Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59758
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊宏智
dc.contributor.authorHsin-Chang Linen
dc.contributor.author林信昌zh_TW
dc.date.accessioned2021-06-16T09:36:31Z-
dc.date.available2022-02-17
dc.date.copyright2017-02-17
dc.date.issued2017
dc.date.submitted2017-02-11
dc.identifier.citation[1] Zhang, Jiucai, et al. 'Modeling discharge behavior of
multicell battery.' IEEE Transactions on Energy
Conversion 25.4 (2010): 1133-1141.
[2] He, Xiaoling, and Jeffrey W. Hodgson. 'Modeling and
simulation for hybrid electric vehicles. I. Modeling.'
IEEE Transactions on Intelligent Transportation Systems
3.4 (2002): 235-243.
[3] http://chem.cersp.com/HXJS/200511/237.html , 2017年1月23
日引用.
[4] J. Molenda, M. Molenda, 'Composite Cathode Material for
Li-Ion Batteries Based on LiFePO_4 System,' Metal,
Ceramic and Polymeric Composites for Various Uses, 2011.
[5] Xu, Meng, et al. 'Two-dimensional electrochemical–
thermal coupled modeling of cylindrical LiFePO_4
batteries.' Journal of Power Sources 256 (2014):
233-243.
[6] http://lynopower.com/wp-content/uploads/2012/05
/applications.jpg , 2017年1月23日引用.
[7] http://www.killacycle.com/ , 2017年1月23日引用.
[8] http://www.smithelectric.com/ , 2017年1月23日引用.
[9] Simic, Dragan, et al. 'Modeling and Validation of
Lithium-Ion Battery based on Electric Vehicle
Measurement. ' No. 2014-01-1850. SAE Technical Paper,
2014.
[10] Gragger, Johannes V., et al. ' A full vehicle
simulation of an HEV starter-generator concept with the
smartelectricdrives library. ' No. 2007-01-1630.SAE
  Technical Paper, 2007.
[11] Newman, John, and William Tiedemann. 'Porous‐electrode
theory with battery applications.' AIChE Journal 21.1
(1975): 25-41.
[12] D. Bernardi, E. Pawlikowski, J. Newman, 'A General
Energy Balance for Battery Systems,' Journal of the
Electrochemical Society, 132 (1), A5–A12,1985.
[13] Salameh, Ziyad M., Margaret A. Casacca, and William A.
Lynch. 'A mathematical model for lead-acid batteries.'
IEEE Transactions on Energy Conversion 7.1 (1992):
93-98.
[14] Randles, John Edward Brough. 'Kinetics of rapid
electrode reactions.'Discussions of the faraday society
1 (1947): 11-19.
[15] X. Hu, S. Li, H. Peng, 'A comparative study of
equivalent circuit models for Li-ion batteries,'
Journal of Power Sources, 198 (10), 2012.
[16] R. Jackey, M. Saginaw, P. Sanghvi, J. Gazzarri,
'Battery Model Parameter Estimation Using a Layered
Technique : An Example Using a Lithium Iron Phosphate
Cell,' SAE World Congress, 2013.
[17] 鍾委倫, '磷酸鋰鐵電池模型與電池組之散熱分析', 2016
[18] Schmalstieg, Johannes, et al. 'A holistic aging model
for Li (NiMnCo) O_2 based 18650 lithium-ion batteries.'
Journal of Power Sources 257 (2014): 325-334.
[19] https://www.moneydj.com/KMDJ/Wiki , 2017年1月23日引用
[20] P. M. Gomadam, R. E. White, J.W. Weidner, 'Modeling
Heat Conduction in Spiral Geometries,' Journal of the
Electrochemical Society, 150 (10), A1339–A1345, 2003.
[21] S. C. Chen, Y.Y. Wang, C.C. Wan., 'Thermal analysis of
spirally wound lithium batteries,' Journal of the
Electrochemical Society, 153 (4), A637–A648, 2006.
[22] T. D. Hatchard, D.D. MacNeil, A.Basu, J.R. Dahn,
'Thermal Model of Cylindrical and Prismatic Li-ion
Cells,' Journal of the Electrochemical Society, 148
(7), A755–A761, 2001.
[23] Evans, T. I., and Ralph E. White. 'A thermal analysis
of a spirally wound battery using a simple mathematical
model.' Journal of The Electrochemical Society 136.8
(1989): 2145-2152.
[24] 陳欣志, '鋰電池熱現象之模擬,' 國立清華大學化學工程研究
所博士論文, 2005.
[25] Y. I. Cho, G. Halpert, 'Heat dissipation of high rate
Li-SOCl2 primary cells,'Journal of Power Sources, 18,
109, 1986.
[26] Lin, Chun-Chieh, et al. 'Investigation on suppressed
thermal runaway of Li-ion battery by hyper-branched
polymer coated on cathode.' Electrochimica Acta 101
(2013): 11-17.
[27] Wang, Fu-Ming, et al. 'Self-polymerized membrane
derivative of branched additive for internal short
protection of high safety lithium ion battery.' Journal
of Membrane Science 368.1 (2011): 165-170.
[28] Doughty, Daniel H. SAE J2464 “EV & HEV Rechargeable
Energy Storage System (RESS) Safety and Abuse Testing
Procedure”. No. 2010-01-1077. SAE Technical Paper,
2010.
[29] Bernardi, D., E. Pawlikowski, and John Newman. 'A
general energy balance for battery systems.' Journal of
the electrochemical society 132.1 (1985): 5-12.
[30] Kawai, Tomohiro. 'Numerical analysis for internal
short-circuit of lithium-ion batteries.' Meeting
Abstracts. No. 5. The Electrochemical Society, 2006.
[31] Kawai, Tomohiro. 'Modeling for Thermal Behavior of
Lithium-Ion Batteries.' Meeting Abstracts. No. 2. The
Electrochemical Society, 2006.
[32] Hatchard, T. D., et al. 'Thermal model of cylindrical
and prismatic lithium-ion cells.' Journal of The
Electrochemical Society 148.7 (2001): A755-A761.
[33] Kim, Gi-Heon, Ahmad Pesaran, and Robert Spotnitz. 'A
three-dimensional thermal abuse model for lithium-ion
cells.' Journal of Power Sources 170.2 (2007): 476-489.
[34] K. Kumaresan, G. Sikha, R. E. White, 'Thermal Model for
a Li-Ion Cell,' Journal of the Electrochemical Society,
155 (2), A164–A171, 2008.
[35] B. Schweighofer, K. M. Raab, G. Brasseur, 'A Modeling
of high power automotive batteries by the use of an
automated test system,' IEEE Transactions on
Instrumentation and Measurement, 52 (4), 2003.
[36] V. Srinivasan, C.Y. Wang, J. Electrochem. Soc. 150
(2003) A98eA106.
[37] Gibson, Thomas L., and Nelson A. Kelly. 'Solar
photovoltaic charging of lithium-ion batteries.'
Journal of Power Sources 195.12 (2010): 3928-3932.
[38] Incropera, Frank P., et al. Principles of heat and mass
transfer. Wiley, 2013.
[39] Przybylski, Roman. 'Canola oil: physical and chemical
properties.' Canola Council of Canada 1 (2001).
[40] 黃智聲, '利用電化學法建立鋰電池模組預測模型分析交流阻抗
頻譜以及並聯之行為與電池安全性設計', 國立台灣大學碩士論
文2014
[41] Chiu, Kuan-Cheng, et al. 'An electrochemical modeling
of lithium-ion battery nail penetration.' Journal of
Power Sources 251 (2014): 254-263.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59758-
dc.description.abstract由於鋰離子電池本身能量密度大、可攜式、壽命優良等特性,在各大產業皆相當依賴鋰離子電池的發展。例如在電動車的產業,電池更是扮演相當重要的角色,然而在台灣的能源產業上,希望結合電動車的發展,但是一直欠缺與歐洲汽車產業結合之整合能力。有著良好的電池產品,但卻往往不能順利的打進歐洲汽車市場,是相當可惜的,因此,本研究前半部份主要利用在歐洲各大車廠皆有使用之建模軟體Dymola將昇陽公司所研發之40138磷酸鋰鐵電池作分析,建立以Dymola為基礎之電池模組。而此模組內又分為熱電模型及壽命模型兩大部分作分析;電池最重要的特性不外乎為作用時之電池電壓曲線以及放電過程中之溫度變化,因此,本文之熱電模型利用了等效電路模型去模擬出電池在不同電流率之大小的情形下的表現狀況;另外透過壽命模型,分析此磷酸鋰鐵電池在不同充放電深度下之循環充放電之老化行為,並且加以預測,以及透過實際之電池放電實驗、分段放電實驗、循環老化充放電實驗去求取參數及驗證模型之可靠度。
另一方面,鋰離子電池之安全性一直以來都是大家所關心之議題,在一些極端情況下,如電動車遭受撞擊導致電受到擠壓而變形等,皆有可能對人身安全造成非常大之危害,因此本文針對與安全性習習相關之電池穿刺實驗作分析,利用有限元素軟體Ansys workbench建立一熱傳模型,可有效的模擬出電池在穿刺實驗過程中,電池內部短路所造成之熱失控結果,以及整體之溫度變化,並且利用與文獻結果之比較,驗證此熱傳模型之可靠性,並且提出一油封之方式,利用此熱傳模型證實油封電池提升電池整體之安全性之可行性,期待在未來可利用此熱傳模型針對更多鋰離子電池的安全性相關設計做分析。
zh_TW
dc.description.abstractLithium ion batteries possess many advantageous characteristics, like of great power density、portable and having excellent cycle life, and are becoming widely used in electric vehicles (EV). In this study we use a numerical analysis software – Dymola, which is famous in Europe automobile industry, to build a lithium iron phosphate (LFP) battery model. The battery model can be combined with other system engineering model like power train system model in Dymola so that it can help us to enter the automobile market in Europe. Generally, the temperature of LFP batteries rises while discharging. If the battery operates beyond the appropriate temperature range, it will lead to a shorter cycle life of the battery. Moreover, as in many applications the cost of batteries pertains to a significant portion of the total cost, battery lifetime is critical for profitability. However some experiments, such as ageing, are expensive and time consuming and cannot be done comprehensively for every control parameters. Hence, this study aims to develop an accurate model to facilitate the analysis of battery performance. Besides, the safety issue for Li-ion battery is also what people always concerned. Nail penetration into a battery pack, resulting in a state of short-circuit and subsequent burning, is likely to occur in electric vehicle collisions. Therefore in this study, a reliable model to describe the thermal behavior for battery nail penetration test is also developed.
In our battery model, we choose the equivalent circuit model (ECM) framework which resembles the physical processes of a battery with equivalent circuits such that it reduces the complexity of analysis. To prove the reliability of the model, we analyzes the 40138 LFP batteries produced by PSI by simulating the discharge curve and temperature evolution at different C-rate (0.5C, 1C, 2C,5C) of single cells and battery packs. The simulation results under various operation conditions are validated with experimental results. Moreover, we build an ageing model which can predict the long-term battery cycle behavior based on the short-term discharge cycle test of various depth of discharge.
To describe the battery thermal behavior while nail penetrating, we build a heat transfer model by Ansys workbench. This model can capture the temperature evolution trend induced by internal short-circuit and thermal run away. Also, this nail penetration model is validated against a benchmark model for its reliability.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:36:31Z (GMT). No. of bitstreams: 1
ntu-106-R03543055-1.pdf: 3540079 bytes, checksum: d1051ec682a7729f0f2bf38703e93abe (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄
致謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1. 研究背景與動機 1
1.2. 鋰離子電池介紹 2
1.2.1. 鋰離子電池簡介 2
1.2.2. 磷酸鋰鐵電池簡介 2
1.3. 研究目的 4
1.4. 研究方向 5
1.4.1. 不同放電功率對電池影響 5
1.4.2. 循環充放電對電池的影響 6
1.4.3. 電池安全性的重要性 7
1.5. 論文架構 8
第二章 文獻回顧 9
2.1. 簡介 9
2.2. Dymola簡介 9
2.3. 鋰電池模型介紹 10
2.3.1. 等效電路模型 10
2.3.2. Ageing model 11
2.4. 圓柱型鋰電池幾何模型簡化 11
2.5. 電池安全性設計 12
2.5.1. 電池安全性設計概述 12
2.5.2. 穿刺試驗 14
2.6. Ansys workbench軟體介紹 14
2.7. 穿刺模擬理論 18
2.7.1. 短路現象模擬 18
2.7.2. 熱失控理論 19
2.8. 第二章小結 23
第三章 研究方法 24
3.1. 簡介 24
3.2. 研究架構與流程 24
3.3. Dymola Battery Library 26
3.4. 圓柱型單電池之模擬 26
3.4.1. 電池均值系統 26
3.4.2. 等效電路模型 (ECM model) 27
3.4.3. 電熱模型 28
3.4.4. 等效電路模型參數取得 29
3.5. 電池組之模型架構 31
3.6. 電池老化分析 32
3.7. 電池安全性設計 32
3.7.1. 穿刺模型建模 32
3.7.2. 穿刺分析理論 33
3.8. 小結 34
第四章 實驗設計與規劃 35
4.1. 簡介 35
4.2. 磷酸鋰鐵電池放電實驗 35
4.2.1. 實驗規劃概述 35
4.2.2. 電池放電實驗 35
4.2.3. 單電池分段放電實驗 39
4.3. 磷酸鋰鐵電池老化實驗 41
4.3.1. 實驗規劃與架構 41
4.3.2. 單電池老化實驗設計 41
4.4. 不鏽鋼板浸油實驗 42
4.5. 流體自然對流散熱實驗 43
4.6. 小結 44
第五章 實驗結果驗證與模擬分析討論 45
5.1. 電池電熱模型驗證與討論 45
5.1.1. 等效電路模型參數結果 45
5.1.2. 不同C rate 下的放電曲線 48
5.1.3. 不同C rate 下的溫升曲線 48
5.1.4. 4串6並電池組放電時的溫升曲線 49
5.2. 電池老化分析之結果與討論 50
5.2.1. 電池在不同放電深度下循環充放電之實驗結果分析 50
5.2.2. Ageing equation的建立 53
5.2.3. 模擬結果與實驗之比較 54
5.2.4. 浮充試驗結果 55
5.3. 電池穿刺實驗模擬分析 56
5.3.1. 電池穿刺實驗模擬過程與參數選用 56
5.3.2. 電池穿刺模擬之邊界條件 59
5.3.3. 電池穿刺模擬結果 59
5.3.4. 穿刺模型熱分析結果 60
5.3.5. 油體對金屬內阻值之影響結果 61
5.3.6. 流體自然對流散熱實驗結果 62
第六章 總結與未來展望 64
6.1.結論 64
6.2.未來展望 65
參考文獻 67
dc.language.isozh-TW
dc.subject電池模型zh_TW
dc.subject等效電路模型zh_TW
dc.subject電池老化zh_TW
dc.subject穿刺模型zh_TW
dc.subject電池油封zh_TW
dc.subject電池模型zh_TW
dc.subject等效電路模型zh_TW
dc.subject電池老化zh_TW
dc.subject穿刺模型zh_TW
dc.subject電池油封zh_TW
dc.subjectDymolaen
dc.subjectDymolaen
dc.subjectThermal runawayen
dc.subjectnail penetrationen
dc.subjectBattery ageingen
dc.subjectEquivalent circuit model (ECM)en
dc.subjectThermal runawayen
dc.subjectnail penetrationen
dc.subjectBattery ageingen
dc.subjectEquivalent circuit model (ECM)en
dc.title鋰離子電池模型與電池穿刺熱行為分析zh_TW
dc.titleSimulation and Analysis Modeling of Li-Ion Batteries and Battery Thermal Behavior for Nail Penetration Testen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree碩士
dc.contributor.coadvisor陳洵毅
dc.contributor.oralexamcommittee田振揚
dc.subject.keyword電池模型,等效電路模型,電池老化,穿刺模型,電池油封,zh_TW
dc.subject.keywordDymola,Equivalent circuit model (ECM),Battery ageing,nail penetration,Thermal runaway,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201700491
dc.rights.note有償授權
dc.date.accepted2017-02-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
3.46 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved