請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59754
標題: | 利用γ-散度提出穩健移除多餘變異之方法 A Robust γ-divergence Based Method to Removing Unwanted Variation |
作者: | Guan-Ming Jiang 姜冠名 |
指導教授: | 洪弘(Hung Hung) |
關鍵字: | 多餘變異,批次效果,負控制基因,離群值,γ-散度, Unwanted variation,Batch effects,Negative control genes,Outliers,γ-divergence, |
出版年 : | 2017 |
學位: | 碩士 |
摘要: | 基因表現量分析結果時常會遭遇樣本批次效果以及一些非生物性的變異所影響。過去有許多方法為了校正在分析技術上所造成的影響,因此利用非生物相關之基因藉著因素分析的方法估計出多餘變異來調整估計值。然而大多數的方法並沒有穩健的特性,因此易受離群值的影響而造成估計上的偏誤,其結果難以偵測出具有差異表現量的基因。在本篇文章中,我們提出一個具有穩健特性的方法來解決離群值造成估計上偏誤的問題,我們稱之為γ-RUV。同時,藉由GSE2164的資料來比較我們的方法以及過往之方法的差異。最後,我們可以推論出γ-RUV 在有離群值的情形之下,其分析結果之表現最好。 Microarray expression studies have a trouble in the problem of batch effects and other nonbiological variation. Many methods have been proposed to adjust for nuisance technical effect by factor analysis on suitable sets of control genes. These methods, however, do not have the property of robustness. To be more specific , outliers have strong impacts on the detection of differentially expressed genes. In this article, we propose a new method,γ-RUV, to overcome this problem. Using GSE2164 data, we compare the performance of γ-RUV with other adjusted methods such as RUV2, and RUV4. The performance of γ-RUV is the best in all RUV methods in the presence of outliers. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59754 |
DOI: | 10.6342/NTU201700484 |
全文授權: | 有償授權 |
顯示於系所單位: | 流行病學與預防醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。