請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59718完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 靳宗洛 | |
| dc.contributor.author | Yu-Jen Chen | en |
| dc.contributor.author | 陳昱仁 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:34:38Z | - |
| dc.date.available | 2019-02-17 | |
| dc.date.copyright | 2017-02-17 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-13 | |
| dc.identifier.citation | Baniwal SK, Chan KY, Scharf K-D, Nover L (2007) Role of Heat Stress Transcription Factor HsfA5 as Specific Repressor of HsfA4. J Biol Chem 282: 3605-3613
Banti V, Mafessoni F, Loreti E, Alpi A, Perata P (2010) The Heat-Inducible Transcription Factor HsfA2 Enhances Anoxia Tolerance in Arabidopsis. Plant Physiol 152: 1471-1483 Charng Y-Y, Liu H-C, Liu N-Y, Hsu F-C, Ko S-S (2006) Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired Thermotolerance during Long Recovery after Acclimation. Plant Physiol 140: 1297-1305 Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65: 1150-1160 Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R (2007) The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. J Biol Chem 282: 9260-9268 Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible W-R (2005) Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiol 139: 5-17 Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139: 847-856 Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145: 147-159 Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45: 616-629 Ehlert A, Weltmeier F, Wang X, Mayer CS, Smeekens S, Vicente-Carbajosa J, Dröge-Laser W (2006) Two-hybrid protein–protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46: 890-900 Eisenhardt Benjamin D (2013) Small heat shock proteins: recent developments. Biomol Concepts 4: 583-595 Englbrecht CC, Schoof H, Böhm S (2004) Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC genomics 5: 39 Hsu SF, Lai HC, Jinn TL (2010) Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiol 153: 773-784 Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo Z-F (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39: 969-987 Huang YC, Niu CY, Yang CR, Jinn TL (2016) The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses. Plant Physiol 172: 1182-1199 Ikeda M, Mitsuda N, Ohme-Takagi M (2011) Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157: 1243-1254 Klug A, Schwabe J (1995) Protein motifs 5. Zinc fingers. FASEB J 9: 597-604 Kodaira K-S, Qin F, Tran L-SP, Maruyama K, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis Cys2/His2 Zinc-Finger Proteins AZF1 and AZF2 Negatively Regulate Abscisic Acid-Repressive and Auxin-Inducible Genes under Abiotic Stress Conditions. Plant Physiol 157: 742-756 Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf K-D (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10: 310-316 Kotak S, Port M, Ganguli A, Bicker F, Koskull‐Döring V (2004) Characterization of C‐terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J 39: 98-112 Larkindale J, Hall JD, Knight MR, Vierling E (2005) Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol 138: 882-897 Larkindale J, Vierling E (2008) Core Genome Responses Involved in Acclimation to High Temperature. Plant Physiol 146: 748-761 Liu H-C, Charng Y-Y (2013) Common and Distinct Functions of Arabidopsis Class A1 and A2 Heat Shock Factors in Diverse Abiotic Stress Responses and Development. Plant Physiol 163: 276-290 Liu H-C, Liao H-T, Charng Y-Y (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34: 738-751 Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi‐Shinozaki K (2004) Identification of cold‐inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38: 982-993 Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11: 15-19 Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37: 118-125 Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu J-K (2006) Gain‐and loss‐of‐function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Lett 580: 6537-6542 Nover N, Bharti K, XF, ring P, Mishra SK, Ganguli A, Scharf K-D (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6: 177-189 Ogawa D, Yamaguchi K, Nishiuchi T (2007) High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J Exp Bot 58: 3373-3383 Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959-1968 Parsell D, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437-496 Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279: 11736-11743 Sakamoto H, Araki T, Meshi T, Iwabuchi M (2000) Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248: 23-32 Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-Type Zinc-Finger Proteins Function as Transcription Repressors under Drought, Cold, and High-Salinity Stress Conditions. Plant Physiol 136: 2734-2746 Schöffl F, Prändl R, Reindl A (1998) Regulation of the Heat-Shock Response. Plant Physiol 117: 1135-1141 Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: Structure, function and evolution. Biochim Biophys Acta 1819: 104-119 Schramm F, Larkindale J, Kiehlmann E, Ganguli A, Englich G, Vierling E, Von Koskull-Döring P (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. Plant J 53: 264-274 Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3: 217-223 Takatsuji H (1998) Zinc-finger transcription factors in plants. Cell Mol Life Sci 54: 582-596 Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Biol 42: 579-620 Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41: 195-211 Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64: 391-403 Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572 Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim J-M, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286: 321-332 Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J, Kidokoro S, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368: 515-521 Zhao C, Lang Z, Zhu J-K (2015) Cold responsive gene transcription becomes more complex. Trends Plant Sci 20: 466-468 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59718 | - |
| dc.description.abstract | 熱逆境代表溫度高於生物適合生長的溫度,並會導致植物的生長與發育受到影響並減少,有時甚至能導致植物死亡。為了生存,植物發展出了一套機制來對抗熱逆境以提升自己的存活率,這個機制被稱為熱逆境反應(heat stress response, HSR),在該機制中,透過熱休克轉錄因子的調控,生物體內會累積熱休克蛋白(heat shock protein, HSP)來保護自己免受熱逆境的影響。在之前的研究中,我們報導了一種特殊的熱休克轉錄因子A6b (HSFA6b)透過離層酸(ABA)調控了植物的熱逆境反應。在該實驗的微陣列晶片資料顯示中,我們偵測到了一個鋅手指蛋白轉錄因子鋅手指蛋白3 (Zinc protein 3, ZF3)被認為是受到HSFA6b調控。這裡我們將描述ZF3在熱逆境下的調控機制與功能,我們的實驗證實了ZF3會受到熱逆境的誘導並且作用在細胞核中。而ZF3的調控則受到熱休克轉錄因子間交互網路的影響,其中,HSFA3和HSFA6b是最影響其表現的調控者,除了此二者之外,其他的熱休克轉錄因子例如HSFA1b和HSFA4也會影響其表現量並且有可能是透過乾旱反應結合序列蛋白(DREB)與HSFA3來調控其表現量。另外一方面,剔除ZF3的阿拉伯芥在獲得性耐熱反應中會有更好的耐熱能力,這告訴我們ZF3的功能應該是熱逆境反應的抑制因子,其他實驗中,我們進一步調查了熱逆境反應基因在熱逆境下被ZF3影響的情形,並證實了ZF3能抑制sHSP和氧化逆境基因APX2的表現量。這告訴我們ZF3是一個受熱誘導表現在細胞核內並作為抑制因子調控熱逆境反應的基因。 | zh_TW |
| dc.description.abstract | Heat stress (HS) refers to temperatures above the optimum growth temperatures for organisms. This stress can lead plants to experience severe retardation in growth and development, and in extreme cases cause death. In order to survive, a conserved mechanism of heat stress responses (HSR) is developed to accumulate heat shock proteins (HSPs) to protect plants via a group of transcription factors called heat shock factors (HSFs). In our previous study, we reported that a special Arabidopsis HSF HSFA6b regulates the HSR via the ABA-dependent pathway. In the heat response microarray data, we detected a zinc protein transcription factor Zinc Finger 3 (ZF3) which was suggested to be regulated under HSFA6b. Here, we describe the regulation and function of ZF3 under HS. Our investigation shows that the expression of ZF3 is induced by heat stress and ZF3 is localized to the nucleus. ZF3 regulation is influenced by the complex network of HSFs; our data shows that ZF3 is strongly regulated by HSFA3 and HSFA6b while other HSFs such as HSFA1b may also influence the regulation of ZF3 via the DREB-HSFA3 pathway. In addition, ZF3 knockout mutants displayed increased thermotolerance as compared with the WT for acquired thermotolerance; this indicated that ZF3 is a repressor in HSR. Further investigation of gene expression showed that ZF3 can repress the expression of sHSPs and of antioxidant gene APX2. Thus, we report that ZF3 is a heat induced transcription factor that was confirmed to be localized in the nucleus, and functions as a HSR negative regulator in Arabidopsis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:34:38Z (GMT). No. of bitstreams: 1 ntu-106-R02b42018-1.pdf: 3118920 bytes, checksum: 019269d8107564ba58048d5172cb188c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要 3
Abstract 4 Abbreviations 5 Introduction 7 Heat Stress, Thermotolerance, and Heat Shock Response 7 The Arabidopsis Heat Shock Factors 9 The C2H2 Zinc protein family 11 Genetic and biochemical studies of C2H2 zinc proteins C1 family 12 The Arabidopsis Zinc Finger (AZF, ZF) family 14 Motivation and Objective 15 Materials and Methods 16 Plant Materials and Growth Conditions 16 RNA Extraction and cDNA Synthesis 16 Quantitative Real-Time PCR (qRT-PCR) 17 Arabidopsis protoplasts preparation and infection 17 Subcellular localization assay 18 Protoplast Transactivation Assay 19 Thermotolerance Tests 20 Statistical analysis 20 Primers and Accession Numbers 21 Results 22 ZF3 expression was upregulated by HSFA6b and heat stress (HS) response 22 ZF3 expression was induced by HS and cold, but not by salt and ABA 22 Nuclear localization of ZF3 23 ZF3 expression profile in response to HS 23 The relationship between ZF3 and HSFA6b 24 ZF3 expression was co-mediated by other HSFs 25 The potential cis-elements in ZF3 promoter region 25 Characterization of ZF3-knockout mutant 26 Higher-thermotolerant ability in ZF3-knockout mutant 26 The HS-related genes upregulation in ZF3-knockout mutant in response to HS 27 The ROS-related gene expression was unaffected in ZF3-knockout mutant 27 ZF3, as a repressor, mediated APX2 expression 28 Discussion 29 ZF3 is responded to heat stress 29 ZF3 is a nuclear-localized factor 30 The mediation of ZF3 by HSFs 30 The character of ZF3 in HS response 34 ZF3 is a negative regulator that regulated the HSR genes 34 The regulation of ROS related gene 35 Conclusions and Prospects 36 Tables 38 Figures 42 References 65 | |
| dc.language.iso | en | |
| dc.subject | 熱休克 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 鋅手指蛋白 | zh_TW |
| dc.subject | 耐熱性 | zh_TW |
| dc.subject | 負向調控 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 鋅手指蛋白 | zh_TW |
| dc.subject | 熱休克 | zh_TW |
| dc.subject | 耐熱性 | zh_TW |
| dc.subject | 負向調控 | zh_TW |
| dc.subject | Thermotolerance | en |
| dc.subject | Arabidopsis thaliana | en |
| dc.subject | Zinc Finger | en |
| dc.subject | Heat Shock | en |
| dc.subject | Thermotolerance | en |
| dc.subject | Negative regulator | en |
| dc.subject | Zinc Finger | en |
| dc.subject | Heat Shock | en |
| dc.subject | Negative regulator | en |
| dc.subject | Arabidopsis thaliana | en |
| dc.title | 阿拉伯芥鋅手指蛋白3受熱休克轉錄因子調控並作為抑制子調控熱休克反應 | zh_TW |
| dc.title | Arabidopsis Zinc Finger 3 is regulated by heat shock factors and acts as a repressor in response to heat stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉國楨,鄭石通,張英 | |
| dc.subject.keyword | 阿拉伯芥,鋅手指蛋白,熱休克,耐熱性,負向調控, | zh_TW |
| dc.subject.keyword | Arabidopsis thaliana,Zinc Finger,Heat Shock,Thermotolerance,Negative regulator, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU201700559 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-02-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
