Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59751
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱浩華(Hao-Hua Chu)
dc.contributor.authorYu-Te Huangen
dc.contributor.author黃有德zh_TW
dc.date.accessioned2021-06-16T09:36:11Z-
dc.date.available2022-02-17
dc.date.copyright2017-02-17
dc.date.issued2017
dc.date.submitted2017-02-12
dc.identifier.citation[1] J. Asama, M. R. Burkhardt, F. Davoodi, and J. W. Burdick. Design investigation of a coreless tubular linear generator for a moball: A spherical exploration robot with wind-energy harvesting capability. In IEEE International Conference on Robotics and Automation, 2015.
[2] C. Balocco, Y. Pan, M. C. Rosamond, and E. H. Linfield. Design and performance of a micro-rectenna focal plane array for thermal energy harvesting. In URSI Asia- Pacific Radio Science Conference, 2015.
[3] Y. Chon, Y. Kim, H. Shin, and H. Cha. Adaptive duty cycling for place-centric mobility monitoring using zero-cost information in smartphone. IEEE Transactions on Mobile Computing, 13(8):1694–1706, August 2014.
[4] S. B. Eisenman, E.Miluzzo, N.D. Lane, R.A. Peterson, G.-S. Ahn, and A.T. Campbell. BikeNet: A Mobile Sensing System for Cyclist Experience Mapping. ACM Transactions on Sensor Networks, 6(1):6:1–6:39, 2009.
[5] D. El-Damak and A. P. Chandrakasan. Solar energy harvesting system with inte- grated battery management and startup using single inductor and 3.2nw quiescent power. In IEEE Symposium on VLSI Circuits, 2015.
[6] J. A. Farrell and M. Barth. The Global Positioning System & Inertial Navigation. McGraw-Hill Professional, Dec. 1998.
[7] M. Gueltig, M. Ohtsuka, H.Miki, T. Takagi, and M.Kohl. Thermal energy harvesting by high frequency actuation of magnetic shape memory alloy films. In International Conference on Solid-State Sensors, Actuators and Microsystems, 2015.
[8] J.-H. Huang, S. Amjad, and S. Mishra. CenWits: A Sensor-Based Loosely Coupled Search and Rescue System Using Witnesses. In ACM International Conference on Embedded Networked Sensor Systems, 2005.
[9] R. Jurdak, P. Corke, A. Cotillon, D. Dharman, C. Crossman, and G. Salagnac. Energy-efficient localization: Gps duty cycling with radio ranging. ACM Trans- actions on Sensor Networks, 9(2):Article No. 23, March 2013.
[10] R. Jurdak, P. Corke, D. Dharman, and G. Salagnac. Adaptive GPS duty cycling and radio ranging for energy-efficient localization. In ACM Conference on Embedded Networked Sensor System, 2010.
[11] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4), Sept. 2007.
[12] S. Kansal, A. Mantha, P. Y.B., G. Chowdary, S. Singh, and A. Dutta. A wide in- put voltage range start-up circuit for solar energy harvesting system. In IEEE Asia Symposium on Quality Electronic Design, 2015.
[13] J.Kho, A.Rogers, and N.R. Jennings. Decentralized control of adaptive sampling in wireless sensor networks. ACM Transactions on Sensor Networks, 5(3), June 2009.
[14] T. Kijewski-Correa, M. Haenggi, and P. Antsaklis. Wireless sensor networks for structural health monitoring: A multi-scale approach. In ASCE Structures Congress, 2006.
[15] D. H. Kim, Y. Kim, D. Estrin, and M. B. Srivastava. SensLoc: sensing everyday places and paths using less energy. In ACM Conference on Embedded Networked Sensor System, 2010.
[16] M. B. Kjargaard, J. Langdal, T. Godsk, and T. Toftkjar. Entracked: energy-efficient robust position tracking for mobile devices. In ACM Conference on Embedded Net- worked Sensor System, 2009.
[17] C.H.P. Lorenz, S. Hemour, W. Liu, A. Badel, F. Formosa, and K.Wu. Hybrid power harvesting for increased power conversion efficiency. IEEE Microwave and Wireless Components Letters, 25(10):687–689, October 2015.
[18] R. C. Luo, C. T. Liao, K. L. Su, and K. C. Lin. Automatic docking and recharging system for autonomous security robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005.
[19] E. Miluzzo, N.D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S.B. Eisenman, X. Zheng, and A. T. Campbell. Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Applications. In ACM International Conference on Embedded Networked Sensor System, 2008.
[20] J. Paek, J. Kim, and R. Govindan. Energy-efficient rate-adaptive GPS-based positioning for smartphones. In ACM International Conference on Mobile Sys- tems,Applications, and Services, 2010.
[21] D. Porcarelli, D. Spenza, D. Brunelli, A. Cammarano, C. Petrioli, and L. Benini. Adaptive rectifier driven by power intake predictors for wind energy harvesting sen- sor networks. IEEE Journal of Emerging and Selected Topics in Power Electronics, 3(2):471–482, June 2015.
[22] A. Prijić, L. Vračar, D. Vučković, D. Milić, and Z. Prijić. Thermal energy harvest- ing wireless sensor node in aluminum core pcb technology. IEEE Sensors Journal, 15(1):337–345, January 2015.
[23] M. Rahimi, R. Baer, O.I. Iroezi, J.C. Garcia, J. Warrior, D. Estrin, and M. Srivastava. Cyclops: In situ image sensing and interpretation in wireless sensor networks. In ACM International Conference on Embedded Networked Sensor Systems, 2005.
[24] A. Ravankar, A. A. Ravankar, Y. Kobayashi, L. Jixin, T. Emaru, and Y. Hoshino. An intelligent docking station manager for multiple mobile service robots. In IEEE International Conference on Control, Automation and Systems, 2015.
[25] I.E.H. Sayed, N.H. Rafat, and E.A. Soliman. Harvesting thermal infrared emission using nanodipole terminated by traveling wave rectifier. In European Conference on Antennas and Propagation, 2015.
[26] A. Shrivastava, N.E. Roberts, O.U. Khan, D.D. Wentzloff, and B.H. Calhoun. A10 mv-input boost converter with inductor peak current control and zero detection for thermoelectric and solar energy harvesting with 220 mv cold-start and 14.5 dbm, 915 mhz rf kick-start. IEEE Journal of Solid-State Circuits, 50(8):1820–1832, August 2015.
[27] M. C. Silverman, D. Nies, B. Jung, and G. S. Sukhatme. Staying alive: a dock- ing station for autonomous robot recharging. In IEEE International Conference on Robotics and Automation, 2002.
[28] A. Singh, D. Budzik, W. Chen, M. A. Batalin, M. Stealey, H. Borgstrom, and W. J. Kaiser. Multiscale sensing: A new paradigm for actuated sensing of high frequency dynamic phenomena. In IEEE/RSJ IROS, 2006.
[29] S. Sundaresan, I. Koren, Z. Koren, and C. M. Krishna. Event-driven adaptive duty- cycling in sensor networks. International Journal of Sensor Networks, 6(2):89–100, October 2009.
[30] L. Tang, L. Zhao, Y. Yang, and E. Lefeuvre. Equivalent circuit representation and analysis of galloping-based wind energy harvesting. IEEE/ASME Transactions on Mechatronics, 20(2):834–844, April 2015.
[31] C. M. Vigorito, D. Ganesan, and A. G. Barto. Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In International Symposium on Low Power Electronics and Design, 2006.
[32] M. Virili, A. Georgiadis, A. Collado, P. Mezzanotte, and L. Roselli. Em character- ization of a patch antenna with thermo-electric generator and solar cell for hybrid energy harvesting. In IEEE Radio and Wireless Symposium, 2015.
[33] Z. Wang, D. Tsonev, S. Videv, and H. Haas. On the design of a solar-panel receiver for optical wireless communications with simultaneous energy harvesting. IEEE Journal on Selected Areas in Communications, 33(8):1612–1623, August 2015.
[34] F.-J. Wu, H.B. Lim, F. Pereira, C.Zegras, and M.Ben-Akiva. A user-centric mobility sensing system for transportation activity surveys. In ACM Conference on Embedded Networked Sensor System, 2013.
[35] Y.-C. Wu, M.-C. Teng, and Y.-J. Tsai. Robot docking station for automatic bat- tery exchanging and charging. In IEEE International Conference on Robotics and Biomimetics, 2009.
[36] Y. Xia, J. Zhou, T. Chen, H. Liu, W. Liu, Z. Yang, P. Wang, and L. Sun. A hybrid flapping-leaf microgenerator for harvesting wind-flow energy. In IEEE International Conference on Micro Electro Mechanical Systems, 2015.
[37] P. Zhang, C.M. Sadler, S.A.Lyon, and M. Martonosi. Hardware Design Experiences in ZebraNet. In ACM Conference on Embedded Networked Sensor System, 2004.
[38] Z. Zhuang, K.-H. Kim, and J. P. Singh. Improving energy efficiency of loca- tion sensing on smartphones. In ACM International Conference on Mobile Sys- tems,Applications, and Services, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59751-
dc.description.abstract現今移動感測裝置普遍配置全球定位系統(GPS),提供準確的地點資訊,但因GPS的耗電量高,所以必須在省電與地點準確度上取得平衡。根據不同的需求,我們提出了相對應的省電機制。在山難搜救方面,目標是收集越多個定位準確的資訊越好,從收集到的登山路徑資料,我們觀察到,GPS收訊的情況與時間跟空間有關,因此我們提出一個可調式工作週期(Adaptive Duty Cycle, ADC)機制來解決這個問題,並使用真實的登山客行走軌跡來驗證我們的ADC機制,並得到帕累托最優解(Pareto optimum)。
在軌跡記錄方面,需求是讓移動感測裝置能記錄完整且均勻的軌跡資料,從GPS模組的使用特性,我們觀察到,GPS定位失敗的耗電量遠大於GPS成功的耗電量,因此我們提出了預算基底自調式工作週期(Budget-based Duty Cycle, BDC)機制,這個機制讓使用者輸入需要記錄的時間長度與限定耗費的電量,並採編列電量預算的方式,保留電力以度過沒有GPS訊號的區域,BDC機制將自動調整GPS的開啟週期。
在環境感測方面,我們提出了自調式返回感測(Adaptive Return-to-Home Sensing, ARS)機制,當無人機在開放空間中進行環境感測時,我們的目標是讓無人機能在預定的路線上感測環境資料後,並能順利返回補充機體電力與上傳環境資訊,我們同時也提出了動態調整ARS機制參數的演算法,結合了單純貝氏分類器(Naive Bayes Classification, NBC)與二元搜索法(Binary Search, BS),不旦提高了無人機的返回成功率也使得感測的區間分佈的更均勻,最後ADC、BDC與ARS,不僅實作簡單,也針對不同清況下,完成任務並有效的提高能源的使用效率。
zh_TW
dc.description.abstractMobile location sensing applications (MLSAs) represent an emerging genre of applications that exploit Global Positioning System (GPS) technology and facilitate location-based services. The design of MLSAs must incorporate a trade-off between information accuracy and energy efficiency because GPS technology is energy expensive and unaffordable for most MLSA platforms, which are battery-powered and therefore resource-constrained. Each scenario has different requirements and presents unique challenges. For example, the hiker tracking scenario requires timely and accurate location information, and as many location coordinates as possible must be collected. Based on our observation that the reception of GPS signals is spatially and temporally correlated, we propose an algorithm called the Adaptive Duty Cycle (ADC) scheme to exploit the spatio-temporal localities in the design of GPS scheduling algorithms. Using a comprehensive set of evaluations, as well as realistic hiker mobility traces, we evaluate the ADC scheme in terms of data granularity and power consumption. The results demonstrate that the scheme can achieve the Pareto optimum in all test cases.
For the trace logging scenario, using mobile devices to continuously log a trace over a period of time presents many opportunities for emerging applications. Most such applications are related to recreational activities that use mobile devices instead of paper maps to determine precise locations. GPS is preferred over GSM or Wi-Fi based position systems because of its accuracy. Duty-cycling GPS provides a trade-off between positioning accuracy and lower energy consumption. However, a non-uniform trace will make interpretation of the logging trace more challenging. To address these issues, we present Budget-based Duty Cycle (BDC) scheduling for time-bounded tracking. The method enables a mobile device to effectively log a complete trace over a period of time, while consuming a given amount of the device’s energy. More importantly, BDC uses a series of techniques that preserve power to ensure that the trace is completed and its sampling interval is uniform. BDC was motivated by our observation that GPS locks are not always successful during the GPS duty-cycle, and the power cost of a failed lock is greater than that of a successful lock. The method uses budget power to preserve power for failed GPS locks and automatically calculates the time interval of a lock from the remaining energy. Budget power employs the BDC-Hybrid function, which is a combination of two functions, namely, the BDC-Linear and BDC-Step functions. The former is a naive method that is used when GPS locks succeed, while the latter is more analytical and is used when GPS locks fail. Budget power is concerned with power preservation as well as the uniformity of the sampling of a trace.
For the environmental sensing scenario, we propose an algorithm called Adaptive Return-to-Home Sensing (ARS) for a drone sensing system deployed in an open area to conduct periodic environmental sensing. The ARS scheme can perform as many rounds of environmental sensing as necessary without drastic oscillations between consecutive sensing attempts and still conserve sufficient energy for the drone to return home. We also present a parameter-tuning algorithm that combines Naive Bayes Classification (NBC) and Binary Search (BS) to adapt the ARS scheme parameters effectively on the fly. Finally, we evaluate the ARS scheme under a variety of environmental difficulties. The results demonstrate that the scheme is effective in mitigating oscillations of spatial distance between consecutive sensing attempts. The NBC enhanced ARS scheme is better able to guarantee the Return-To-Home (RTH) feature, and it is more cost-effective in terms of parameter tuning than other machine learning based approaches. Moreover, the ADC, BDC and ARS schemes are simple, effective, and generalizable to other mobile location sensing applications in different scenarios.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:36:11Z (GMT). No. of bitstreams: 1
ntu-106-D00922009-1.pdf: 6243822 bytes, checksum: c6f68a79e607d516887b4c3f82734e43 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
2 Related Work 7
3 Adaptive Duty-Cycle Scheme (ADC) 13
3.1 Problem Statement ............................. 13
3.2 The Algorithm ............................... 13
3.3 Evaluation Metrics ............................. 14
4 Evaluation of ADC 17
4.1 Locality of GPS Signal Reception ..................... 18
4.2 Evaluation Under Synthetic CoverRates.................. 19
4.3 Evaluation Under Realistic CoverRates .................. 21
4.4 Evaluations with Different Parameter Settings ............... 22
4.5 Real-worldExperiment........................... 23
5 Budget-based Duty-Cycle Scheme (BDC) 27
5.1 Problem Statement ............................. 27
5.2 Budget-based Duty Cycle Scheme ..................... 27
5.3 Implementation of Budget Functions.................... 30
6 Evaluation of BDC 35
6.1 Datasets................................... 35
6.2 Evaluation of Completion Rate....................... 37
6.3 Evaluation of Sample Interval ....................... 38
7 Adaptive Return-to-Home Sensing Scheme (ARS) 45
7.1 Problem Formulation ............................ 45
7.2 The ARS Scheme Algorithm ........................ 47
7.3 The Parameter-Tuning Algorithm for the ARS Scheme .......... 49
8 Evaluation of ARS 53
8.1 Evaluation of the impacts of βminandβmax ................ 54
8.2 Evaluation of the impact of headwinds................... 55
8.3 Evaluation of the impact of the route length |R| .............. 57
8.4 Evaluation of the Parameter-tuning Algorithm ............... 58
9 Conclusion and Future Work 65
Bibliography 67
dc.language.isoen
dc.subject軌跡記錄zh_TW
dc.subject可適性工作週期zh_TW
dc.subject省電技術zh_TW
dc.subject目標追蹤zh_TW
dc.subject環境感測zh_TW
dc.subject全球定位系統zh_TW
dc.subject可適性工作週期zh_TW
dc.subject省電技術zh_TW
dc.subject目標追蹤zh_TW
dc.subject軌跡記錄zh_TW
dc.subject環境感測zh_TW
dc.subject全球定位系統zh_TW
dc.subjectGlobal Positioning Systemen
dc.subjectenvironmental sensingen
dc.subjectenergy efficiencyen
dc.subjectadaptive duty-cycle schemeen
dc.subjectGlobal Positioning Systemen
dc.subjectenvironmental sensingen
dc.subjecttrace loggingen
dc.subjecttarget trackingen
dc.subjectadaptive duty-cycle schemeen
dc.subjectenergy efficiencyen
dc.subjecttarget trackingen
dc.subjecttrace loggingen
dc.title移動感測系統的省電技術研究zh_TW
dc.titleEnergy Efficient Enhancements for Mobile Sensing Systemsen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳伶志(Ling-Jyh Chen),賀耀華(Yao-Hua Ho),周承復(Cheng-Fu Chou),施吉昇(Chi-Sheng Shih)
dc.subject.keyword可適性工作週期,省電技術,目標追蹤,軌跡記錄,環境感測,全球定位系統,zh_TW
dc.subject.keywordadaptive duty-cycle scheme,energy efficiency,target tracking,trace logging,environmental sensing,Global Positioning System,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201700519
dc.rights.note有償授權
dc.date.accepted2017-02-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved