Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59793
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建錦(Chien-Chin Chen)
dc.contributor.authorChih-Wei Yangen
dc.contributor.author楊智幃zh_TW
dc.date.accessioned2021-06-16T09:38:17Z-
dc.date.available2020-02-16
dc.date.copyright2017-02-16
dc.date.issued2016
dc.date.submitted2017-02-10
dc.identifier.citation1. Zickuhr, K., Generations 2010. Pew internet & American life project. Pew
Research Center, Washington, DC, 2010.
2. Fox, S. and M. Duggan, Health online 2013. pew internet and american life
project. Pew Research Center’s Internet and American Life Project, 2013.
3. Pradhan, S., et al., Evaluating the state of the art in disorder recognition and
normalization of the clinical narrative. Journal of the American Medical
Informatics Association, 2015. 22(1): p. 143-154.
4. Tang, B., et al. Recognizing and Encoding Discorder Concepts in Clinical Text
using Machine Learning and Vector Space Model. in Workshop of ShARe/CLEF
eHealth Evaluation Lab 2013. 2013.
5. Lafferty, J., A. McCallum, and F.C. Pereira, Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. 2001.
6. Sang, E.F. and J. Veenstra. Representing text chunks. in Proceedings of the ninth
conference on European chapter of the Association for Computational
Linguistics. 1999. Association for Computational Linguistics.
7. Cogley, J., N. Stokes, and J. Carthy. Medical disorder recognition with
structural support vector machines. in Online Working Notes of the CLEF 2013
Evaluation Labs and Workshop. 2013.
8. Leaman, R. and G. Gonzalez. BANNER: an executable survey of advances in
biomedical named entity recognition. in Pacific Symposium on Biocomputing.
2008. Citeseer.
9. Chowdhury, M. and M. Faisal. Disease mention recognition with specific
features. in Proceedings of the 2010 workshop on biomedical natural language
processing. 2010. Association for Computational Linguistics.
10. Li, D., K. Kipper-Schuler, and G. Savova. Conditional random fields and
support vector machines for disorder named entity recognition in clinical texts.
in Proceedings of the workshop on current trends in biomedical natural
language processing. 2008. Association for Computational Linguistics.
11. Bodenreider, O., The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic acids research, 2004. 32(suppl 1): p. D267-
D270.
12. Wang, Y. and J. Patrick, Cascading Classifiers for Named Entity Recognition in
Clinical Notes. BIOMEDICAL INFORMATION EXTRACTION, 2009: p. 42.
13. Aronson, A.R. Effective mapping of biomedical text to the UMLS
Metathesaurus: the MetaMap program. in Proceedings of the AMIA Symposium.
2001. American Medical Informatics Association.
14. Abacha, A.B. and P. Zweigenbaum. Medical entity recognition: A comparison
of semantic and statistical methods. in Proceedings of BioNLP 2011 Workshop.
2011. Association for Computational Linguistics.
15. Tang, B., et al., Recognizing clinical entities in hospital discharge summaries
using Structural Support Vector Machines with word representation features.
BMC medical informatics and decision making, 2013. 13(Suppl 1): p. S1.
16. Tang, Y.Z.J.W.B., Y.W.M. Jiang, and Y.C.H. Xu, UTH_CCB: A Report for
SemEval 2014–Task 7 Analysis of Clinical Text. SemEval 2014, 2014: p. 802.
17. Kaewphan, S., K. Hakaka, and F. Ginter, UTU: Disease Mention Recognition
and Normalization with CRFs and Vector Space Representations. SemEval
2014, 2014: p. 807.
18. Levin, A. and Y. Weiss, Learning to Combine Bottom-Up and Top-Down
Segmentation.
19. Bundschus, M., et al., Extraction of semantic biomedical relations from text
using conditional random fields. BMC bioinformatics, 2008. 9(1): p. 207.
20. Ghiasvand, O., Disease Name Extraction from Clinical Text Using Conditional
Random Fields. 2014.
21. Suárez-Paniagua, V., I. Segura-Bedmar, and P. Martınez, Word Embedding
Clustering for Disease Named Entity Recognition.
22. Hacioglu, K. Semantic role labeling using dependency trees. in Proceedings of
the 20th international conference on Computational Linguistics. 2004.
Association for Computational Linguistics.
23. De Marneffe, M.-C. and C.D. Manning. The Stanford typed dependencies
representation. in Coling 2008: Proceedings of the workshop on Cross-
Framework and Cross-Domain Parser Evaluation. 2008. Association for
Computational Linguistics.
24. De Marneffe, M.-C. and C.D. Manning, Stanford typed dependencies manual.
2008, Technical report, Stanford University.
25. Bodenreider, O. and A.T. McCray, Exploring semantic groups through visual
approaches. Journal of biomedical informatics, 2003. 36(6): p. 414-432.
26. McCray, A.T., A. Burgun, and O. Bodenreider, Aggregating UMLS semantic
types for reducing conceptual complexity. Studies in health technology and
informatics, 2001. 84(0 1): p. 216.
27. Mikolov, T., et al. Distributed representations of words and phrases and their
compositionality. in Advances in neural information processing systems. 2013.
28. Mikolov, T., et al., Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.
29. Bengio, Y., et al., A neural probabilistic language model. journal of machine
learning research, 2003. 3(Feb): p. 1137-1155.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59793-
dc.description.abstractWith the advance of technology and the prevalence of Internet access, more and more users attempt to search medical advice on the Internet, and various healthcare websites thus thrive. Users usually seek assistance from those who own similar experiences on healthcare websites. However, there is a great deal of unreliable information without professional endorsement, as the result, users tend to be misled and their conditions may further deteriorate. Even if there are authoritative practitioners involved, they have problem dealing with heavy demand in daily medical advice. Recently, a number of researches explore the intelligent disease inference system, and simply divide it into two parts: medical named entity recognition and disease normalization.
This research mainly focuses on symptom named entity recognition. We conduct the experiments using pre-annotated clinical reports released by International Workshop on Semantic Evaluation 2014 Task 7. For each word in the report, we extract features and categorize them into four groups including lexical/morphological, syntactic, semantic, and combinational features, and then utilize machine learning based approach – condition random fields (CRFs) to construct a model that identifies the span of symptom entities in clinical reports. The system performance is evaluated by precision, recall, and f-measure. Our method outperformed some participants in Workshop on Semantic Evaluation 2014 Task 7. Eventually, we analyze the feature influence and key to improve our system in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:38:17Z (GMT). No. of bitstreams: 1
ntu-105-R03725052-1.pdf: 1784155 bytes, checksum: d604737e3a7e44e6ebfcd073c7cd0b0e (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
Chapter 2 Related Work 5
2.1 Tagging Formats 5
2.2 Medical Named Entity Recognition 6
Chapter 3 Methodology 9
3.1 Problem Formation 9
3.2 Conditional Random Fields 10
3.2.1 Training 11
3.2.2 Inference 15
3.3 Feature Extraction 16
3.3.1 Group 1 - Lexical/morphological Features 17
3.3.2 Group 2 - Syntactic Features 18
3.3.3 Group 3 - Semantic Features 20
3.3.4 Group 4 - Combinational Features 25
Chapter 4 Experiments 27
4.1 Dataset and Evaluation Procedure 27
4.2 System Evaluation 29
Chapter 5 Conclusion and Future Work 33
REFERENCE 35
dc.language.isoen
dc.title使用隨機條件域之智慧型病症辨識方法zh_TW
dc.titleAn Intelligent Symptom Named Entity Recognition Method using Conditional Random Fieldsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳孟彰(Meng-Chang Chen),盧信銘(Hsin-Ming Lu),蔡銘峰(Ming-Feng Tsai)
dc.subject.keyword健康照護,專名識別,序列標記,zh_TW
dc.subject.keywordhealthcare,named entity recognition,sequence labeling,en
dc.relation.page36
dc.identifier.doi10.6342/NTU201700264
dc.rights.note有償授權
dc.date.accepted2017-02-10
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  目前未授權公開取用
1.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved