請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59747完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏恒巍(Hen-Wei Wei) | |
| dc.contributor.author | Chen-Chun Wei | en |
| dc.contributor.author | 韋振群 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:35:59Z | - |
| dc.date.available | 2017-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-13 | |
| dc.identifier.citation | 經濟部標準檢驗局。2006。食品檢驗法-兒茶素之測定。中華民國國家標準(CNS)15022類號N6384。
Afsharmanesh, M. and B. Sadaghi. 2014. Effects of dietary alternatives (probiotic, green tea powder, and Kombucha tea) as antimicrobial growth promoters on growth, ileal nutrient digestibility, blood parameters, and immune response of broiler chickens. Comp. Clin. Pathol. 23:717-724. Akiba, Y., A. Horigane and T. Matsumoto. 1977. Effects of dietary cellulose on liver lipid accumulation in laying Japaneses quails. Tohoku J. Agr. Res. 28:118-123. Akiba, Y. and T. Matsumoto. 1978. Effects of force-feeding and dietary cellulose on liver lipid accumulation and lipid composition of liver and plasma in growing chicks. J. Nutr. 108:739-748. Akiba, Y. and T. Matsumoto. 1980. Effects of several type of dietary fiber on lipid content in liver and plasma, nutrient retentions and plasma transaminase activities in force-fed growing chicks. J. Nutr. 110:1112-1121. Alvarenga, R. R., M. G. Zangeronimo, L. J. Pereira, P. B. Rodrigues and E. M. Gomide. 2011. Lipoprotein metabolism in poultry. World Poultry Sci. J. 67:431-440. Appleby, M. C., J. A. Mench, and B. O. Hughes. 2004. Taste. Pages 16-17 in Poultry Behavior and Welfare. CABI Publishing, Cambridge, MA, USA. Association of Official Analytical Chemists. 2000. Official methods of analysis, 17th edition. AOAC International, Gaithersburg, MD, USA. Ax, R. L., D. J. Bray and J. R. Lodge. 1974. Effects of dietary caffeine on fertility and embryonic loss in chickens. Poultry Sci. 53:428-429. Baba, S. A. and S. A. Malik. 2015. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. T. U. Sci. 9:449-454. Balentine, D. A., S. A. Wiseman and L. C. M. Bouwens. 1997. The chemistry of tea flavonoids. Crit. Rev. Food Sci. 37:693-704. Bauer, E., S. Jakob and R. Mosenthin. 2005. Principles of physiology of lipid digestion. Asian-Aust. J. Anim. Sci. 18:282-295. Biswas, A. H., Y. Miyazaki, K. Nomura and M. Wakita. 2000. Influences of long-term feeding of Japanese green tea powder on laying performance and egg quality in hens. Asian-Aust. J. Anim. Sci. 13:980-985. Biswas, A. H. and M. Wakita. 2001. Effect of dietary Japanese green tea powder supplementation on feed utilization and carcass profiles in broilers. J. Poult. Sci. 38:50-57. Bligh, E. G. and W. J. Dyer. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. Bose, M., J. D. Lambert, J. Ju, K. R. Reuhl, S. A. Shapses and C. S. Yang. 2008. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J. Nutr. 138:1677-1683. Brand, M. D. and T. C. Esteves. 2005. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2:85-93. Cao, B. H., Y. Karasawa and Y. M. Guo. 2005. Effects of green tea polyphenols and fructo-oligosaccharides in semi-purified diets on broilers’ performance and caecal microflora and their metabolites. Asian-Aust. J. Anim. Sci. 18:85-89. Chen, L., M.-J. Lee, H. Li and C. S. Yang. 1997. Absorption, distribution, and elimination of tea polyphenols in rats. Drug Metab. Dispos. 25:1045-1050. Chen, W. L., H. W. Wei, W. Z. Chiu, C. H. Kang, T. H. Lin, C. C. Hung, M. C. Chen, M. S. Shieh, C. C. Lee and H. M. Lee. 2011. Metformin regulates hepatic lipid metabolism through activating AMP-activated protein kinase and inducing ATGL in laying hens. Eur. J. Pharmacol. 671:107-112. Cheng, K. M., D. C. Bennett and A. D. Mills. 2010. Chapter 42: The Japanese quail, in UFAW Handbook on the Care and Management of Laboratory Animals, 8th Edn., eds Hurbrecht R., Kirkwood J., editors. (London: Blackwell ), 655–673. Donovan, J. L., V. Crespy, C. Manach, C. Morand, C. Besson, A. Scalbert and C. Rémésy. 2001. Catechin is metabolized by both the small intestine and liver of rats. J. Nutr. 131:1753-1757. Eid, Y. Z., A. Ohtsuka and K. Hayashi. 2003. Tea polyphenols reduce glucocorticoid-induced growth inhibition and oxidative stress in broiler chickens. Brit. Poultry Sci. 44:127-132. Erener, G., N. Ocak, A. Altop, S. Cankaya, H. M. Aksoy and E. Ozturk. 2011. Growth performance, meat quality and caecal coliform bacteria count of broiler chicks fed diet with green tea extract. Asian-Aust. J. Anim. Sci. 24: 1128-1135. Fenton, M. and J. S. Sim. 1991. Determination of egg yolk cholesterol content by on-column capillary gas chromatography. J. Chromatogr. A. 540:323-329. Garrett, R. L. and R. J. Young. 1975. Effect of micelle formation on the absorption of neutral fat and fatty acids by the chicken. J. Nutr. 105:827-838. Glade, M. J. 2010. Caffeine-Not just a stimulant. Nutrition. 26:932-938. Graham, H. N. 1992. Green tea composition, consumption, and polyphenol chemistry. Prev. Med. 21:334-350. Griffin, H., G. Grant and M. Perry. 1982. Hydrolysis of plasma triacylglycerol-rich lipoproteins from immature and laying hens (Gallus domesticus) by lipoprotein lipase in vitro. Biochem. J. 206:647-654. Griffin, H. and D. Hermier. 1988. Plasma lipoprotein metabolism and fattening in poultry. In: Leclercq, B., Whitehead, C.C. (Eds.), Leanness in Domestic Birds. Butterworths, London, UK, pp. 175 – 201. Güçlü, B. K., K. M. İşcan, F. Uyanik, M. Eren and A. Can Ağca. 2004. Effect of alfalfa meal in diets of laying quails on performance, egg quality and some serum parameters. Arch. Anim. Nutr. 58:255-263. Hammad, S. M., H. S. Siegel and Henry L. Marks. 1998. Total cholesterol, total triglycerides, and cholesterol distribution among lipoproteins as predictors of atherosclerosis in selected lines of Japanese quail. Comp. Biochem. Physiol. 119A:485-492. Harada, M., Y. Kan, H. Naoki, Y. Fukui, N. Kageyama, M. Nakai, W. Miki and Y. Kiso. 1999. Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (-)-epicatechin. Biosci. Biotechnol. Biochem. 63:973-977. Hasegawa, N., N. Yamda and M. Mori. 2003. Powdered green tea has antilipogenic effect on Zucker rats fed a high-fat diet. Phytother. Res. 17:477-480. Hashimoto, T., S. Kumazawa, F. Nanjo, Y. Hara and T. Nakayama. 1999. Interaction of tea catechins with lipid bilayers investigated with liposome systems. Biosci. Biotechnol. Biochem. 63:2252-2255. Hermier, D. 1997. Lipoprotein metabolism and fattening in poultry. J. Nutr. 127:805S-808S. Huang, J., Y. Zhang, Y. Zhou, Z. Zhang, Z. Xie, J. Zhang and X. Wan. 2013. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J. Agric. Food Chem. 61:8565-8572. Huang, J. B., Y. Zhang, Y. B. Zhou, X. C. Wan and J. S. Zhang. 2015. Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. J. Anim. Physiol. An. N. 99:719-727. Hursel, R., W. Viechtbauer, A. G. Dullo, A. Tremblay, L. Tappy, W. Rumpler and M. S. Westerterp-Plantenga. 2011. The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: a meta-analysis. Obesity Reviews. 12:e573-e581. Hurwitz, S., A. Bar, M. Katz, D. Sklan and P. Budowski. 1973. Absorption and secretion of fatty acids and bile acids in the intestine of the laying fowl. J. Nutr. 103:543-547. Ikeda, I., Y. Imasato, E. Sasaki, M. Nakayama, H. Nagao, T. Takeo, F. Yayabe and M. Sugano. 1992. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochimica et Biophysica Acta. 1127:141-146. Ikeda, I., M. Kobayashi, T. Hamada, K. Tsuda, H. Goto, K. Imaizumi, A. Nozawa, A. Sugimoto and T. Kakuda. 2003. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. J. Agric. Food Chem. 51:7303-7307. Ikeda, I., K. Tsuda, Y. Suzuki, M. Kobayashi, T. Unno, H. Tomoyori, H. Goto, Y. Kawata, K. Imaizumi, A. Nozawa, and T. Kakuda. 2005a. Tea catechins with a galloyl moiety suppress postprandial hypertriacylglycerolemia by delaying lymphatic transport of dietary fat in rats. J. Nutr. 135:155-159. Ikeda, I., R. Hamamoto, K. Uzu, K. Imaizumi, K. Nagao, T. Yanagita, Y. Suzuki, M. Kobayashi and T. Kakuda. 2005b. Dietary gallate esters of tea catechins reduce deposition of visceral fat, hepatic triacylglycerol, and activities of hepatic enzymes related to fatty acid synthesis in rats. Biosci. Biotechnol. Biochem. 69:1049-1053. Janero, D. R. and M. D. Lane. 1983. Sequential assembly of very low density lipoprotein apolipoprotein, triacylglycerol, and phosphoglycerides by the intact liver cell. J. Biol. Chem. 258:14496-14504. Jiang, Z., G. Cherian, F. E. Robinson and J. S. Sim. 1990. Effect of feeding cholesterol to laying hens and chicks on cholesterol metabolism in pre- and posthatch chicks. Poultry Sci. 69:1694-1701. Juhel, C., M. Armand, Y. Pafumi, C. Rosier, J. Vandermander and D. Lairon. 2000. Green tea extract (AR25®) inhibits lipolysis of triglycerides in gastric and duodenal medium in vitro. J. Nutr. Biochem. 11:45-51. Kaneko, K., K. Yamasakil, Y. Tagawa, M. Tokunaga, M. Tobisa and M. Furuse. 2001. Effects of dietary Japanese green tea powder on growth, meat ingredient and lipid accumulation in broilers. J. Poult. Sci. 38: J77-J85. Khan, S. H. 2014. The use of green tea (Camellia sinensis) as a phytogenic substance in poultry diets: review article. Onderstepoort J. Vet. Res., 81:1-8. Kida, K., M. Suzuki, N. Matsumoto, F. Nanjo and Y. Hara. 2000. Identification of biliary metabolites of (-)-epigallocatechin gallate in rats. J. Agric. Food Chem. 48:4151-4155. Klaus, S., S. Pültz, C. Thöne-Reineke and S. Wolfram. 2005. Epigallocatechin gallate attenuates diet-induced obesity in mice by decreasing energy absorption and increasing fat oxidation. Int. J. Obesity. 29:615-623. Kobayashi-Hattori, K., A. Mogi, Y. Matsumoto and T. Takita. 2005. Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci. Biotechnol. Biochem. 69:2219-2223. Kohri, T., F. Nanjo, M. Suzuki, R. Seto, N. Matsumoto, M. Yamakawa, H. Hojo, Y. Hara, D. Desai, S. Amin, C. C. Conaway and F-L Chung. 2001a. Synthesis of (-)-〔4-3H〕 epigallocatechin gallate and its metabolic fate in rats after intravenous administration. J. Agric. Food Chem. 49:1042-1048. Kohri, T., N. Matsumoto, M. Yamakawa, M. Suzuki, F. Nanjo, Y. Hara and N. Oku. 2001b. Metabolic fate of (-)-〔4-3H〕epigallocatechin gallate in rats after oral administration. J. Agric. Food Chem. 49:4102-4112. Kohri, T., M. Suzuki and F. Nanjo. 2003. Identification of metabolites of (-)-epicatechin gallate and their metabolic fate in the rat. J. Agric. Food Chem. 51:5561-5566. Kojima, S. and Y. Yoshida. 2008. Effects of green tea powder feed supplement on performance of hens in the late stage of laying. Int. J. Poultry Sci. 7:491-496. Krogdahl, A. 1985. Digestion and absorption of lipids in poultry. J. Nutr. 115:675-685. Lee, B. K., J. S. Kim, H. J. Ahn, J. H. Hwang, J. M. Kim, H. T. Lee, B. K. An and C. W. Kang. 2010. Changes in hepatic lipid parameters and hepatic messenger ribonucleic acid expression following estradiol administration in laying hens (Gallus domesticus). Poultry Sci. 89:2660-2667. McNaughton, J. L. 1978. Effect of dietary fiber on egg yolk, liver, and plasma cholesterol concentrations of the laying hen. J. Nutr. 108:1842-1848. Menge, H., L. H. Littlefield, L. T. Frobish and B. T. Weinland. 1974. Effect of cellulose and cholesterol on blood and yolk lipids and reproductive efficiency of the hen. J. Nutr. 104:1554-1566. Minvielle, F. 2004. The future of Japanese quail for research and production. World Poultry Sci. J. 60:500-507. Muramatsu, K., M. Fukuyo and Y. Hara. 1986. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 32:613-622. Murase, T., A. Nagasawa, J. Suzuki, T. Hase and I. Tokimitsu. 2002. Beneficial effects of tea catechins on diet-induced obesity: stimulation of lipid catabolism in the liver. Int. J. Obesity. 26:1459-1464. Nakagawa, K., and T. Miyazawa. 1997. Absorption and distribution of tea catechin, (-)-epigallocatechin-3-gallate, in the rat. J. Nutr. Sci. Vitaminol. 43:679-684. National Research Council. 1994. Nutrient Requirements of Poultry. 9th ed. National academy press. Washington, D.C. U.S.A. Natsume, M., N. Osakabe, M. Oyama, M. Sasaki, S. Baba, Y. Nakamura, T. Osawa and J. Terao. 2003. Structures of (-)-epicatechin glucuronide identified from plasma and urine after oral ingestion of (-)-epicatechin: differences between human and rat. Free Radical Bio. Med. 34:840-849. Niemeyer, E. D. and S. J. Brodbelt. 2007. Isomeric differentiation of green tea catechins using gasphase hydrogen/deuterium exchange reactions. J. Am. Soc. Mass Spectrom. 18:1749-1759. Nir, I., Z. Nitsan and S. Keren-Zvi. 1988. Fat deposition in birds. In: Leclercq, B., Whitehead, C.C. (Eds.), Leanness in Domestic Birds. Butterworths, London, UK, pp. 141 – 174. Noyan, A., W. J. Lossow, N. Brot and I. L. Chaikoff. 1964. Pathway and form of absorption of palmitic acid in the chicken. J. Lipid Res. 5:538-541. Okushio, K., N. Matsumoto, M. Suzuki, F. Nanjo and Y. Hara. 1995. Absorption of (-)-epigallocatechin gallate into rat portal vein. Biol. Pharm. Bull. 18:190-191. Okushio, K., N. Matsumoto, T. Kohri, M. Suzuki, F. Nanjo and Y. Hara. 1996. Absorption of tea catechins into rat portal vein. Biol. Pharm. Bull. 19:326-329. Okushio, K., M. Suzuki, N. Matsumoto, F. Nanjo and Y. Hara. 1999. Identification of (-)-epicatechin metabolites and their metabolic fate in the rat. Drug Metab. Dispos. 27:309-316. Padgett, G. A. and W. D. Ivey. 1959. Coturnix Quail as a Laboratory Research Animal. Science. 129:267-268. Panchal, S. K., W. Y. Wong, K. Kauter, L. C. Ward and L. Brown. 2012. Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition. 28:1055-1062. Perva-Uzunalić, A., M. Škerget, Ž. Knez, B. Weinreich, F. Otto, S. Grüner. 2006. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605. Piskula, M. K. and J. Terao. 1998. Accumulation of (-)-epicatechin metabolites in rat plasma after oral administration and distribution of conjugation enzymes in rat tissues. J. Nutr. 128:1172-1178. Pournia, K. H., H. Kermanshahi and M. R. Basami. 2015. Effect of caffeine and trans-cinnamaldehyde on growth performance, hematology, stress hormone, immunity response and blood parameters in broiler chickens. Poultry Sci. J. 3:71-85. Raederstorff, D. G., M. F. Schlachter, V. Elste and P. Weber. 2003. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J. Nutr. Biochem. 14:326-332. Ravindran, V., P. Tancharoenrat, F. Zaefarian and G. Ravindran. 2016. Fats in poultry nutrition: digestive physiology and factors influencing their utilization. Anim. Feed Sci. Tech. 213:1-21. Rogel, A. M. and P. Vohra. 1983. Alteration of lipid metabolism in Japanese quail by feeding oat hulls and brans. Poultry Sci. 62:1045-1053. Sarker, S. K., S.-Y. Ko, G.-M. Kim and C.-J. Yang. 2010. Effects of Camellia sinensis and mixed probiotics on the growth performance and body composition in broiler. J. Med. Plant. Res. 4:546-550. Savory, C. J. and M. J. Gentle. 1976. Effect of dietary dilution with fibre on the food intake and gut dimensions of Japanese quail. Brit. Poultry Sci. 17:561-570. Selvendran, R. R., B. P. M. Perera and S. Selvendran. 1972. Changes in the ethanol-insoluble material of tea leaves (Camellia sinensis L.) during maturation. J. Sci. Fd. Agric. 23:1119-1123. Shimotoyodome, A., S. Haramizu, M. Inaba, T. Murase and I. Tokimitsu. 2005. Exercise and green tea extract stimulate fat oxidation and prevent obesity in mice. Med. Sci. Sports Exerc. 37:1884-1892. Sklan, D., A. Geva, P. Budowski and S. Hurwitz. 1984. Intestinal absorption and plasma transport of lipids in chicks and rats. Comp. Biochem. Physiol. 78A:507-510. Starck, J. M. and G. H. A. Rahmaan. 2003. Phenotypic flexibility of structure and function of the digestive system of Japanese quail. J. Exp. Biol. 206:1887-1897. Sugiura, C., S. Nishimatsu, T. Moriyama, S. Ozasa, T. Kawada and K. Sayama. 2012. Catechins and caffeine inhibit fat accumulation in mice through the improvement of hepatic lipid metabolism. J. Obes. 2012:510-520. Sutton, C. D., W. M. Muir and J. J. Begin. 1981. Effect of fiber on cholesterol metabolism in the Coturnix Quail. Poultry Sci. 60:812-817. Takagaki, A. and F. Nanjo. 2010. Metabolism of (-)-epigallocatechin gallate by rat intestinal flora. J. Agric. Food Chem. 58:1313-1321. Takagaki, A., S. Otani and F. Nanjo. 2011. Antioxidative activity of microbial metabolites of (-)-epigallocatechin gallate produced in rat intestines. Biosci. Biotechnol. Biochem. 75:582-585. Takagaki, A. and F. Nanjo. 2013. Catabolism of (+)-catechin and (-)-epicatechin by rat intestinal microbiota. J. Agric. Food Chem. 61:4927-4935. Takizawa, Y., T. Morota, S. Takeda and M. Aburada. 2003. Pharmacokinetics of (-)-epicatechin-3-O-gallate, an active component of Onpi-to, in rats. Biol. Pharm. Bull. 26:608-612. Tang, S. Z., J. P. Kerry, D. Sheehan, D. J. Buckley and P. A. Morrissey. 2000. Dietary tea catechins and iron-induced lipid oxidation in chicken meat, liver and heart. Meat Sci. 56:285-290. Tang, S. Z., J. P. Kerry, D. Sheehan, D. J. Buckley and P. A. Morrissey. 2001. Antioxidative effect of dietary tea catechins on lipid oxidation of long-term frozen stored chicken meat. Meat Sci. 57:331-336. Tang, S. Z., J. P. Kerry, D. Sheehan and D. J. Buckley. 2002. Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chem. 76:45-51. Tarlow, D. M., P. A. Watkins, R. E. Reed, R. S. Miller, E. E. Zwergel and M. D. Lane. 1977. Lipogenesis and the synthesis and secretion of very low density lipoprotein by avian liver cells in nonproliferating monolayer culture. Hormonal effects. J. Cell Biol. 73:332-353. Tsuchiya, H. 1999. Effects of green tea catechins on membrane fluidity. Pharmacology. 59:34-44. Unno, T. and T. Takeo. 1995. Absorption of (-)-epigallocatechin gallate into the circulation system of rats. Biosci. Biotech. Biochem. 59:1558-1559. Uuganbayar, D., I. H. Bae, K. S. Choi, I. S. Shin, J. D. Firman and C. J. Yang. 2005. Effects of green tea powder on laying performance and egg quality in laying hens. Asian-Aust. J. Anim. Sci. 18:1769-1774. Uuganbayar, D., I. S. Shin and C. J. Yang. 2006. Comparative performance of hens fed diets containing Korean, Japanese and Chinese green tea. Asian-Aust. J. Anim. Sci. 19:1190-1196. Vargas, R. E. and E. C. Naber. 1984. Relationship between dietary fiber and nutrient density and its effect on energy balance, egg yolk cholesterol and hen performance. J. Nutr. 114:645-652. Weiss, F. G. and L. Scott. 1979. Effect of dietary fiber, fat and total energy upon plasma cholesterol and other parameters in chickens. J. Nutr. 109:693-701. Wolfram, S., D. Raederstorff, Y. Wang, S. R. Teixeira, V. Elste and P. Weber. 2005. TEAVIGOTM (epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann. Nutr. Metab. 49:54-63. Yamane, T., H. Goto, D. Takahashi, H. Takeda, K. Otowaki and T. Tsuchida. 1999. Effects of hot water extracts of tea on performance of laying hens. Jpn. Poult. Sci. 36:31-37. Yang, T. T. C. and M. W. L. Koo. 2000. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci. 66:411-423. Yang, C. J., I. Y. Yang, D. H. Oh, I. H. Bae, S. G. Cho, I. G. Kong, D. Uuganbayar, I. S. Nou and K. S. Choi. 2003a. Effect of green tea by-product on performance and body composition in broiler chicks. Asian-Aust. J. Anim. Sci. 16: 867-872. Yang, C. J., Y. C. Jung and D. Uuganbayar. 2003b. Effect of feeding diets containing green tea by-products on laying performance and egg quality in hens. Korean J. Poult. Sci. 30:183-189. Zhou, Y.-B., X.-C. Wan, Y.-Y. Shang, J.-W. Hu, L. Shao, W. Chen and D.-X. Li. 2012. Polyphenol content of plasma and litter after the oral administration of green tea and tea polyphenols in chickens. J. Agric. Food Chem. 60:1619-1627. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59747 | - |
| dc.description.abstract | 本試驗旨在探討添加不同含量綠茶副茶粉對日本鵪鶉體內脂肪蓄積與蛋黃膽固醇含量之影響。試驗分成二個階段:第一階段為生長試驗為期5週,將320隻1週齡之日本鵪鶉逢機平均分入5組,分別採食含綠茶副茶粉0、1、2、4或8%之飼糧,每組8欄,檢測每週之生長性能,並於4週齡時犧牲全部雄鳥,每組隨機挑選16隻公鳥採樣,檢測其血脂濃度與肝臟脂肪含量;至於雌鳥則持續進行完成隨後兩週之生長試驗。第二階段為6到16週齡之產蛋試驗,實驗動物為第一階段試驗所保留的雌日本鵪鶉,延續先前的處理,但每個處理組之雌鳥重新逢機分入6欄;試驗期間每兩週檢測其產蛋性能以及蛋黃的重量、脂肪含量與膽固醇含量;並且於16週齡時,每組隨機挑選16隻雌鳥犧牲採樣,檢測其血脂濃度、腹脂重與肝臟脂肪含量。
結果顯示,日本鵪鶉於4週齡之體重、1到4週齡之體增重與採食量,會隨飼糧內綠茶副茶粉含量上升而呈線性下降(P < 0.05);此外,餵飼含超過2%的綠茶副茶粉飼糧會使雄鳥的肝臟變重,也會造成體重之相對重量變大,且使得6週齡雌鳥之體重下降。除此之外,在雌日本鵪鶉之產蛋試驗發現,於6到16週齡期間之平均蛋重會隨著飼糧內綠茶副茶粉含量之上升而呈直線下降(P < 0.05),然而其隻日產蛋率與蛋量則在綠茶副茶粉濃度超過2%時才會逐漸下降(P < 0.05);至於每日採食量、肝臟重、肝臟佔體重比例以及血漿中高密度脂蛋白固醇濃度等,皆與飼糧內綠茶副茶粉的含量呈二次曲線關係(P < 0.05),會隨著飼糧內綠茶副茶粉含量上升逐漸下降至4%,然而8%組者則呈現回升。 隨著綠茶副茶粉在飼糧內添加的量上升,生長階段雄鳥肝臟脂肪的蓄積受到抑制並降低了血脂含量;飼糧內綠茶副茶粉含量的增加,也可減少產蛋階段雌鳥腹腔內脂肪的蓄積;8%處理組之產蛋雌鳥,無論在飼料換蛋率還是在蛋黃脂肪含量均顯著低於其他處理組者(P < 0.05)。此外餵予雌鳥2%以上的綠茶副茶粉飼糧可以顯著降低其蛋黃中膽固醇的含量。綜合上述之結果,綠茶副茶粉具有抑制日本鵪鶉體內脂肪蓄積與降低蛋黃膽固醇含量的功能。然而為了不影響日本鵪鶉之生長表現與產蛋性能,添加在日本鵪鶉飼糧內的綠茶副茶粉濃度不宜超過2%。 | zh_TW |
| dc.description.abstract | The purpose of this experiment was to investigate the influence of dietary green- tea- byproduct meal levels on the body fat accumulation and yolk cholesterol in Japanese quail. Two stages were conducted. In the beginning, a total of 320 Japanese quails at 1 week of age was allocated randomly into 5 treatments receiving, ad lib, diets containing 0, 1, 2, 4 or 8% of green- tea- byproduct meal, respectively, and growth performance was measured weekly at the first stage. All male Japanese quails were removed at 4 weeks old, and 16 male birds, randomly, per treatment were sampled for analyzing the plasma lipids levels and hepatic fat content. The females, each treatment, were fed continuously with the previous diet until 6 weeks of age and then were switched to a diet with the same treatment but for laying for 10 weeks at the second stage. Laying performance and the weight, fat content and cholesterol level of yolk were measured every 2 weeks. In the end, 16 birds per treatment, randomly, were sampled for analyzing the plasma lipids levels, abdominal fat weight and hepatic fat content.
The results showed that body weight at 4 weeks of age and weight gain and feed intake in the first 3 weeks decreased linearly with an increase in the level of dietary green- tea- byproduct meal (p < 0.05). The dietary green- tea- byproduct meal level over 2% depressed the body weight of the females at 6 weeks of age whilst resulted in an increase in the absolute and relative liver weight of the males at 4 weeks of age. A negative linear relationship was observed (p < 0.05) between the dietary levels of green- tea- byproduct meal and the egg weight of the quails from 6 to 16 weeks of age, whilst a negative linear relationship between the green- tea- byproduct meal levels and the hen-day egg production rate or egg mass existed only when the dietary concentration was over 2%. Quadratic relationships were observed between intake, both absolute and relative liver weights, or plasma HDL cholesterol levels of the females from 6 to 16 weeks of age and dietary green- tea- byproduct meal concentrations and individual reflection points located around the 4% of dietary green- tea- byproduct meal. The hepatic fat accumulation and plasma lipid levels of male Japanese quails were inhibited with an increase in the dietary concentration of green- tea- byproduct meal during the growth period, and a similar situation was also observed in abdominal fat accumulation of the laying females. Although the feed conversion rate of the females ingesting 8% of green- tea- byproduct meal was the worst (p < 0.05), their yolk fat content was significantly lower than that of other groups (p < 0.05). In addition, the females ingesting diets containing over 2% of green- tea- byproduct meal showed decreases in the levels of yolk cholesterol. To sum up, green- tea- byproduct meal can inhibit the body fat accumulation of Japanese quail and also decrease the yolk cholesterol levels. However, the dietary concentration of green- tea- byproduct meal should be no more than 2% in order to avoid the negative effects on growth and laying performances. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:35:59Z (GMT). No. of bitstreams: 1 ntu-106-R02626011-1.pdf: 1573919 bytes, checksum: 0272b190a5235ec3e981a77454c95320 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝…………………………………………………………………………………………………………………………………………I
目錄………………………………………………………………………………………………………………………………………II 表次……………………………………………………………………………………………………………………………………III 圖次…………………………………………………………………………………………………………………………………………V 壹、中文摘要……………………………………………………………………………………………………………………VI 貳、英文摘要…………………………………………………………………………………………………………………VII 參、前言…………………………………………………………………………………………………………………………………1 肆、文獻檢討………………………………………………………………………………………………………………………2 伍、材料與方法………………………………………………………………………………………………………………39 陸、結果………………………………………………………………………………………………………………………………59 柒、討論………………………………………………………………………………………………………………………………82 捌、結論………………………………………………………………………………………………………………………………89 玖、參考文獻……………………………………………………………………………………………………………………90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蛋黃膽固醇 | zh_TW |
| dc.subject | 日本鵪鶉 | zh_TW |
| dc.subject | 綠茶副茶粉 | zh_TW |
| dc.subject | 脂肪蓄積 | zh_TW |
| dc.subject | 生長性能 | zh_TW |
| dc.subject | 產蛋性能 | zh_TW |
| dc.subject | 日本鵪鶉 | zh_TW |
| dc.subject | 綠茶副茶粉 | zh_TW |
| dc.subject | 脂肪蓄積 | zh_TW |
| dc.subject | 蛋黃膽固醇 | zh_TW |
| dc.subject | 生長性能 | zh_TW |
| dc.subject | 產蛋性能 | zh_TW |
| dc.subject | green- tea- byproduct meal | en |
| dc.subject | growth performance | en |
| dc.subject | laying performance | en |
| dc.subject | Japanese quail | en |
| dc.subject | laying performance | en |
| dc.subject | growth performance | en |
| dc.subject | cholesterol of yolk | en |
| dc.subject | accumulation of fat | en |
| dc.subject | Japanese quail | en |
| dc.subject | green- tea- byproduct meal | en |
| dc.subject | accumulation of fat | en |
| dc.subject | cholesterol of yolk | en |
| dc.title | 添加不同含量綠茶副茶粉對日本鵪鶉體內脂肪蓄積與蛋黃膽固醇含量之影響 | zh_TW |
| dc.title | The influence of dietary green- tea- byproduct meal levels in the accumulation of body fat and yolk cholesterol from Japanese quail | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐濟泰(Jih-Tay Hsu),李滋泰(Tzu-Tai Lee) | |
| dc.subject.keyword | 日本鵪鶉,綠茶副茶粉,脂肪蓄積,蛋黃膽固醇,生長性能,產蛋性能, | zh_TW |
| dc.subject.keyword | Japanese quail,green- tea- byproduct meal,accumulation of fat,cholesterol of yolk,growth performance,laying performance, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201700399 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-13 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
