請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59725完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
| dc.contributor.author | Shing Tak Li | en |
| dc.contributor.author | 李承德 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:34:58Z | - |
| dc.date.available | 2022-02-16 | |
| dc.date.copyright | 2017-02-16 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-13 | |
| dc.identifier.citation | 1. Dvir, T., et al., Nanotechnological strategies for engineering complex tissues. Nat
Nano, 2011. 6(1): p. 13-22. 2. Frantz, C., K.M. Stewart, and V.M. Weaver, The extracellular matrix at a glance. Journal of Cell Science, 2010. 123(24): p. 4195-4200. 3. Karp, G., Cell and Molecular Biology: Concepts and Experiments 6th Edition Binder Ready Version with Binder Ready Survey Flyer Set. 2010: John Wiley & Sons, Incorporated. 4. Alexander, H., et al., CHAPTER 2 - Classes of Materials Used in Medicine, in Biomaterials Science. 1996, Academic Press: San Diego. p. 37-130. 5. Ge, Z., et al., Biomaterials and scaffolds for ligament tissue engineering. Journal of Biomedical Materials Research Part A, 2006. 77A(3): p. 639-652. 6. Abdellatef, S.A., et al., The Effect of Physical and Chemical Cues on Hepatocellular Function and Morphology. International Journal of Molecular Sciences, 2014. 15(3): p. 4299-4317. 7. Gaudet, C., et al., Influence of Type I Collagen Surface Density on Fibroblast Spreading, Motility, and Contractility. Biophysical Journal, 2003. 85(5): p. 3329- 3335. 8. Castner, D.G. and B.D. Ratner, Biomedical surface science: Foundations to frontiers. Surface Science, 2002. 500(1–3): p. 28-60. 9. Curtis, A. and C. Wilkinson, Topographical control of cells. Biomaterials, 1997. 18(24): p. 1573-1583. 10. Lee, C.H., et al., Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11): p. 1261-1270. 11. Wang, S., et al., Effects of fiber alignment on stem cells-fibrous scaffold interactions. Journal of Materials Chemistry B, 2015. 3(16): p. 3358-3366. 12. Engler, A.J., et al., Matrix Elasticity Directs Stem Cell Lineage Specification. Cell, 2006. 126(4): p. 677-689. 13. Browne, S., D.I. Zeugolis, and A. Pandit, Collagen: Finding a Solution for the Source. Tissue Engineering. Part A, 2013. 19(13-14): p. 1491-1494. 14. Bellincampi, L.D., et al., Viability of fibroblast-seeded ligament analogs after autogenous implantation. Journal of Orthopaedic Research, 1998. 16(4): p. 414- 420. 15. Dunn, M.G., et al., Development of fibroblast-seeded ligament analogs for ACL reconstruction. Journal of Biomedical Materials Research, 1995. 29(11): p. 1363- 1371. 16. Toosi, S., et al., PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering. Journal of Biomedical Materials Research Part A, 2016. 104(8): p. 2020-2028. 17. Giurea, A., et al., Adhesion of perichondrial cells to a polylactic acid scaffold. Journal of Orthopaedic Research, 2003. 21(4): p. 584-589. 18. Li, J., et al., 3D PLGA Scaffolds Improve Differentiation and Function of Bone Marrow Mesenchymal Stem Cell–Derived Hepatocytes. Stem Cells and Development, 2010. 19(9): p. 1427-1436. 19. Jaehyun, K., et al., In vitro osteogenic differentiation of human amniotic fluidderived stem cells on a poly(lactide- co -glycolide) (PLGA)–bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Biomedical Materials, 2013. 8(1): p. 014107. 20. Place, E.S., et al., Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews, 2009. 38(4): p. 1139-1151. 21. Zhang, Y.S., et al., Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 2016. 110: p. 45- 59. 22. Yu, J., et al., Electrospun PLGA Fibers Incorporated with Functionalized Biomolecules for Cardiac Tissue Engineering. Tissue Engineering. Part A, 2014. 20(13-14): p. 1896-1907. 23. Sahoo, S., et al., Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue engineering, 2006. 12(1): p. 91-99. 24. Tucker, N., et al., The History of the Science and Technology of Electrospinning from 1600 to 1995. Journal of Engineered Fabrics & Fibers (JEFF), 2012. 7(3). 25. Li, J., R. Shi, and S. Connell, Biomimetic architectures for tissue engineering. 2010: INTECH Open Access Publisher. 26. Deitzel, J., et al., Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer, 2001. 42(19): p. 8163-8170. 27. Han, W.-P., et al., Self-powered electrospinning apparatus based on a handoperated Wimshurst generator. Nanoscale, 2015. 7(13): p. 5603-5606. 28. Reneker, D.H., et al., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied physics, 2000. 87(9): p. 4531-4547. 29. Zong, X., et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002. 43(16): p. 4403-4412. 30. Choi, J.S., et al., Effect of organosoluble salts on the nanofibrous structure of electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate). International Journal of Biological Macromolecules, 2004. 34(4): p. 249-256. 31. Xue, N., et al., Rapid Patterning of 1-D Collagenous Topography as an ECM Protein Fibril Platform for Image. 2014. 32. Son, W.K., et al., Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Journal of Polymer Science Part B: Polymer Physics, 2004. 42(1): p. 5-11. 33. Shenoy, S.L., et al., Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer– polymer interaction limit. Polymer, 2005. 46(10): p. 3372-3384. 34. Zhao, S., et al., Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions. Journal of Applied Polymer Science, 2004. 91(1): p. 242-246. 35. Mit‐uppatham, C., M. Nithitanakul, and P. Supaphol. Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide‐6 Fibers: A Preliminary Report. in Macromolecular Symposia. 2004. Wiley Online Library. 36. Zheng, J.-Y., et al., The effect of surfactants on the diameter and morphology of electrospun ultrafine nanofiber. Journal of Nanomaterials, 2014. 2014: p. 8. 37. Fong, H., I. Chun, and D. Reneker, Beaded nanofibers formed during electrospinning. Polymer, 1999. 40(16): p. 4585-4592. 38. Yuya, N., et al., Morphology controlled electrospun poly (vinyl pyrrolidone) fibers: effects of organic solvent and relative humidity. Journal of Materials Science and Engineering with Advanced Technology, 2010. 39. Celebioglu, A. and T. Uyar, Electrospun porous cellulose acetate fibers from volatile solvent mixture. Materials Letters, 2011. 65(14): p. 2291-2294. 40. Fashandi, H. and M. Karimi, Pore formation in polystyrene fiber by superimposing temperature and relative humidity of electrospinning atmosphere. Polymer, 2012. 53(25): p. 5832-5849. 41. Kim, K.W., et al., The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly (ethylene terephthalate) nonwovens. Fibers and Polymers, 2004. 5(2): p. 122-127. 42. Sun, B., et al., Self-assembly of a three-dimensional fibrous polymer sponge by electrospinning. Nanoscale, 2012. 4(6): p. 2134-2137. 43. Li, D., Y. Wang, and Y. Xia, Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano letters, 2003. 3(8): p. 1167-1171. 44. Li, D., Y. Wang, and Y. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layer‐by‐layer stacked films.Advanced Materials, 2004. 16(4): p. 361- 366. 45. Canejo, J.P. and M.H. Godinho, Cellulose perversions. Materials, 2013. 6(4): p. 1377-1390. 46. Corey, J.M., et al., Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. Journal of Biomedical Materials Research Part A, 2007. 83(3): p. 636-645. 47. Gnavi, S., et al., The effect of electrospun gelatin fibers alignment on schwann cell and axon behavior and organization in the perspective of artificial nerve design. International journal of molecular sciences, 2015. 16(6): p. 12925-12942. 48. Tsai, S.-W., et al., Fabrication of aligned carbon nanotube/polycaprolactone/gelatin nanofibrous matrices for schwann cell immobilization. Journal of Nanomaterials, 2014. 2014: p. 4. 49. Montero, R.B., et al., Electrospun Gelatin Constructs with Tunable Fiber Orientation Promote Directed Angiogenesis. Open Journal of Regenerative Medicine, 2014. 2014. 50. Brown, D.E., Angiogenesis in Response to Varying Fiber Size in an Electrospun Scaffold In Vivo. 2012, Virginia Commonwealth University Richmond, Virginia. 51. You, Y., et al., Effect of solution properties on nanofibrous structure of electrospun poly (lactic‐co‐glycolic acid). Journal of applied polymer science, 2006. 99(3): p. 1214-1221. 52. Zhao, L., et al., Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2008. 87(1): p. 26-34. 53. Manabe, R.-i., et al., Transcriptome-based systematic identification of extracellular matrix proteins. Proceedings of the National Academy of Sciences, 2008. 105(35): p. 12849-12854. 54. Hoshiba, T., et al., Decellularized matrices for tissue engineering. Expert opinion on biological therapy, 2010. 10(12): p. 1717-1728. 55. Grinnell, F. and M. Feld, Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem, 1982. 257(9): p. 4888-4893. 56. Hoshiba, T., et al., The effect of natural extracellular matrix deposited on synthetic polymers on cultured primary hepatocytes. Biomaterials, 2006. 27(26): p. 4519- 4528. 57. Lu, H., et al., Cultured cell-derived extracellular matrix scaffolds for tissue engineering. Biomaterials, 2011. 32(36): p. 9658-9666. 58. Chen, L.B., et al., Studies on intercellular LETS glycoprotein matrices. Cell, 1978. 14(2): p. 377-391. 59. Hedman, K., et al., Isolation of the pericellular matrix of human fibroblast cultures. The Journal of Cell Biology, 1979. 81(1): p. 83-91. 60. Baiguera, S., et al., Electrospun gelatin scaffolds incorporating rat decellularized brain extracellular matrix for neural tissue engineering. Biomaterials, 2014. 35(4): p. 1205-1214. 61. Gibson, M., et al., Tissue extracellular matrix nanoparticle presentation in electrospun nanofibers. BioMed research international, 2014. 2014. 62. Bunnell, B.A., et al., Adipose-derived stem cells: isolation, expansion and differentiation. Methods, 2008. 45(2): p. 115-120. 63. Katz, A.J., et al., Emerging approaches to the tissue engineering of fat. Clinics in plastic surgery, 1999. 26(4): p. 587-603, viii. 64. Yarak, S. and O.K. Okamoto, Human adipose-derived stem cells: current challenges and clinical perspectives. Anais brasileiros de dermatologia, 2010. 85(5): p. 647-656. 65. Madonna, R., Y.-J. Geng, and R. De Caterina, Adipose tissue-derived stem cells characterization and potential for cardiovascular repair. Arteriosclerosis, thrombosis, and vascular biology, 2009. 29(11): p. 1723-1729. 66. Heydarkhan-Hagvall, S., et al., Human adipose stem cells: a potential cell source for cardiovascular tissue engineering. Cells Tissues Organs, 2008. 187(4): p. 263- 274. 67. Kim, W.-S., et al., Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. Journal of dermatological science, 2007. 48(1): p. 15-24. 68. Casteilla, L., et al., Plasticity of adipose tissue: a promising therapeutic avenue in the treatment of cardiovascular and blood diseases? Archives des Maladies du Coeur et des Vaisseaux, 2005. 98(9): p. 922-926. 69. Bhang, S.H., et al., Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials, 2011. 32(11): p. 2734-2747. 70. Khan, S., et al., Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. Journal of Vascular Surgery, 2016. 71. Colazzo, F., et al., Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors, 2014. 32(5): p. 139-149. 72. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 2002. 13(12): p. 4279-4295. 73. Ayres, C.E., et al., Measuring fiber alignment in electrospun scaffolds: a user's guide to the 2D fast Fourier transform approach. Journal of Biomaterials Science, Polymer Edition, 2008. 19(5): p. 603-621. 74. Locke, M., V. Feisst, and P. Dunbar, Concise review: human adipose‐derived stem cells: separating promise from clinical need. Stem cells, 2011. 29(3): p. 404-411. 75. Francis, M.P., et al., Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis, 2010. 6(1): p. 11-14. 76. Shafiee, H., et al., Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab on a Chip, 2010. 10(4): p. 438-445. 77. Cheng, N.-C., S. Wang, and T.-H. Young, The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 2012. 33(6): p. 1748-1758. 78. Lu, H., et al., Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials, 2011. 32(10): p. 2489-2499. 79. Dohle, D.S., et al., Chick ex ovo culture and ex ovo CAM assay: how it really works. JoVE (Journal of Visualized Experiments), 2009(33): p. e1620-e1620. 80. Cloney, K. and T.A. Franz-Odendaal, Optimized ex-ovo culturing of chick embryos to advanced stages of development. JoVE (Journal of Visualized Experiments), 2015(95): p. e52129-e52129. 81. Tandon, N., et al. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. in 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009. IEEE. 82. Da Costa, V., et al., Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy. Archives of facial plastic surgery, 2008. 10(1): p. 38-43. 83. Sun, T.-L., et al., Ex vivo imaging and quantification of liver fibrosis using secondharmonic generation microscopy. Journal of biomedical optics, 2010. 15(3): p. 036002-036002-6. 84. Wang, C.-C., et al., Label-free discrimination of normal and pulmonary cancer tissues using multiphoton fluorescence ratiometric microscopy. Applied physics letters, 2010. 97(4): p. 043706. 85. Timpl, R., et al., Laminin--a glycoprotein from basement membranes. Journal of Biological Chemistry, 1979. 254(19): p. 9933-9937. 86. Grinnell, F., R.E. Billingham, and L. Burgess, Distribution of fibronectin during wound healing in vivo. Journal of Investigative Dermatology, 1981. 76(3): p. 181- 189. 87. Ferrara, N., Vascular endothelial growth factor. Arteriosclerosis, thrombosis, and vascular biology, 2009. 29(6): p. 789-791. 88. Ruggeri, Z.M., von Willebrand factor. Journal of Clinical Investigation, 1997. 99(4): p. 559. 89. Albelda, S.M., et al., Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. The Journal of cell biology, 1991. 114(5): p. 1059-1068. 90. Lokman, N.A., et al., Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. International journal of molecular sciences, 2012. 13(8): p. 9959- 9970. 91. Zhou, Q., et al., A novel four-step system for screening angiogenesis inhibitors. Molecular medicine reports, 2013. 8(6): p. 1734-1740. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59725 | - |
| dc.description.abstract | 細胞外間質對於組織工程的應用一直是生物醫學研究人員很感興趣的一環。細胞外間質生物支架能透過使用自體細胞來創造而成,使用自體細胞所生產的生物支架能有效減少使用異種和同種異體時所產生的免疫或排斥反應等等,更可改善自體組織供應不足的問題。
在這個研究當中,我們生產了具有方向性和不具有方向性的聚乳酸共聚物電紡絲纖維不織布作為細胞培養的基板。透過培養人類脂肪幹細胞在聚乳酸共聚物纖維不織布上,細胞—細胞外間質—不織布纖維混成物會在細胞培養後7 天所取得。最後,我們利用冷凍溶解週期的方式把材料上的細胞物質去除,再透過使用磷酸三鈉水溶液處理來移除聚乳酸共聚物不織布模板。剩下的細胞外間質會使用冷凍乾燥來處理並且經過滅菌過後成為我們的天然細胞外間質生物支架。 最後,人體脂肪幹細胞會被重新培養在我們所生成的天然細胞外間質生物支架上,透過使用雞胚尿囊膜生物實驗來驗證我們所生產出的天然細胞外間質生物支架是否具有促進血管新生和傷口修復的能力。而透過具有方向性和不具有方向性的奈米纖維實驗組別我們能直接比較纖維方向性對於細胞外間質生物支架的生成與效果有什麼影響,而結果顯示出具有方向性纖維材料能更有效幫助天然細胞外間質生物支架的形成。 | zh_TW |
| dc.description.abstract | Biomedical researchers found great interest in extracellular matrix (ECM) scaffolds derived from cultured cells for tissue engineering applications. ECM scaffolds can be prepared from autologous cells to generate autologous ECM (aECM) scaffolds. It can avoid the undesired host responses that may be induced by allogenic or xenogenic materials and circumvents the limited supply of autologous tissues.
In this study, we first fabricate random and align PLGA meshes as a template for cell culturing using PLGA electrospun fibers. Afterward, Human adipose stem cell (hASCs) were seeded onto the PLGA template. Cell-ECM-PLGA constructs were formed by the cultured cells in the PLGA mesh after seven days. Finally, the whole product was decellularized by freeze-thaw cycling and tri-sodium phosphate aqueous solution treatment to remove the undesired PLGA template. The ECM left behind will be freeze-dried and sterilized. Finally, hASCS were seeded onto the ECM scaffold and tested in vivo by using Chick Chorioallantoic Membrane (CAM) assay. The results showed that the ECM scaffold provided wonderful effort in angiogenesis. And the ECM scaffold fabricated in the align PLGA mesh showed a better result compare to the random PLGA meshes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:34:58Z (GMT). No. of bitstreams: 1 ntu-106-R03524103-1.pdf: 9458795 bytes, checksum: d7376f8a131716edfc233ec103519772 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 ........................................................................................................... # 誌謝 ................................................................................................................................... i 中文摘要 ......................................................................................................................... iii ABSTRACT .................................................................................................................... iv CONTENTS ...................................................................................................................... v LIST OF FIGURES ......................................................................................................... ix LIST OF TABLES ........................................................................................................... xv LIST OF EQUATION ................................................................................................... xvi Chapter 1 Introduction .............................................................................................. 1 1.1 Tissue Engineering ......................................................................................... 1 1.2 Extracellular matrix and scaffolds .................................................................. 2 1.3 Physical factors influencing cellular behaviors .............................................. 3 1.4 Electrospinning ............................................................................................... 9 1.4.1 History of Electrospinning .................................................................... 9 1.4.2 Electrospinning Overview ..................................................................... 9 1.4.3 Parameters of Electrospinning ............................................................ 12 1.4.4 Oriented nanofibers ............................................................................. 12 1.4.5 Fiber Alignment Influence to Cell Behaviors ..................................... 15 1.4.6 Poly (lactic-co-glycolic acid) (PLGA) for electrospinning ................. 15 1.5 Decellularized Extracellular Matrix ............................................................. 17 1.5.1 Cell-derived Extracellular Matrix Scaffold ......................................... 17 1.5.2 Application of Electrospun nanofiber with decellularized ECM ........ 18 1.5.3 Decellularized Matrix Corporate with Electrospinning ...................... 19 1.6 Human Adipose Stem Cell (hASC) .............................................................. 21 1.7 Motive and Aims .......................................................................................... 23 1.8 Research framework ..................................................................................... 24 Chapter 2 Material and Methods ........................................................................... 26 2.1 Materials ....................................................................................................... 26 2.2 Instruments ................................................................................................... 29 2.3 Solution Formula .......................................................................................... 31 2.3.1 Phosphate Buffered Saline Solution (PBS), pH 7.4 ............................ 31 2.3.2 DMEM/F-12 Culture Medium (Growth medium) .............................. 31 2.3.3 DMEM-High Glucose Culture Medium (DMEM-HG) ...................... 31 2.3.4 Endothelial Differentiation Medium (Different Medium) .................. 31 2.4 Experimental Method ................................................................................... 33 2.4.1 Fabrication of PLGA electrospinning nanofiber template .................. 33 2.4.2 Surface topographic study for electrospun nanofibers template ......... 33 2.4.3 Electrospun nanofibers alignment calculation .................................... 34 2.4.4 Electrospun nanofibers diameter calculation ...................................... 34 2.4.5 Thickness calculation for electrospun nanofibers template ................ 34 2.4.6 Water contact angle analysis ............................................................... 35 2.4.7 Porosity analysis .................................................................................. 35 2.4.8 Tensile Testing ..................................................................................... 35 2.4.9 2D control preparation ........................................................................ 36 2.4.10 hASC isolation from adipose tissue .................................................... 36 2.4.11 hASC culture and seeding ................................................................... 37 2.4.12 Cell Morphology ................................................................................. 38 2.4.13 Nucleus and F-actin labeling ............................................................... 38 2.4.14 Live/Dead assay .................................................................................. 38 2.4.15 AlamarBlue Assay for Cell Proliferation ............................................ 39 2.4.16 RNA Extraction ................................................................................... 39 2.4.17 cDNA Synthesis by Reverse Transcription (RT-PCR) ........................ 40 2.4.18 Real time Polymerase Chain Reaction (qPCR) ................................... 41 2.4.19 Decellularization and Template Removal ........................................... 42 2.4.20 Chick Chorioallantoic Membrane Assay (CAM Assay) ..................... 43 2.4.21 Statistical Analysis .............................................................................. 44 Chapter 3 Results and discussion ........................................................................... 49 3.1 Fabrication of Electrospun nanofibers .......................................................... 49 3.2 Characterization of Electrospun Template .................................................... 50 3.2.1 Fibers alignment .................................................................................. 50 3.2.2 Fibers diameter and membrane thickness ........................................... 50 3.2.3 Membrane hydrophilicity and porosity ............................................... 51 3.2.4 Mechanical Properties ......................................................................... 51 3.3 Cell morphology ........................................................................................... 52 3.4 Cytotoxicity .................................................................................................. 54 3.5 Collagen Deposition Quantification ............................................................. 54 3.6 Proliferation rate ........................................................................................... 55 3.7 Gene expression ............................................................................................ 56 3.8 Decellularization of nanofiber template ....................................................... 57 3.9 CAM assay ................................................................................................... 58 3.9.1 In ovo model ........................................................................................ 58 3.9.2 Ex ovo model ....................................................................................... 59 CONCLUSION ............................................................................................................... 88 FUTURE PROSPECTIVES ............................................................................................ 90 REFERENCE .................................................................................................................. 91 | |
| dc.language.iso | en | |
| dc.subject | 脂肪幹細胞 | zh_TW |
| dc.subject | 方向性 | zh_TW |
| dc.subject | 電紡絲 | zh_TW |
| dc.subject | 細胞外間質 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 脂肪幹細胞 | zh_TW |
| dc.subject | 方向性 | zh_TW |
| dc.subject | 電紡絲 | zh_TW |
| dc.subject | 血管新生 | zh_TW |
| dc.subject | 細胞外間質 | zh_TW |
| dc.subject | electrospinning | en |
| dc.subject | angiogenesis | en |
| dc.subject | hASC | en |
| dc.subject | orientation | en |
| dc.subject | electrospinning | en |
| dc.subject | extracellular matrix | en |
| dc.subject | angiogenesis | en |
| dc.subject | hASC | en |
| dc.subject | orientation | en |
| dc.subject | extracellular matrix | en |
| dc.title | 利用人類脂肪幹細胞與奈米纖維製備細胞衍生模板應用於促進血管新生 | zh_TW |
| dc.title | Fabrication and Characterization of Human Adipose Stem Cell-derived Scaffold via Nanofibers for Enhancing Angiogenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡偉博(Wei-Bor Tsai),鄭乃禎(Nai-Chen Cheng),羅世強(Shyh-Chyang Luo) | |
| dc.subject.keyword | 細胞外間質,電紡絲,方向性,脂肪幹細胞,血管新生, | zh_TW |
| dc.subject.keyword | extracellular matrix,electrospinning,orientation,hASC,angiogenesis, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201700548 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 9.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
