請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59745完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 隋中興(Chung-Hsiung Sui) | |
| dc.contributor.author | Han-Ching Chen | en |
| dc.contributor.author | 陳漢卿 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:35:53Z | - |
| dc.date.available | 2018-02-17 | |
| dc.date.copyright | 2017-02-17 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-13 | |
| dc.identifier.citation | Alexander, M., H. Seo, S. P. Xie, and J. D. Scott, 2012: ENSO’s Impact on the Gap Wind Regions of the Eastern Tropical Pacific Ocean. J. Climate, 25, 3549–3565.
An, S., I. Kang, 2000: A further investigation of the recharge oscillator paradigm for ENSO using a simple coupled model with the zonal mean and eddy Separated. J. Climate, 13, 1987–1993. ——, B. Wang, 2001: Mechanisms of locking the El Nino and La Nina mature phases to boreal winter. J Climate 14:2164–2176. ——, and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Climate, 14, 3421-3432. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Nino Modoki and its possible teleconnection. J. Geophys Res-Oceans, 112. Battisti, D. S., 1988: The Dynamics and Thermodynamics of a Warming Event in a Coupled Tropical Atmosphere/Ocean Model.' J. Atmos. Sci., 45, 2889-2919. ——, and A. C. Hirst, 1989: Interannual Variability in a Tropical Atmosphere Ocean Model - Influence of the Basic State, Ocean Geometry and Nonlinearity. J Atmos Sci, 46, 1687-1712. Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11-15. Bosc, C., and T. Delcroix, 2008: Observed equatorial Rossby waves and ENSO-related warm water volume changes in the equatorial PacificOcean. J. Geophys. Res., 113, C06003. Bunge, L., A. J. Clarke, 2014: On the warm water volume and its changing relationship with ENSO. J. Phys. Oceanogr., 44, 1372–1385. Bjerknes, J., 1969: Atmospheric Teleconnections from Equatorial Pacific. Mon Weather Rev, 97, 163. Boulanger, J. P., and C. Menkes, 1999: Long equatorial wave reflection in the Pacific Ocean from TOPEX/POSEIDON data during the 1992-1998 period. Clim Dynam, 15, 205-225. ——, 2001: The Trident Pacific model. Part 2: role of long equatorial wave reflection on sea surface temperature anomalies during the 1993-1998 TOPEX/POSEIDON period. Clim Dynam, 17, 175-186. ——, S. Cravatte, and C. Menkes, 2003: Reflected and locally wind-forced interannual equatorial Kelvin waves in the western Pacific Ocean. J Geophys Res-Oceans, 108. Cane, M. A., M. Munnich, S. E. Zebiak, 1990: A study of self-excited oscillations of the tropical ocean–atmosphere system. Part I: linear analysis. J Atmos Sci 47:1562–1577. Cai, M., 2003: Formation of the Cold Tongue and ENSO in the Equatorial Pacific Basin. J Climate, 16, 144-155. Capotondi, A., M. A. Alexander, C. Deser, and M. J. McPhaden, 2005: Anatomy and decadal evolution of the Pacific Subtropical-Tropical Cells (STCs). J. Climate, 18, 3739-3758. Carton, J. A., B. S. Giese, and S. A. Grodsky, 2005: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res.-Oceans, 110. ——, and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather. Rev., 136, 2999-3017. Chelton, D. B., S. K. Esbensen, M. G.Schlax, , Thum, N. , Freilich, M.H. , Wentz, F.J. , Gen- temann, C.L. , McPhaden, M.J. , Schopf, P.S., 2001: Observations of coupling be- tween surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate. 14, 1479–1498. Chen, M., T. Li, X. Shen, and B. Wu, 2016: Relative Roles of Dynamic and Thermodynamic Processes in Causing Evolution Asymmetry between El Nino and La Nina. J Climate, 29, 2201-2220. Clarke, A.J., S.V. Gorder, and G. Colantuono, 2007: Wind Stress Curl and ENSO Discharge/Recharge in the Equatorial Pacific. J Phys Oceanogr, 37, 1077-1091. Compo, G. P., J. S. Whitaker, and P. D. Sardeshmukh, 2006: Feasibility of a 100‐year reanalysis using only surface pressure data, Bull. Am. Meteorol. Soc., 87, 175–190. ——, J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The Twentieth Century Reanalysis Project. Quarterly J. Roy. Meteorol. Soc., 137, 1-28. Chiodi, A. M., D. E. Haririson, 2015: Equatorial Pacific easterly wind surges and the onset of La Nina events. J Clim 28:776–792. doi:10.1175/JCLI-D-14-00227.1 Danabasoglu, G., S. G. Yeager, et al., 2014: North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: Mean states. Ocean Model. 73, 76–107. ——, ——, et al., 2016: North Atlantic simulations in coordi- nated ocean-ice reference experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Model, 97, 65–90. Delcroix, T.,B. Dewitte, Y. duPenhoat, F. Masia, J. Picaut, 2000: Equatorial waves and warm pool displacements during the 1992–1998 El Nino Southern Oscillation events: observation and modeling. J Geophys Res, 105:26045–26062 Eisenman, I., L. Yu, and E. Tziperman, 2005: Westerly wind bursts: ENSO’s tail rather than the dog? J. Climate, 18, 5224–5238. Emery, W.J. and Thomson, R.E., 2001, Data analysis methods in physical oceanography. Elsevier Science BV, Amsterdam, 654 pp. Fedorov, A. and W. Melville, 2000: Kelvin Fronts on the Equatorial Thermocline. J. Phys. Oceanogr., 30, 1692–1705 ——, S. Hu, M. Lengaigne, E. Guilyardi, 2014: The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Nino events. Clim Dyn 44:1381–1401. Gebbie, G., I. Eisenman, A. Wittenberg, and E. Tziperman, 2007: Modulation of Westerly Wind Bursts by Sea Surface Temperature: A Semistochastic Feedback for ENSO. J. Atmos. Sci., 64, 3281–3295 —— and E. Tziperman, 2009: Predictability of SST-Modulated Westerly Wind Bursts. J. Climate, 22, 3894–3909 Giese, B. S., and S. Ray, 2011: El Nino variability in simple ocean data assimilation (SODA), 1871-2008. J. Geophys. Res.-Oceans, 116. Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp. Gu, D., and S. G. Philander, 1997: Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275, 805-807. Harrison, D. E., and P. S. Schopf, 1984: Kelvin wave induced anomalous advection and the onset of surface warming in El Nino events. Mon. Wea. Rev., 112, 923–933. ——, 1987: Monthly Mean Island Surface Winds in the Central Tropical Pacific and El-Nino Events. Mon Weather Rev, 115, 3133-3145. ——, and N. K. Larkin, 1998: El Nino-Southern Oscillation sea surface temperature and wind anomalies, 1946-1993. Rev Geophys, 36, 353-399. ——, and G. A. Vecchi, 1999: On the termination of El Nino. Geophys Res Lett, 26, 1593-1596. Hazeleger, W., R. Seager, M. A. Cane, and N. H. Naik, 2004: How can tropical Pacific Ocean heat transport vary? J. Phys. Oceanogr., 34, 320–333. Hoerling, M. P., A. Kumar, and M. Zhong, 1997: El Nino, La Nina, and the nonlinearity of their teleconnections. J. Climate, 10, 1769-1786. Hirst, A. C., 1986: Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. Journal of the atmospheric sciences, 43, 606-632. Hu, Z.-Z., A. Kumar, Y. Xue, and B. Jha, 2014: Why were some La Ninas followed by another La Nina? Clim Dynam, 42, 1029-1042. ——, ——, B. Huang, J. Zhu, R.-H. Zhang, and F.-F. Jin, 2016: Asymmetric evolution of El Nino and La Nina: the recharge/discharge processes and role of the off-equatorial sea surface height anomaly. Clim Dynam. Ishida, A., Y. Kashino, S. Hosoda, and K. Ando, 2008: North-south asymmetry of warm water volume transport related with El Nino variability. Geophys. Res. Lett., 35, L18612. Johnson, G.-C. , M. J. McPhaden, 1999: Interior pycnocline flow from the sub- tropical to the equatorial Pacific Ocean. J. Phys. Oceanogr. 29, 3073–3089 . ——, B. M. Sloyan, W. S. Kessler, K. E. McTaggart, 2002: Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s. Prog. Oceanogr. 52, 31–61 . Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. 1. Conceptual model. J Atmos Sci, 54, 811-829. ——, 1997b: An equatorial ocean recharge paradigm for ENSO. 2. A stripped-down coupled model. J Atmos Sci, 54, 830-847. ——, and S. I. An, 1999: Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett, 26, 2989-2992. Kao, H. Y. and J. Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Climate, 22, 615-632. Kessler, W. S., Is ENSO a cycle or a series of events?, Geophys. Res. Lett., 29, 2125. ——, G. C. Johnson, D. W. Moore, 2003: Sverdrup and nonlinear dynamics of the Pacific equatorial currents. ——, 2006: The circulation of the eastern tropical Pacific: a review. Prog. Oceanogr 69, 181–217 .ys. Oceanogr. 33, 994–1008 . Klinger, B. A., J. P. McCreary, and R. Kleeman, 2002: The relationship between oscillating subtropical wind stress and equatorial temperature. J. Phys. Oceanogr., 32, 1507-1521. Kleeman, R., J. P. McCreary, and B. A. Klinger, 1999: A mechanism for generating ENSO decadal variability. Geophysical Research Letters, 26, 1743-1746. Kug, J. S., and I. S. Kang, 2006: Interactive feedback between ENSO and the Indian Ocean. J Climate, 19, 1784-1801. ——, F. F. Jin, and S. I. An, 2009: Two Types of El Nino Events: Cold Tongue El Nino and Warm Pool El Nino. J. Climate, 22, 1499-1515. Kumar, A. and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Clim. Dyn., 42, 1243-1258 Lau, K., 1981: Oscillations in a Simple Equatorial Climate System. J. Atmos. Sci., 38, 248–261. Larkin, N. K., and D. E. Harrison, 2002: ENSO warm (El Nino) and cold (La Nina) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Climate, 15, 1118-1140. ——, and ——, 2005: Global seasonal temperature and precipitation anomalies during El Nino autumn and winter. Geophys. Res. Lett., 32, 353-399. Lee, T., and I. Fukumori, 2003: Interannual-to-decadal variations of tropical-subtropical exchange in the Pacific Ocean: Boundary versus interior pycnocline transports, J. Climate, 16, 4022– 4042. Lengaigne, M., J.-P. Boulanger, C. Menkes, G. Madec, P. Delecluse, E. Guilyardi, and J. Slingo, 2003: The March 1997 westerly event and the onset of the 1997/98 El Nino: Understanding the role of the atmospheric response. J. Climate, 16, 3330–3343. ——, E. Guilyardi, J.-P. Boulanger, C. Menkes, P. Delecluse, P. Inness, J. Cole, and J. Slingo, 2004: Triggering of El Nino by westerly wind events in a coupled general circulation model. Climate Dyn., 23, 601–620. ——, J. P. Boulanger, C. Menkes, and H. Spencer, 2006: Influence of the seasonal cycle on the termination of El Nino events in a coupled general circulation model. J Climate, 19, 1850-1868. Large, W. G. , S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Clim. Dyn. 33, 341–364. Li, T., 1997: Phase transition of the El Nino-Southern Oscillation: A stationary SST mode. J. Atmos. Sci., 54, 2872-2887 ——, and S. G. H. Philander, 1996: On the annual cycle of the eastern equatorial Pacific. J. Climate, 9, 2986–2998. Lu, P., J. P. McCreary, and B. A. Klinger, 1998: Meridional circulation cells and the source waters of the Pacific Equatorial Undercurrent. J. Phys. Oceanogr., 28, 62-84. Luo, J. J., and T.Yamagata, 2001: Long‐term El Nino‐Southern Oscillation (ENSO)‐like variation with special emphasis on the South Pacific. Journal of Geophysical Research: Oceans, 106, 22211-22227. Long, B., and P. Chang, 1990: Propagation of an equatorial Kelvin wave in a varying thermocline. J. Phys. Oceanogr., 20, 1826–1841. Mantua, N. J., and D. S. Battisti, 1994: Evidence for the Delayed Oscillator Mechanism for ENSO - the Observed Oceanic Kelvin Mode in the Far Western Pacific. J Phys Oceanogr, 24, 691-699. McGregor, S., A. Timmermann, N. Schneider, M. F. Stuecker, M. H. England, 2012: The effect of the south Pacific convergence zone on the termination of El Nino events and the meridional asymmetry of ENSO. J. Climate, 25, 5566–5586. McCreary, J. P., and P. Lu, 1994: Interaction between the Subtropical and Equatorial Ocean Circulations - the Subtropical Cell. J. Phys. Oceanog.r, 24, 466-497. McPhaden, M. J., and X. Yu, 1999: Equatorial waves and the 1997-98 El Nino. Geophys Res Lett, 26, 2961-2964. ——, and D. X. Zhang, 2002: Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415, 603-608. ——, 2004: Evolution of the 2002–2003 El Nino. Bull Am Meteorol Soc, 85:677–695 ——, 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Nino and La Nina. J Climate, 13, 3551-3559. ——, 2001: Interannual variability in warm water volume transports in the equatorial Pacific during 1993-99. J. Phys. Oceanogr., 31, 1324-1345. Miyama, T., T. Hasegawa, 2014: Impact of sea surface temperature on westerlies over the Western Pacific warm pool: case study of an event in 2001/02. SOLA 10:5–9. Nagura, M., K. Ando, and K. Mizuno, 2008: Pausing of the ENSO cycle: A case study from 1998 to 2002. J Climate, 21, 342-363. Nonaka, M., S. P. Xie, and J. P. McCreary, 2002: Decadal variations in the subtropical cells and equatorial pacific SST. Geophys. Res. Lett., 29. Ohba, M., and H. Ueda, 2009: Role of Nonlinear Atmospheric Response to SST on the Asymmetric Transition Process of ENSO. J Climate, 22, 177-192. ——, and M. Watanabe, 2012: Role of the Indo-Pacific Interbasin Coupling in Predicting Asymmetric ENSO Transition and Duration. J Climate, 25, 3321-3335. Okumura, Y. M., and C. Deser, 2010: Asymmetry in the Duration of El Nino and La Nina. J Climate, 23, 5826-5843. ——, M. Ohba, C. Deser, and H. Ueda, 2011: A Proposed Mechanism for the Asymmetric Duration of El Nino and La Nina. J. Climate, 24, 3822-3829. Perez, C. L., A. M. Moore, J. Zavaly-Garay, and R. Kleeman, 2005: A comparison of the influence of additive and multiplicative stochastic forcing on a coupled model of ENSO, J. Climate, 18, 5066 – 5085. Philander S. G., 1983: El Nino–Southern Oscillation phenomena. Nature 302:295–301 ——, T. Yamagata, R. C. Pacanowski, 1984: Unstable air–sea interactions in the tropics. J Atmos Sci, 41:604–613 Picaut, J., F. Masia, and Y. duPenhoat, 1997: An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277, 663-666. Rayner, N. A., and Coauthors, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmos, 108. Risien, C. M. , D. B. Chelton, 2008: A Global climatology of surface wind and wind stress fields from eight years of QuikSCAT Scatterometer data. J. Phys. Oceanogr. 38, 2379–2413 . Ren, H. L., and F.-F. Jin, 2013: Recharge Oscillator Mechanisms in Two Types of ENSO. J Climate, 26, 6506-6523. Rothstein, L. M., R.-H. Zhang, A. J. Busalacchi, D. Chen, 1998: A Numerical Simulation of the Mean Water Pathways in the Subtropical and Tropical Pacific Ocean. J. Phys. Oceanogr., 28, 322–343. Roundy, P. E and G. N. Kiladis, 2006: Observed relationships between intraseasonal oceanic Kelvin waves and atmospheric forcing. J. Climate, 19, 5253–5272. Schneider, E. K., B. Huang, and J. Shukla, 1995: Ocean Wave Dynamics and El-Nino. J Climate, 8, 2415-2439. Schneider, N., A. J. Miller, M. A. Alexander, and C. Deser, 1999: Subduction of decadal North Pacific temperature anomalies: Observations and dynamics. J. Phys. Oceanogr., 29, 1056-1070. Spencer, H., 2004: Role of the atmosphere in seasonal phase locking of El Nino. Geophys Res Lett, 31. Seiki, A., and Y. N. Takayabu, 2007: Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: Energetics over the western and central Pacific. Mon. Wea. Rev., 135, 3346–3361. Stuecker, M. F., A. Timmermann, F. F. Jin, S. McGregor, and H. L. Ren, 2013: A combination mode of the annual cycle and the El Nino/Southern Oscillation. Nat Geosci, 6, 540-544. Suarez, M. J., and P. S. Schopf, 1988: A Delayed Action Oscillator for Enso. J Atmos Sci, 45, 3283-3287. Su, J., R. Zhang, T. Li, X. Rong, J-S. Kug, and C.-C. Hong, 2010: Causes of the El Nino and La Nina Amplitude Asymmetry in the Equatorial Eastern Pacific. J Climate, 23, 605–617. Sverdrup, H.U., 1947: Wind-driven currents in a baroclinic ocean, with application to the equatorial currents of the eastern Pacific. Proc. Natl. Acad. Sci. USA 33, 318–326 . Singh, A., and T. Delcroix, 2013: Eastern and central Pacific ENSO and their relationships to the recharge/discharge oscillator paradigm. Deep-Sea Res. Pt I, 82, 32-43. Springer, S. R., M. J. McPhaden, and A. J. Busalacchi, 1990: Oceanic heat content variability in the tropical Pacific during the 1982–1983 El Nino. J. Geophys. Res., 95, 22 089–22 101. Schopf, P. S. and M. Suarez, 1988: Vacillations in a Coupled Ocean–Atmosphere Model. J. Atmos. Sci., 45, 549–566 Tseng, Y.-H., M.-H. Chien, 2011: Parallel domain-decomposed Taiwan Multi-scale Community Ocean Model (PD-TIMCOM). Comput. Fluids 45, 77–83 . Tziperman, E., S. E. Zebiak and M. A. Cane, 1997: Mechanisms of seasonal—ENSO interaction. J Atmos Sci, 54:61–71 ——, M. A. Cane and B. Blumenthal, 1998: Locking of El Nino peak time to the end of the calendar year in the delayed oscillator picture of ENSO. J. Climate, 11:2191–2203 —— and L. Yu, 2007: Quantifying the Dependence of Westerly Wind Bursts on the Large-Scale Tropical Pacific SST. J. Climate, 20, 2760–2768, Vecchi, G. A., and D. E. Harrison, 2003: On the termination of the 2002-03 El Nino event. Geophys Res Lett, 30. Wang, C. Z., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with El Nino-Southern Oscillation. J Geophys Res-Oceans, 104, 5131-5149. ——, C. Z., 2001: A unified oscillator model for the El Nino-Southern Oscillation. J. Climate, 14, 98-115. Wang, X., F.-F. Jin, and Y. Wang, 2003a: A tropical ocean recharge mechanism for climate variability. Part I: Equatorial heat content changes induced by the off-equatorial wind. J. Climate, 16, 3585–3598. Wang, D., and Z. Liu, 2000: The pathway of the interdecadal variability in the Pacific Ocean. Chinese Science Bulletin, 45(17), 1555-1561. Weisberg, R. H., and C. Z. Wang, 1997: A western Pacific oscillator paradigm for the El Nino Southern Oscillation. Geophys Res Lett, 24, 779-782. Whitaker, J. S., G. P. Compo,X. Wei, T. M. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Weather Rev., 132, 1190–1200. Wyrtki, K., 1975: El Nino-The Dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J. Phys. Oceanogr., 5, 572-584. ——, 1985: Citation Classic - El-Nino - the Dynamic-Response of the Equatorial Pacific-Ocean to Atmospheric Forcing. Cc/Phys Chem Earth, 16-16. Yu, L., R. A. Welleramd W. T. Liu, 2003: Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the westernequatorial Pacific. J Geophys Res, 108:3128 Yu, Z., J. P. McCreary, W. S. Kessler, K. A. Kelly, 2000: Influence of equatorial dynamics on the Pacific north equatorial countercurrent. J. Phys. Oceanogr. 30, 3179–3190. Zebiak, S. E. and M. A. Cane, 1987: A model El Nino-Southern Oscillation. Mon Weather Rev, 115:2262–2278 Zang, X. Y., L. L. Fu, and C. Wunsch, 2002: Observed reflectivity of the western boundary of the equatorial Pacific Ocean. J Geophys Res-Oceans, 107. Zhang, W. J., H. Y. Li, F. F. Jin, M. F. Stuecker, A. G. Turner, and N. P. Klingaman, 2015: The Annual-Cycle Modulation of Meridional Asymmetry in ENSO's Atmospheric Response and Its Dependence on ENSO Zonal Structure. J Climate, 28, 5795-5812. Zhang, D. X., and M. J. McPhaden, 2006: Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Model, 15, 250-273. Zhang, L., H. Ma, and L. Wu, 2016: Dynamics and mechanisms of decadal variability of the Pacific-South America mode over the 20th century. Climate Dynamics, 46, 3657-3667. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59745 | - |
| dc.description.abstract | 本研究透過分析太平洋年際變異去討論聖嬰現象的相位轉換機制。在聖嬰發展過程中,赤道變異透過和溫躍層深度距平相關的緯向及經向海洋質量傳輸,與離赤道過程密切相關。與熱帶風應力旋度相關的經向海洋傳輸在決定赤道緯向平均溫躍層變化中扮演了很重要的角色,其通過溫躍層反饋過程反轉聖嬰現象的相位。與經向傳輸相比,緯向傳輸則會通過與東太平洋海溫距平相關的平流反饋影響聖嬰現象的發展。
太平洋的經向海洋質量傳輸主要由密度躍層的副熱帶經向環流(pycnocline Subtropical Cells)、海表層艾克曼傳輸(Ekman transport)和西方邊界流所組成。本研究利用1960至2010年期間的SODA海洋同化資料,分析副熱帶經向環流的變化及其與熱帶氣候變化的因果關係。研究結果表明,從南北緯九度輻合進入赤道的副熱帶經向海洋傳輸距平變化,由西半部的經向環流(160°E至130°W)為主導,與赤道海溫距平變化關係非常良好。從副熱帶經向環流、赤道熱含量、風應力旋度以及熱帶海溫的相關分析,可以給定聖嬰現象熱能累積和釋放(recharge-discharge)過程中,累積中(recharging)、最大累積(recharged)、暖海溫相位(warmest SST)、釋放中(discharging)及最大釋放(discharged)五個階段的時距,分別是8、10、2和8個月。聖嬰及反聖嬰事件的合成分析也可以求出與相關分析一致的時距,分別為4至12、6、2和4個月。本研究闡明聖嬰發展中次表層傳輸過程以及各過程中各階段的時距,對於了解聖嬰現象的相位轉換機制和改進模式中太平洋年際變化的模擬有很大的幫助。 除了太平洋經向海洋傳輸會透過次表層過程影響聖嬰現象外,緯向海洋傳輸也會透過平流反饋機制影響聖嬰的發展。本研究發現,在聖嬰現象達到峰值階段後,赤道緯向海洋傳輸的快速反向將迅速的終止聖嬰事件。赤道上的緯向傳輸主要由溫躍層深度的南北曲狀結構所決定。當聖嬰正在發展的時候,赤道上西太平洋及中、東太平洋分別存在相反方向的緯向環流,兩邊的環流都是由赤道緯向風場引發的溫躍層距平所產生,而東邊的緯向環流在此時主要會透過海溫平流的方式使聖嬰增長。當聖嬰在成熟時期,從東邊界反射的溫躍層深度距平訊號,使赤道外的溫躍層深度距平在東太平洋變得更加重要,並且讓溫躍層深度距平的南北曲狀結構反轉。此現象使赤道緯向海洋環流快速從由西向東轉變成由東向西的傳輸,並很快地延伸到整個赤道太平洋範圍。反向的緯向傳輸不只會透過海溫平流的方式去減弱聖嬰現象的強度,更重要的是會透過降低赤道溫躍層本身的東西傾斜率和減弱與風的反饋作用去終止聖嬰事件。該赤道緯向海洋環流反轉的現象不管在暖事件或是冷事件中都會存在,但環流反轉在暖事件中更能有效的減弱聖嬰現象的強度。 進一步將緯向海洋傳輸相關的過程分為低頻聖嬰過程和高頻海洋波動過程。這兩個過程都由溫躍層深度距平的南北曲狀結構所決定,並透過緯向海洋環流在峰值階段後的快速反轉終止聖嬰事件。對於低頻過程而言,緯向傳輸呈現較慢並且為整個太平洋海盆地的演變。在聖嬰(反聖嬰)的發展階段,由西向東(由東向西)的海洋傳輸在中、東部太平洋盛行,並通過緯向傳輸造成的海溫平流增強海溫距平。聖嬰現象達到峰值階段後,由熱能累積和釋放(recharge-discharge)過程導致的反轉緯向傳輸,透過海溫平流減弱了海溫距平。高頻緯向傳輸呈現向東傳的赤道凱爾文波(Kelvin wave)過程。在聖嬰(反聖嬰)發展過程中,明顯的西風爆發(WWBs)/東風爆發(EWSs)發生在北半球夏、秋季,並伴隨沉降(上升)凱爾文波向東傳。當聖嬰現象在北半球冬季達到峰值時,凱爾文波的信號到達太平洋東邊界,並反射為離赤道的羅士比波(Rossby wave),造成緯向傳輸快速的反轉,削弱東太平洋的海溫距平。聖嬰衰減階段的緯向傳輸距平主要由低頻過程所主導;然而,反聖嬰衰減階段則是由低頻和高頻過程共同控制。本研究結果闡明聖嬰現象的相位轉換機制,並針對聖嬰鎖相現象(phase-locking)提供更進一步的討論。 | zh_TW |
| dc.description.abstract | In this study, we investigate the Pacific interannual variability to clarify the phase transitions of El Nino-Southern Oscillation (ENSO) phenomenon. During the ENSO evolution, the equatorial variations are closely connected to off-equatorial processes through zonal and meridional mass transports associated with the thermocline anomalies. The meridional transport associated with tropical wind stress curl plays a role in determining the equatorial zonal-mean thermocline variations which could transit the phase of ENSO via thermocline feedback. Compared with meridional transport, the zonal transport plays an important role in affecting the ENSO evolution through advection feedback associated with SST anomalies in the eastern Pacific.
The meridional transport in the Pacific is composed of equatorward geostrophic flow within the interior pycnocline subtropical cells (STCs), surface Ekman transport and western boundary current. The Simple Ocean Data Assimilation (SODA 2.2.4) analysis for the period of 1960-2010 is used to study the Subtropical Cells (STCs) variability and its causal relation with tropical climate variability. Result shows that the interior STCs transport into the equatorial basin through 9°S and 9°N is well connected with equatorial SST (9°S-9°N, 180°-90°W). The highest correlation at interannual timescales is contributed by the western interior STCs transport within 160°E and 130°W. It is known that the ENSO recharge-discharge cycle experiences five stages, i.e., the recharging stage, recharged staged, warmest SST stage, discharging stage and discharged stage. A correlation analysis of interior STCs transport convergence, equatorial WWV, wind stress curl and SST identifies time interval between the five stages, which are 8, 10, 2 and 8 months, respectively. A composite analysis for El Nino and La Nina developing events is also performed. The composited ENSO evolutions are in accordance with the recharge-discharge theory and the corresponding time lags between the above denoted five stages are 4~12, 6, 2, and 4 months. Those results clarify subsurface transport processes and their time intervals, which are useful for refinement of theoretical models and for evaluating couple ocean-atmosphere general circulation model results. Zonal transport affects the ENSO evolution through advection feedback associated with SST anomalies in the eastern Pacific. Our result shows the sudden basin-wide reversal of anomalous equatorial zonal transport above the thermocline at the peaking phase of ENSO triggers rapid termination of ENSO events. The anomalous equatorial zonal transport is controlled by the concavity of anomalous thermocline meridional structure across the equator. During developing phase of ENSO, opposite zonal transport anomalies form in the western-central and central-eastern equatorial Pacific, respectively. Both are driven by the equatorial thermocline anomalies in response to zonal wind anomalies over the western-central equatorial ocean. At this stage, the anomalous zonal transport in the east enhances ENSO growth through zonal SST advection. In the mature phase of ENSO, off-equatorial thermocline depth anomalies become more dominant in the eastern Pacific due to the reflection equatorial signals at the eastern boundary. As a result, the meridional concavity of the thermocline anomalies is reversed in the east. This change reverses zonal transport rapidly in the central-to-eastern equatorial Pacific, joined with the existing reversed zonal transport anomalies further to the west and forms a basin-wide transport reversal throughout the equatorial Pacific. This basin-wide transport reversal weakens the ENSO SST anomalies by reversed advection. More importantly, the reversed zonal transport reduces the existing zonal tilting of equatorial thermocline and weakens its feedback to wind anomalies effectively. Further, the oceanic processes associated with zonal transport are separated into low-frequency ENSO cycle and high-frequency oceanic wave process. Both processes can be represented by the concavity of meridional thermocline anomalies and generate the reversal of equatorial zonal current at the peaking phase which be a trigger to the rapid termination of ENSO events. For low-frequency process, the zonal transport presents slower and basin-wide evolution. During the developing phase of El Nino (La Nina), the eastward (westward) transport prevails in the central-eastern Pacific and enhances the ENSO through zonal SST advection by anomalous zonal current. At the peak of ENSO, a basin-wide reversal of transport resulted from recharge-discharge process is occurred and weakens the SST anomalies through advection damping. The high-frequency zonal transport presents obvious eastward propagation related to the Kelvin wave at equator. The major wester wind bursts (WWBs)/easterly wind surges (EWSs) occur in boreal summer and fall with coincident downwelling (upwelling) Kelvin waves for El Nino (La Nina) events. After the peak of El Nino (La Nina), the signal of Kelvin waves reaches eastern boundary in boreal winter and reflect as off-equator Rossby waves, then the zonal transport just switches from eastward (westward) to westward (eastward). The high-frequency equatorial zonal transport can be definitely represented by equatorial wave dynamics captured by first three EOFs based on high-pass filtered equatorial thermocline. The transport anomaly during decaying phase is more dominated by low-frequency process in El Nino events; however, the transport anomaly is caused by both low- and high-frequency process during La Nina decaying phase. Those results clarify the sudden phase transition of ENSO and provide an additional remark of phase-locking | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:35:53Z (GMT). No. of bitstreams: 1 ntu-106-D00229002-1.pdf: 25170582 bytes, checksum: 8d8e016c5e7353fcfec1820c26bfc7ff (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 謝辭 i
摘要 ii Abstract iv Contents vii List of Tables ix List of Figures ix Chapter 1 Introduction 1 Chapter 2 Data 8 2.1 SODA 8 2.2 GODAS 8 2.3 HadISST 9 2.4 NOAA-CIRES 20th Century Reanalysis V2c 9 Chapter 3 STC 10 3.1 Anatomy of STCs 11 3.1.1 The pycnocline transport components 11 3.1.2 Surface Ekman transport 13 3.1.3 Interior versus boundary current transports 13 3.1.4 Equatorial undercurrent 15 3.2 The relationship between STCs and SST 16 3.3 The role of STC in ENSO 18 3.3.1 Recharge-discharge process by correlation analysis 18 3.3.2 Composites of ENSO events 22 3.3.3 Asymmetry of interior STC transport 25 3.4 Summary and discussion 28 3.4.1 Summary 28 3.4.2 Discussion 30 Chapter 4 ENSO 34 4.1 Equatorial evolution of El Nino and La Nina events 36 4.2 Equatorial and off-equatorial connections 39 4.2.1 Meridional transport 39 4.2.2 Zonal transport 41 4.3 Equatorial mass and heat budget 55 Chapter 5 Conclusions and discussion 61 5.2 Conclusion 61 5.2 Discussion 66 Reference 70 Appendix 83 CORE-II hindcast simulations 83 STCs in the CORE-II hindcast simulations 84 | |
| dc.language.iso | en | |
| dc.subject | 副熱帶經向環流 | zh_TW |
| dc.subject | 海洋傳輸 | zh_TW |
| dc.subject | 海洋波動 | zh_TW |
| dc.subject | 鎖相現象 | zh_TW |
| dc.subject | 相位轉換 | zh_TW |
| dc.subject | 聖嬰現象 | zh_TW |
| dc.subject | 副熱帶經向環流 | zh_TW |
| dc.subject | 海洋傳輸 | zh_TW |
| dc.subject | 海洋波動 | zh_TW |
| dc.subject | 鎖相現象 | zh_TW |
| dc.subject | 相位轉換 | zh_TW |
| dc.subject | 聖嬰現象 | zh_TW |
| dc.subject | phase transition | en |
| dc.subject | Pacific Subtropical Cells | en |
| dc.subject | ENSO | en |
| dc.subject | phase-locking | en |
| dc.subject | ocean wave dynamics | en |
| dc.subject | ocean currents | en |
| dc.subject | Pacific Subtropical Cells | en |
| dc.subject | ENSO | en |
| dc.subject | phase transition | en |
| dc.subject | phase-locking | en |
| dc.subject | ocean wave dynamics | en |
| dc.subject | ocean currents | en |
| dc.title | 熱帶太平洋年際震盪 | zh_TW |
| dc.title | Interannual Oscillation in Tropical Pacific | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李天明,林和,余嘉裕,洪志誠,黃彥婷 | |
| dc.subject.keyword | 副熱帶經向環流,聖嬰現象,相位轉換,鎖相現象,海洋波動,海洋傳輸, | zh_TW |
| dc.subject.keyword | Pacific Subtropical Cells,ENSO,phase transition,phase-locking,ocean wave dynamics,ocean currents, | en |
| dc.relation.page | 142 | |
| dc.identifier.doi | 10.6342/NTU201700478 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 24.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
