJ, et al. 2002. Lefty Antagonism of Squint Is Essential for Normal Gastrulation. Current Biology 12: 2129-35 Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, et al. 1998. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395: 181-85 Flores MVC, Hall CJ, Davidson AJ, Singh PP, Mahagaonkar AA, et al. 2008. Intestinal Differentiation in Zebrafish Requires Cdx1b, a Functional Equivalent of Mammalian Cdx2. Gastroenterology 135: 1665-75 Gamer LW, Wright CV. 1993. Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech Dev 43: 71-81 Gamse JT, Kuan Y-S, Macurak M, Brösamle C, Thisse B, et al. 2005. Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target. Development 132: 4869-81 Gamse JT, Thisse C, Thisse B, Halpern ME. 2003. The parapineal mediates left-right asymmetry in the zebrafish diencephalon. Development 130: 1059-68 Gao N, White P, Kaestner KH. 2009. Establishment of intestinal identity and epithelial-mesenchymal signaling by Cdx2. Dev Cell 16: 588-99 Gaunt SJ, Drage D, Trubshaw RC. 2005. cdx4/lacZ and cdx2/lacZ protein gradients formed by decay during gastrulation in the mouse. The International journal of developmental biology 49: 901-8 Gonsar N, Coughlin A, Clay-Wright JA, Borg BR, Kindt LM, Liang JO. 2016. Temporal and spatial requirements for Nodal-induced anterior mesendoderm and mesoderm in anterior neurulation. Genesis (New York, N.Y. : 2000) 54: 3-18 Gore AV, Maegawa S, Cheong A, Gilligan PC, Weinberg ES, Sampath K. 2005. The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438: 1030-5 Grainger S, Savory JG, Lohnes D. 2010. Cdx2 regulates patterning of the intestinal epithelium. Dev Biol 339: 155-65 Hagos EG, Dougan ST. 2007. Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC developmental biology 7: 22 Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, et al. 2004. The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development 131: 1741-53 Hecksher-Sorensen J, Watson RP, Lettice LA, Serup P, Eley L, et al. 2004. The splanchnic mesodermal plate directs spleen and pancreatic laterality, and is regulated by Bapx1/Nkx3.2. Development 131: 4665-75 Hirokawa N, Tanaka Y, Okada Y, Takeda S. 2006. Nodal flow and the generation of left-right asymmetry. Cell 125: 33-45 Hojo M, Takashima S, Kobayashi D, Sumeragi A, Shimada A, et al. 2007. Right-elevated expression of charon is regulated by fluid flow in medaka Kupffer's vesicle. Development, growth & differentiation 49: 395-405 Hong E, Santhakumar K, Akitake CA, Ahn SJ, Thisse C, et al. 2013. Cholinergic left-right asymmetry in the habenulo-interpeduncular pathway. Proc Natl Acad Sci U S A 110: 21171-6 Hong SK, Jang MK, Brown JL, McBride AA, Feldman B. 2011. Embryonic mesoderm and endoderm induction requires the actions of non-embryonic Nodal-related ligands and Mxtx2. Development 138: 787-95 Horne-Badovinac S, Rebagliati M, Stainier DY. 2003. A cellular framework for gut-looping morphogenesis in zebrafish. Science 302: 662-5 Ji Y, Buel SM, Amack JD. 2016. Mutations in zebrafish pitx2 model congenital malformations in Axenfeld-Rieger syndrome but do not disrupt left-right placement of visceral organs. Developmental Biology 416: 69-81 Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics 203: 253-310 Kinkel MD, Eames SC, Alonzo MR, Prince VE. 2008. Cdx4 is required in the endoderm to localize the pancreas and limit beta-cell number. Development 135: 919-29 Kurpios NA, Ibanes M, Davis NM, Lui W, Katz T, et al. 2008. The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc Natl Acad Sci U S A 105: 8499-506 Lengerke C, Wingert R, Beeretz M, Grauer M, Schmidt AG, et al. 2011. Interactions between Cdx genes and retinoic acid modulate early cardiogenesis. Dev Biol 354: 134-42 Liang JO, Etheridge A, Hantsoo L, Rubinstein AL, Nowak SJ, et al. 2000. Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127: 5101-12 Lim S, Kumari P, Gilligan P, Quach HN, Mathavan S, Sampath K. 2012. Dorsal activity of maternal squint is mediated by a non-coding function of the RNA. Development 139: 2903-15 Long S, Ahmad N, Rebagliati M. 2003. The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130: 2303-16 Lu P-N, Lund C, Khuansuwan S, Schumann A, Harney-Tolo M, et al. 2013. Failure in closure of the anterior neural tube causes left isomerization of the zebrafish epithalamus. Developmental Biology 374: 333-44 Macdonald PM, Struhl G. 1986. A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324: 537-45 Marjoram L, Wright C. 2011. Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus. Development 138: 475-85 Marom K, Shapira E, Fainsod A. 1997. The chicken caudal genes establish an anterior-posterior gradient by partially overlapping temporal and spatial patterns of expression. Mech Dev 64: 41-52 Marques S, Borges AC, Silva AC, Freitas S, Cordenonsi M, Belo JA. 2004. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes & development 18: 2342-7 McGrath J, Somlo S, Makova S, Tian X, Brueckner M. 2003. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114: 61-73 Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, et al. 1999. Mouse Lefty2 and Zebrafish Antivin Are Feedback Inhibitors of Nodal Signaling during Vertebrate Gastrulation. Molecular Cell 4: 287-98 Meyer BI, Gruss P. 1993. Mouse Cdx-1 expression during gastrulation. Development 117: 191-203 Minchiotti G, Parisi S, Liguori GL, D'Andrea D, Persico MG. 2002. Role of the EGF-CFC gene cripto in cell differentiation and embryo development. Gene 287: 33-7 Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. 2002. Two major Smad pathways in TGF-beta superfamily signalling. Genes to cells : devoted to molecular & cellular mechanisms 7: 1191-204 Mlodzik M, Fjose A, Gehring WJ. 1985. Isolation of caudal, a Drosophila homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the pre-blastoderm stage. Embo j 4: 2961-9 Mlodzik M, Gehring WJ. 1987. Expression of the caudal gene in the germ line of Drosophila: formation of an RNA and protein gradient during early embryogenesis. Cell 48: 465-78 Monsoro-Burq A, Le Douarin NM. 2001. BMP4 plays a key role in left-right patterning in chick embryos by maintaining Sonic Hedgehog asymmetry. Mol Cell 7: 789-99 Muller JK, Prather DR, Nascone-Yoder NM. 2003. Left-right asymmetric morphogenesis in the Xenopus digestive system. Developmental dynamics : an official publication of the American Association of Anatomists 228: 672-82 Nakamura T, Hamada H. 2012. Left-right patterning: conserved and divergent mechanisms. Development 139: 3257-62 Nakamura T, Mine N, Nakaguchi E, Mochizuki A, Yamamoto M, et al. 2006. Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell 11: 495-504 Nakamura T, Saito D, Kawasumi A, Shinohara K, Asai Y, et al. 2012. Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nat Commun 3: 1322 Okada Y, Takeda S, Tanaka Y, Izpisua Belmonte JC, Hirokawa N. 2005. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121: 633-44 Paik EJ, Mahony S, White RM, Price EN, Dibiase A, et al. 2013. A Cdx4-Sall4 regulatory module controls the transition from mesoderm formation to embryonic hematopoiesis. Stem cell reports 1: 425-36 Peterson AG, Wang X, Yost HJ. 2013. Dvr1 transfers left-right asymmetric signals from Kupffer's vesicle to lateral plate mesoderm in zebrafish. Dev Biol 382: 198-208 Plageman TF, Jr., Zacharias AL, Gage PJ, Lang RA. 2011. Shroom3 and a Pitx2-N-cadherin pathway function cooperatively to generate asymmetric cell shape changes during gut morphogenesis. Dev Biol 357: 227-34 Rankin CT, Bunton T, Lawler AM, Lee SJ. 2000. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nature genetics 24: 262-5 Rebagliati MR, Toyama R, Fricke C, Haffter P, Dawid IB. 1998a. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol 199: 261-72 Rebagliati MR, Toyama R, Haffter P, Dawid IB. 1998b. cyclops encodes a nodal-related factor involved in midline signaling. Proceedings of the National Academy of Sciences of the United States of America 95: 9932-37 Regan JC, Concha ML, Roussigne M, Russell C, Wilson SW. 2009. An Fgf8-dependent bistable cell migratory event establishes CNS asymmetry. Neuron 61: 27-34 Roussigne M, Bianco IH, Wilson SW, Blader P. 2009. Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Development 136: 1549-57 Sampaio P, Ferreira Rita R, Guerrero A, Pintado P, Tavares B, et al. 2014. Left-Right Organizer Flow Dynamics: How Much Cilia Activity Reliably Yields Laterality? Developmental Cell 29: 716-28 Savory JG, Bouchard N, Pierre V, Rijli FM, De Repentigny Y, et al. 2009. Cdx2 regulation of posterior development through non-Hox targets. Development 136: 4099-110 Savory JG, Mansfield M, Rijli FM, Lohnes D. 2011. Cdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7. Development 138: 1361-70 Schier AF. 2009. Nodal morphogens. Cold Spring Harbor perspectives in biology 1: a003459 Schweickert A, Vick P, Getwan M, Weber T, Schneider I, et al. 2010. The nodal inhibitor Coco is a critical target of leftward flow in Xenopus. Current biology : CB 20: 738-43 Shimizu T, Bae Y-K, Muraoka O, Hibi M. 2005. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Developmental Biology 279: 125-41 Shimizu T, Bae YK, Hibi M. 2006. Cdx-Hox code controls competence for responding to Fgfs and retinoic acid in zebrafish neural tissue. Development 133: 4709-19 Signore IA, Palma K, Concha ML. 2016. Nodal signalling and asymmetry of the nervous system. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 371 Silberg DG, Swain GP, Suh ER, Traber PG. 2000. Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119: 961-71 Skromne I, Thorsen D, Hale M, Prince VE, Ho RK. 2007. Repression of the hindbrain developmental program by Cdx factors is required for the specification of the vertebrate spinal cord. Development 134: 2147-58 Subramanian V, Meyer B, Evans GS. 1998. The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation; research in biological diversity 64: 11-8 Subramanian V, Meyer BI, Gruss P. 1995. Disruption of the murine homeobox gene Cdx1 affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 83: 641-53 Tabin CJ, Vogan KJ. 2003. A two-cilia model for vertebrate left-right axis specification. Genes & development 17: 1-6 Tanaka C, Sakuma R, Nakamura T, Hamada H, Saijoh Y. 2007. Long-range action of Nodal requires interaction with GDF1. Genes & development 21: 3272-82 Tavares AT, Andrade S, Silva AC, Belo JA. 2007. Cerberus is a feedback inhibitor of Nodal asymmetric signaling in the chick embryo. Development 134: 2051-60 van den Akker E, Forlani S, Chawengsaksophak K, de Graaff W, Beck F, et al. 2002. Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129: 2181-93 van Rooijen C, Simmini S, Bialecka M, Neijts R, van de Ven C, et al. 2012. Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence. Development 139: 2576-83 Varga ZM, Wegner J, Westerfield M. 1999. Anterior movement of ventral diencephalic precursors separates the primordial eye field in the neural plate and requires cyclops. Development 126: 5533-46 Vick P, Schweickert A, Weber T, Eberhardt M, Mencl S, et al. 2009. Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. Dev Biol 331: 281-91 Wang G, Yost HJ, Amack JD. 2013. Analysis of gene function and visualization of cilia-generated fluid flow in Kupffer's vesicle. Journal of visualized experiments : JoVE Welsh IC, Thomsen M, Gludish DW, Alfonso-Parra C, Bai Y, et al. 2013. Integration of left-right Pitx2 transcription and Wnt signaling drives asymmetric gut morphogenesis via Daam2. Dev Cell 26: 629-44 Wu LH, Lengyel JA. 1998. Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore. Development 125: 2433-42 Yeo C, Whitman M. 2001. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 7: 949-57 Yin C, Kikuchi K, Hochgreb T, Poss KD, Stainier DY. 2010. Hand2 regulates extracellular matrix remodeling essential for gut-looping morphogenesis in zebrafish. Dev Cell 18: 973-84 Yoshiba S, Hamada H. 2014. Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left–right symmetry. Trends in Genetics 30: 10-17 Young T, Deschamps J. 2009. Hox, Cdx, and anteroposterior patterning in the mouse embryo. Current topics in developmental biology 88: 235-55 Zhang L, Zhou H, Su Y, Sun Z, Zhang H, et al. 2004. Zebrafish Dpr2 Inhibits Mesoderm Induction by Promoting Degradation of Nodal Receptors. Science 306: 114-17 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59795 | - |
| dc.description.abstract | 左右不對稱發育對於一些雙邊對稱生物的內臟器官及神經系統發育正確與否是非常重要的。其中,Nodal 訊息路徑對於左右不對稱發育扮演了保守且重要的角色。在斑馬魚中,參與左右不對稱發育的Nodal 訊息路徑基本成員有:Ndr2、Ndr3二個配體,Lft1、Lft2 二個拮抗體以及下游轉錄因子Pitx2。經由Ndr 對自己的正向調控和對Lft1/2 的負向調控,使得Nodal 訊息路徑的表現時間和空間可以被精確地控制。
斑馬魚 Cdx1b 是homeobox 轉錄因子家族的一員。過去的研究已知Cdx1b 會調控Nodal signaling 的下游基因,並影響胚胎的內胚層細胞數量;另外,Cdx1b 也調控了腸道細胞的增生和分化。本篇研究論文發現,Cdx1b 藉由調控Nodal 訊息路徑,參與調控斑馬魚左右不對稱發育。這是一個在其他物種中尚未被報導的Cdx1b新功能。利用注射cdx1b 反義嗎啉基(antisense Morpholino)至斑馬魚胚胎中抑制cdx1b 轉譯,發現會造成胚胎上丘腦、心臟、肝臟、胰臟及腸的位置左右顛倒或是對稱發育。進一步研究發現,cdx1b 表現降低會導致胚胎Nodal 訊息路徑成員ndr3、lft1、lft2 和pitx2c 在左邊侧板中胚層的表現紊亂,以及ndr2、lft1、和pitx2c 在左邊背側間腦的表現喪失。降低cdx1b 表現也使初期建立左右不對稱的器官Kupffer’s vesicle 功能減低。此外cdx1b 的減少會使Nodal 訊息路徑成員ndr2、lft1和pitx2c 在前腹板(prechordal plate) 和頭端腹側神經外胚層(anterior ventral neuroectoderm)的表現降低,造成前腹板和頭端腹側神經外胚層的發育不良,更進一步影響上丘腦的左右不對稱發育。經由比對跨物種間保守序列以及染色質免疫沉澱法發現,ndr2 基因和lft1 基因5 端上游具有保守性Cdx1/Cdx2-結合基序列。 這顯示Cdx1b 可能會與這些基因上的保守性Cdx1/Cdx2-結合基序列結合,進而調控ndr2 和lft1 的表現而影響胚胎頭端腹側神經外胚層的發育以及上丘腦左右不對稱的發育。 | zh_TW |
| dc.description.abstract | Left-right asymmetric patterning is important for proper development of visceral organs and neurogenesis that is dependent on the appropriate activity of Nodal signaling. In zebrafish, after breaking the left-right symmetry by nodal flow inside Kupffer's vesicle (KV), ndr3 (Nodal-related 3) is asymmetrically expressed in the left lateral plate mesoderm (LPM) and turns on downstream genes encoding the Nodal ligands (ndr2 and ndr3 itself), the antagonists of Nodal ligands (lft1 and lft2), and the downstream effector of Nodal signaling (pitx2). This Self-Enhancement and Laterality Inhibition system of Nodal signaling are considered as a conserved molecular cascade across species to control their temporal and spatial expression precisely. Zebrafish caudal-related homeobox 1b (cdx1b) belongs to the caudal type homeobox (cdx) gene family, which has been implicated in anterior-posterior axial patterning and intestinal development across diverse bilaterians. Previous studies have shown that zebrafish Cdx1b regulates early endoderm formation and differentiation of various intestinal cell lineages. In this thesis, a new role of Cdx1b in left-right asymmetrical patterning was discovered. Knockdown of cdx1b by specific antisense morpholino oligonucleotides (MOs) caused the loss of left-laterality in the epithalamus, the failure of heart looping, and isomerism or situs inversus of visceral organs. In the cdx1b-knockdown embryos (cdx1b morphants), left-sided expression of Nodal signaling genes (ndr3, lft1, lft2, and pitx2c)were altered in the LPM, and expressions of ndr2, lft1 and pitx2c were not detected in the left dorsal diencephalon during the late somite and early pharygula stages (18-26 hpf). During the early- somite stages (4-6 somite stages), the cilia of KV were shortened and the Nodal flow was weakened in the cdx1b morphants. The symmetric right-sided expression of charon (the antagonist of Nodal around KV) was also altered in the cdx1b morphants. Knockdown of cdx1b reduced the expression of ndr2, lft1, and pitx2c in the prechordal plate and the anterior ventral neuroectoderm at the bud stage. In addition, decreased expression of gsc, a downstream target of Nodal signaling in the prechordal plate and ventral neuroectoderm, and shh, a structure marker of these tissues, were observed in the cdx1b morphants. These results indicate that Cdx1b is important for patterning of the Nodal-induced anterior mesendoderm and the anterior ventral neuroectoderm. Based on motif predictions by the JASPAR and UCSC websites, chromatin immunoprecipitation results showed that Cdx1b can bind on the conserved promotor/enhancer region of ndr2 (chr12:49,427,858-49,428,038) and lft1 (chr20:35,102,628-35,102,818). Together, these results suggest that Cdx1b may regulate transcription of ndr2 and lft1 to maintain proper activity of Nodal signaling that is essential for the mesendoderm induction, the anterior neurulation and subsequent establishment of laterality of epithalamus in the zebrafish embryo. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:38:23Z (GMT). No. of bitstreams: 1 ntu-106-D97b46014-1.pdf: 4006156 bytes, checksum: 8c657e4495c563b890ee8d12a195d410 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要………………………………………………………………………………….… i
Abstract……………………………………………………………………………….iii Contents………………………………………………………………………………iv 1. Introduction…………………………………………………………….1 1.1 The role of Nodal signaling in zebrafish development………………………….1 1.1.1 The Nodal signaling…………………………………………………………….1 1.1.2 The roles of Nodal in zebrafish development…………………………………..2 1.2 The establishment of left-right asymmetry in vertebrates………………...……4 1.2.1 Break the bilateral symmetry by the left-right organizer……………………….4 1.2.2 Induce and maintain gene expression asymmetrically around the left-right organizer………………………………………………………………………..5 1.2.3 Transmit and amplify asymmetric gene expression to the left LPM…………...7 1.2.4 Asymmetric organ morphogenesis……………………………………………...8 1.2.4.1 The asymmetric morphogenesis of visceral organs……………………….8 1.2.4.2 The asymmetric morphogenesis of brain………………………………….9 1.3 The caudal type homeobox gene family…………………………………………13 1.3.1 The role of the caudal gene in Drosophila……………………………………13 1.3.2 The caudal type homeobox genes in mouse…………………………………...14 1.3.3 The caudal type homeobox genes in zebrafish………………………………..16 2. Materials and Methods……………………………………………….20 2.1 Zebrafish strain and breeding conditions………………………………………20 2.2 Morpholino and mRNA injection……………………………………………….20 2.3 Capped mRNA and probe synthesis……………………………………………21 2.4 Whole-mount RNA in situ hybridization…………………………………….....22 2.4.1 Embryo fixation and dehydration……………………………………………..22 2.4.2 Rehydration and proteinase K treatment………………………………………22 2.4.3 Hybridization and washes……………………………………………………..23 2.4.4 Blocking, antibody incubation, and staining…………………………………..24 2.5 Antibody staining………………………………………………………………...24 2.6 Visualization and analysis of Kupffer's vesicle fluid flow by injecting microbeads into Kupffer's vesicle………………………………………………26 2.7 Chromatin immunoprecipitation……………………………………………….26 2.7.1 Dechorionation and fixation of embryos……………………………………...26 2.7.2 Cell lysis and chromatin DNA extraction……………………………………..27 2.7.3. Sonication…………………………………………………………………….27 2.7.4 Incubation of chromatin/DNA and antibody………………………………….28 2.7.5 Blocking of Dynabeads® Protein G…………………………………………...29 2.7.6 Incubation of antibody/chromatin/DNA complex and pre-blocked Dynabeads® Protein G………………………………………………………………………29 2.7.7 The wash procedures and elution of chromatin/DNA complex…………….…29 2.7.8 Reverse the crosslink of DNA and chromatin…………………………………30 2.7.9 Clean-up of the eluted DNA…………………………………………………..30 3. Results………………………………………………………………….32 3.1 The expression pattern of cdx1b……………………………………………...…32 3.2 Knockdown of cdx1b disrupted the left laterality of epithalamus at 72 hpf…32 3.3 Knockdown of cdx1b decreased the expression of Nodal signaling component genes in the dorsal diencephalon during 20s to 26 hpf………………………..33 3.4 Cdx1b is required for the expression of ndr2, pitx2c, or lft1 in the prechordal plate and ventral neuroectoderm, but not required for the expression of lft2 in the axial chorda mesoderm at the bud stage…………………………………..34 3.5 Cdx1b is required for the development of the forebrain neural plate at the bud stage…………………………………………………………………………35 3.6 Only the expression of lft1, but not ndr2 or gsc, can be effectively rescued by co-injection of cdx1b mRNA into cdx1b morphants at the bud stage………..36 3.7 Knockdown of cdx1b disrupted heart looping at 48 hpf………………………36 3.8 Knockdown of cdx1b disrupts the position of visceral organs at 48 hpf……..37 3.9 Expressions of Nodal signaling component genes in the left LPM were disrupted during 19s to 22s stages……………………………………………...37 3.10 Length but not number of cilia in Kupffer's vesicle was reduced in cdx1b morphants………………………………………………………………………..39 3.11 Knockdown of cdx1b damaged the function of Kupffer's vesicle…………...39 3.12 Cdx1b may be indirectly involved in the development of Kupffer's vesicle..40 3.13 Cdx1b may bind on ndr2 and lft1 promotor/enhancer to regulate the expression of ndr2 and lft1 directly……………………………………………..41 4. Discussion……………………………………………………………...42 5. Conclusion……………………………………………………………..47 Reference…………………………………………………………………48 Figures……………………………………………………………………56 Fig. 1. Expression patterns of zebrafish cdx1b gene………………………………56 Fig. 2. Knockdown cdx1b disrupts left laterality of epithalamus…………………57 Fig. 3. Knockdown of cdx1b decreases expression of Nodal signaling component genes in the dorsal diencephalon during 20s to 26 hpf……………………58 Fig. 4. Cdx1b is required for the expression of ndr2, pitx2c, lft1 in the prechordal plate and ventral neuroectoderm, but not required for the expression of lft2 in the axial chorda mesoderm at bud stage……………………………60 Fig. 5. Cdx1b is required for the development of forebrain neural plate at the bud stage…………………………………………………………………………..62 Fig. 6. The expression of lft1 can be rescued significantly by cdx1b mRNA at the bud stage……………………………………………………………………..64 Fig. 7. The expression of ndr2 cannot be rescued effectively by cdx1b mRNA at bud stage……………………………………………………………………..66 Fig. 8. Decreased expression area of gsc in morphants cannot be rescued by co-injection of cdx1b mRNA at the bud stage……………………………...68 Fig. 9. Knockdown cdx1b disrupts the left laterality of heart at 48 hpf…………69 Fig. 10. Knockdown cdx1b disrupts the position of visceral organs at 48 hpf…...70 Fig. 11. Knockdown of cdx1b disrupts expression of Nodal signaling components genes in the left lateral plate mesoderm during 19s to 22s………………..71 Fig. 12. The length but not number of cilia in Kupffer's vesicle (KV) is reduced in the cdx1b morphants………………………………………………………...73 Fig. 13. Knockdown of cdx1b disturbs fluidflow in Kupffer's vesicle (KV) during 6-8s……………………………………………………………………………74 Fig. 14. Knockdown of cdx1b disrupts asymmetric expression of charon around the Kupffer’s vesicle at 10s………………………………………………….75 Fig. 15. Specific knockdown of cdx1b in the dorsal forerunner cells does not affect left laterality of spaw in the lateral plate mesoderm during 19-22s………76 Fig. 16. Cdx1b can bind on the promotor/enhancer of ndr2……………………...77 Fig. 17. Cdx1b can bind on the promotor/enhancer of lft1……………………….79 Fig. 18. A proposed model of Cdx1b function in modulating Nodal signaling and regulating left-right asymmetry in the brain and visceral organs………..81 | |
| dc.language.iso | en | |
| dc.subject | 斑馬魚cdx1b 基因 | zh_TW |
| dc.subject | Nodal 訊息路徑 | zh_TW |
| dc.subject | 左右不對稱發育 | zh_TW |
| dc.subject | cdx1b | en |
| dc.subject | zebrafish | en |
| dc.subject | Nodal signaling | en |
| dc.subject | L-R asymmetry | en |
| dc.title | 斑馬魚Cdx1b通過調節Nodal信號調控大腦和內臟器官左右不對稱發育之研究 | zh_TW |
| dc.title | Zebrafish Cdx1b regulates left-right asymmetry in the brain and visceral organs by modulating Nodal signaling | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 管永恕(Yung-Shu Kuan),黃聲蘋,蘇怡璇,鄭邑荃 | |
| dc.subject.keyword | 斑馬魚cdx1b 基因,左右不對稱發育,Nodal 訊息路徑, | zh_TW |
| dc.subject.keyword | zebrafish,cdx1b,Nodal signaling,L-R asymmetry, | en |
| dc.relation.page | 81 | |
| dc.identifier.doi | 10.6342/NTU201700457 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
