請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59786完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊宏(Chun-Hong Chen) | |
| dc.contributor.author | Yu-Min Chen | en |
| dc.contributor.author | 陳育岷 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:37:54Z | - |
| dc.date.available | 2022-02-17 | |
| dc.date.copyright | 2017-02-17 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-10 | |
| dc.identifier.citation | Reference
1.Al-Shamsi, A., A. Baker, A. Dhawan and J. Hertecant (2016). 'Acute Metabolic Crises in Maple Syrup Urine Disease After Liver Transplantation from a Related Heterozygous Living Donor.' JIMD Rep 30: 59-62. 2.Babchia, N., A. Calipel, F. Mouriaux, A. M. Faussat and F. Mascarelli (2010). 'The PI3K/Akt and mTOR/P70S6K signaling pathways in human uveal melanoma cells: interaction with B-Raf/ERK.' Invest Ophthalmol Vis Sci 51(1): 421-429. 3.Bjedov, I., J. M. Toivonen, F. Kerr, C. Slack, J. Jacobson, A. Foley and L. Partridge (2010). 'Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster.' Cell Metab 11(1): 35-46. 4.Bolster, D. R., T. C. Vary, S. R. Kimball and L. S. Jefferson (2004). 'Leucine regulates translation initiation in rat skeletal muscle via enhanced eIF4G phosphorylation.' J Nutr 134(7): 1704-1710. 5.Brosnan, J. T. and M. E. Brosnan (2006). 'Branched-chain amino acids: enzyme and substrate regulation.' J Nutr 136(1 Suppl): 207S-211S. 6.Chuang, D. T., J. L. Chuang and R. M. Wynn (2006). 'Lessons from genetic disorders of branched-chain amino acid metabolism.' J Nutr 136(1 Suppl): 243S-249S. 7.Courtney-Martin, G., R. O. Ball, P. B. Pencharz and R. Elango (2016). 'Protein Requirements during Aging.' Nutrients 8(8). 8.Crown, S. B., N. Marze and M. R. Antoniewicz (2015). 'Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.' Plos One 10(12). 9.de Cespedes, C. (2013). 'Maple syrup urine disease: Membrane amino acid transport in non-brain tissues revisited.' Molecular Genetics and Metabolism 108(3): 201-202. 10.Diaz, V. M., C. Camarena, A. de la Vega, M. Martinez-Pardo, C. Diaz, M. Lopez, F. Hernandez, A. Andres and P. Jara (2014). 'Liver transplantation for classical maple syrup urine disease: long-term follow-up.' J Pediatr Gastroenterol Nutr 59(5): 636-639. 11.Dideriksen, K., S. Reitelseder and L. Holm (2013). 'Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans.' Nutrients 5(3): 852-876. 12.Fingerhut, R., E. Simon, E. M. Maier, J. B. Hennermann and U. Wendel (2008). 'Maple syrup urine disease: newborn screening fails to discriminate between classic and variant forms.' Clin Chem 54(10): 1739-1741. 13.Frazier, D. M., C. Allgeier, C. Homer, B. J. Marriage, B. Ogata, F. Rohr, P. L. Splett, A. Stembridge and R. H. Singh (2014). 'Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach.' Mol Genet Metab 112(3): 210-217. 14.Ganeshan, K. and A. Chawla (2014). 'Metabolic regulation of immune responses.' Annu Rev Immunol 32: 609-634. 15.Harper, A. E., R. H. Miller and K. P. Block (1984). 'Branched-chain amino acid metabolism.' Annu Rev Nutr 4: 409-454. 16.Lee, J. Y., M. A. Chiong, S. C. Estrada, E. M. Cutiongco-De la Paz, C. L. Silao and C. D. Padilla (2008). 'Maple syrup urine disease (MSUD)--clinical profile of 47 Filipino patients.' J Inherit Metab Dis 31 Suppl 2: S281-285. 17.Lerin, C., A. B. Goldfine, T. Boes, M. Liu, S. Kasif, J. M. Dreyfuss, A. L. De Sousa-Coelho, G. Daher, I. Manoli, J. R. Sysol, E. Isganaitis, N. Jessen, L. J. Goodyear, K. Beebe, W. Gall, C. P. Venditti and M. E. Patti (2016). 'Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.' Mol Metab 5(10): 926-936. 18.Mackenzie, D. Y. and L. I. Woolf (1959). 'Maple syrup urine disease; an inborn error of the metabolism of valine, leucine, and isoleucine associated with gross mental deficiency.' Br Med J 1(5114): 90-91. 19.Mazariegos, G. V., D. H. Morton, R. Sindhi, K. Soltys, N. Nayyar, G. Bond, D. Shellmer, B. Shneider, J. Vockley and K. A. Strauss (2012). 'Liver transplantation for classical maple syrup urine disease: long-term follow-up in 37 patients and comparative United Network for Organ Sharing experience.' J Pediatr 160(1): 116-121 e111. 20.O'Connell, T. M. (2013). 'The complex role of branched chain amino acids in diabetes and cancer.' Metabolites 3(4): 931-945. 21.Shimomura, Y., Y. Yamamoto, G. Bajotto, J. Sato, T. Murakami, N. Shimomura, H. Kobayashi and K. Mawatari (2006). 'Nutraceutical effects of branched-chain amino acids on skeletal muscle.' J Nutr 136(2): 529S-532S. 22.Strauss, K. A., E. G. Puffenberger and D. H. Morton (1993). Maple Syrup Urine Disease. GeneReviews(R). R. A. Pagon, M. P. Adam, H. H. Ardinger et al. Seattle (WA). 23.Tajiri, K. and Y. Shimizu (2013). 'Branched-chain amino acids in liver diseases.' World J Gastroenterol 19(43): 7620-7629. 24.Valerio, A. and E. Nisoli (2015). 'Nitric oxide, interorganelle communication, and energy flow: a novel route to slow aging.' Front Cell Dev Biol 3: 6. 25.Ward, P. S. and C. B. Thompson (2012). 'Signaling in Control of Cell Growth and Metabolism.' Cold Spring Harbor Perspectives in Biology 4(7). 26.Zinnanti, W. J., J. Lazovic, K. Griffin, K. J. Skvorak, H. S. Paul, G. E. Homanics, M. C. Bewley, K. C. Cheng, K. F. Lanoue and J. M. Flanagan (2009). 'Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease.' Brain 132(Pt 4): 903-918. 27.Al-Shamsi, A., A. Baker, A. Dhawan and J. Hertecant (2016). 'Acute Metabolic Crises in Maple Syrup Urine Disease After Liver Transplantation from a Related Heterozygous Living Donor.' JIMD Rep 30: 59-62. 28.de Cespedes, C. (2013). 'Maple syrup urine disease: Membrane amino acid transport in non-brain tissues revisited.' Molecular Genetics and Metabolism 108(3): 201-202. 29.Dideriksen, K., S. Reitelseder and L. Holm (2013). 'Influence of amino acids, dietary protein, and physical activity on muscle mass development in humans.' Nutrients 5(3): 852-876. 30.Fingerhut, R., E. Simon, E. M. Maier, J. B. Hennermann and U. Wendel (2008). 'Maple syrup urine disease: newborn screening fails to discriminate between classic and variant forms.' Clin Chem 54(10): 1739-1741. 31.Frazier, D. M., C. Allgeier, C. Homer, B. J. Marriage, B. Ogata, F. Rohr, P. L. Splett, A. Stembridge and R. H. Singh (2014). 'Nutrition management guideline for maple syrup urine disease: an evidence- and consensus-based approach.' Mol Genet Metab 112(3): 210-217. 32.Lee, J. Y., M. A. Chiong, S. C. Estrada, E. M. Cutiongco-De la Paz, C. L. Silao and C. D. Padilla (2008). 'Maple syrup urine disease (MSUD)--clinical profile of 47 Filipino patients.' J Inherit Metab Dis 31 Suppl 2: S281-285. 33.Mackenzie, D. Y. and L. I. Woolf (1959). 'Maple syrup urine disease; an inborn error of the metabolism of valine, leucine, and isoleucine associated with gross mental deficiency.' Br Med J 1(5114): 90-91. 34.Shimomura, Y., Y. Yamamoto, G. Bajotto, J. Sato, T. Murakami, N. Shimomura, H. Kobayashi and K. Mawatari (2006). 'Nutraceutical effects of branched-chain amino acids on skeletal muscle.' J Nutr 136(2): 529S-532S. 35.Strauss, K. A., E. G. Puffenberger and D. H. Morton (1993). Maple Syrup Urine Disease. GeneReviews(R). R. A. Pagon, M. P. Adam, H. H. Ardinger et al. Seattle (WA). 36.Zinnanti, W. J., J. Lazovic, K. Griffin, K. J. Skvorak, H. S. Paul, G. E. Homanics, M. C. Bewley, K. C. Cheng, K. F. Lanoue and J. M. Flanagan (2009). 'Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease.' Brain 132(Pt 4): 903-918. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59786 | - |
| dc.description.abstract | 在台灣患有罕見疾病的嬰兒中,有大部分是屬於「先天性代謝異常疾病」,這類的疾病包括醣類和胺基酸代謝異常,較為有名的分別是半乳糖血症、肝糖屯積症、糖尿病、楓糖尿症以及苯酮尿症等,因為對於這些疾病的致病機制並不完全了解,所以對於這些疾病的治療方式比較傾向飲食控制,藉由控制攝入的食物來抑制病情發作。在這篇論文中,以果蠅為模式生物,建立患有楓糖尿症的病理模型,未來可以藉此探討楓糖尿症病患體內的支鏈甲型酮脫氫酵素複合物的異常,以及可能的治療方式。在果蠅基因中,CG1673、CG5599以及CG8199分別對照人類支鏈甲型酮脫氫酵素複合物中的支鏈氨基酸轉氨酶、二氫硫辛酰胺支鏈酰基轉移酶和3-甲基-2-氧代丁酸脫氫酶;首先,使用CRISPR / CAS 9的方法,來產生分別帶有三種基因突變的果蠅。接著確認了血淋巴多支鏈胺基酸含量在這些突變果蠅中有上升的現象,同時導致果蠅有腦部病變、行動力下降等病徵,而這些病徵和哺乳動物的楓糖尿症類似。同時在這項研究中,這些酵素的異常會導致果蠅脂肪內的三酸甘油脂無法儲存,而脂肪代謝與楓糖尿症間的關係在果蠅模型中尚未有明確的報導;此外,餵食果蠅含有雷帕黴素的食物可以延長楓糖尿症果蠅的壽命並且改善其爬行能力;同時,藉由這些果蠅,更進一步的了解microRNA-277和BCAA代謝酵素之間的關聯性。因此透過建立此果蠅模型,可以對於楓糖尿症的致病機制、併發症以及上下游的交互影響,提供一個快速的篩藥的方法來治療這種疾病。 | zh_TW |
| dc.description.abstract | The congenital metabolic disorder disease is a very common disease in Taiwan infant. This disease group includes the alteration of carbohydrates and amino acid metabolisms, such as galactosemia, glycogen storage disease, phenylketonuria, diabetes mellitus and maple syrup urine disease. Because the pathogenesis is not clear, diet control is the most common therapy strategy for patients. Patients control their food intakes to prevent these disease outbreak. In this research, Drosophila was used as animal models to mimic the symptoms of branched-chain α-keto acid dehydrogenase complex (BCKAD complex) dysfunction which correlates with the maple syrup urine disease (MSUD) to find the cure strategy. In Drosophila, three Branch-Chain amino acid (BCAA) catabolic enzymes called CG1673, CG5599, and CG8199. These three enzymes are homologs with branch chain aminotransferase, dihydro lipoyl transacylase (E2) and branched-chain alpha-keto acid decarboxylase (E1) in human were selected. Using CRISPR/Cas9 technology, three kinds of gene mutation flies were established. The results showed that the branched chain amino acids in hemolymph in mutant flies were higher than wild type. And their brain damage and climbing ability defect were more serious than wild type. In the experiment, fat storage problem was observed in these flies which had never been reported yet. At the same time, feeding rapamycin could rescue their lifespan and climbing abilities defect in mutant flies. Finally, the microRNA-277 which was one of the upstream controllers of BCAA catabolism pathway also be found in this research. Because of these reasons, these Drosophila models help us to know more about MSUD mechanisms, complications, the upstream and downstream of BCAA catabolic and even drug test more quickly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:37:54Z (GMT). No. of bitstreams: 1 ntu-106-R03b43020-1.pdf: 1792082 bytes, checksum: 93da7e57d906ed4b4fa2656e0ad41bd4 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 ………………………………………………………………………..3
English abstract…………………………………………………….……………..4 Table of figures……………………………………………………………………9 Table of tables……………………………………………………………………..11 Introduction ………………………………………………………………………12 1.Maple syrup urine disease (MSUD) …………………………….12 2.Amino acids and Branch chain amino acids ……………………14 3.Branch chain amino acids degradation pathway and maple syrup urine disease ………………………………………………………....15 4.The tricarboxylic acid cycle (TCA cycle) …………………..…17 5.BCAA metabolic pathway and mTOR pathway ……………....19 6.BCAAs metabolic pathways and microRNA-277………..…….20 7.The CRISPR/Cas9 system………………………………...…....21 8.The specific aims of this thesis……………..…………………..22 Methods …………………………………………………………………..……… 23 1.Fly Stocks 2.Behavior experiments i.Larvae climbing test ii.Adults climbing assay (Negative geotaxis assay) iii.Climbing index 3.Brain paraffin dissection 4.Mass spectrometry to test BCAA 5.Drosophila RNA extract 6.Drosophila mRNA / microRNA PCR 7.Western blot 8.Food recipe Results…………………………………………………………………………………27 1.Generate BCAA enzyme mutants by CRISPR/Cas9 method 2.BCAA levels was increased in hemolymph from BCAA enzyme mutants flies 3.BCAAs accumulate in mutant flies shorter the lifespan of Drosophila 4.The mutant flies showed locomotion defect and neuron degeneration in brains 5.Blocking BCAA pathway activate dTOR signaling 6.BCAA enzyme mutants affect lipid accumulation in fat body 7.mir-277 is a potential regulator of BCAA metabolic pathway Discussion ………………………………………………………………………….. 41 Reference…………………………………………………………………….….....…49 Figures………………………………………………………………………………. 52 Tables…………………………………………………………………………………78 | |
| dc.language.iso | en | |
| dc.subject | 果蠅 | zh_TW |
| dc.subject | 微核糖核酸-277 | zh_TW |
| dc.subject | 雷帕黴素 | zh_TW |
| dc.subject | 多支鏈性胺基酸 | zh_TW |
| dc.subject | 楓糖尿症 | zh_TW |
| dc.subject | 果蠅 | zh_TW |
| dc.subject | 微核糖核酸-277 | zh_TW |
| dc.subject | 雷帕黴素 | zh_TW |
| dc.subject | 多支鏈性胺基酸 | zh_TW |
| dc.subject | 楓糖尿症 | zh_TW |
| dc.subject | mir-277 | en |
| dc.subject | Drosophila | en |
| dc.subject | maple syrup urine disease | en |
| dc.subject | BCAA | en |
| dc.subject | rapamycin | en |
| dc.subject | mir-277 | en |
| dc.subject | Drosophila | en |
| dc.subject | maple syrup urine disease | en |
| dc.subject | BCAA | en |
| dc.subject | rapamycin | en |
| dc.title | 建立楓糖尿症的果蠅模型 | zh_TW |
| dc.title | The Drosophila model of Maple Syrup Urine Disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王致恬,游宏祥,傅在峰 | |
| dc.subject.keyword | 果蠅,楓糖尿症,多支鏈性胺基酸,雷帕黴素,微核糖核酸-277, | zh_TW |
| dc.subject.keyword | Drosophila,maple syrup urine disease,BCAA,rapamycin,mir-277, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201700443 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-10 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
