Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59612
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor丁建均(Jian-Jiun Ding)
dc.contributor.authorHung-Yi Chenen
dc.contributor.author陳宏毅zh_TW
dc.date.accessioned2021-06-16T09:29:58Z-
dc.date.available2020-02-07
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-03-02
dc.identifier.citationA. H.264/AVC Video Compression Standard and Other General Related Works
[1] I. E. Richardson, “H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia,” John Wiley & Sons, 2004.
[2] I. E. Richardson, “The H.264 Advanced Video Compression Standard,” 2nd ed. John Wiley & Sons, 2011.
[3] ITU-T. ISO DIS 10918-1 Digital compression and coding of continuous-tone still images (JPEG). Recommendation T.81
[4] 酒井善則、吉田俊之 共著,白執善 編譯,“影像壓縮技術”,全華,2004。
[5] R. D. Dony, 'Karhunen-Loève Transform,' The Transform and Data Compression Handbook. CRC Press, Boca Raton, London, New York, Washington, DC, 2001.
[6] H. S. Malvar, A. Hallapuro, M. Karczewicz and L. Kerofsky, 'Low-complexity transform and quantization in H.264/AVC,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 598-603, July 2003.
[7] J. Teyhola, 'A Compression Method for Clustered Bit-Vectors,' Information Processing Letters, vol. 7, no. 6, pp. 308-311, Oct. 1978.
[8] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 630-636, July 2003.
[9] R.C. Gonzalez, Digital image processing, 3rd ed., N.J., Prentice Hall, 2008.
[10] H. Malvar and G. Sullivan, “Transform, Scaling & Color Space Impact of Professional Extensions,” ITU-T/ISO/IEC JVT Document JVT-H031, May 2003.
[11] H. Malvar and G. Sullivan, “YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range,” ITU-T/ISO/IEC JVT Document JVT-I014, July 2003.
[12] D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098-1101, Sep. 1952.
[13] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM Journal of Research and Development, vol. 23, no. 2, pp. 149-162, March 1979.
[14] S. W. Golomb, 'Run length encodings,' IEEE Trans. Information Theory, vol. IT12, pp. 399-401, 1966.
B. Block Searching Algorithms for Motion Estimation
[15] Renxiang Li, Bing Zeng, and Ming L. Liou, “A New Three-Step Search Algorithm for Block Motion Estimation”, IEEE Trans. Circuits And Systems For Video Technology, vol 4., no. 4, pp. 438-442, Aug. 1994.
[16] Jianhua Lu, and Ming L. Liou, “A Simple and Efficent Search Algorithm for Block-Matching Motion Estimation”, IEEE Trans. Circuits And Systems For Video Technology, vol 7, no. 2, pp. 429-433, Apr. 1997.
[17] Lai-Man Po, and Wing-Chung Ma, “A Novel Four-Step Search Algorithm for Fast Block Motion Estimation,” IEEE Trans. Circuits And Systems For Video Technology, vol 6, no. 3, pp. 313-317, June 1996.
[18] Shan Zhu, and Kai-Kuang Ma, “ A New Diamond Search Algorithm for Fast Block-Matching Motion Estimation,” IEEE Trans. Image Processing, vol 9, no. 2, pp. 287-290, Feb. 2000.
[19] Yao Nie, and Kai-Kuang Ma, “Adaptive Rood Pattern Search for Fast Block-Matching Motion Estimation,” IEEE Trans. Image Processing, vol 11, no. 12, pp. 1442-1448, Dec. 2002.
[20] Zhu, C., X. Lin, and L. Chau, “Hexagon based search pattern for fast block motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, vol 12, no.5, pp. 349–355, May 2002
[21] S. Soongsathitanon, W. L. Woom and S. S. Dlay, 'Fast search algorithms for video coding using orthogonal logarithmic search algorithm,' IEEE Transactions on Consumer Electronics, vol. 51, no. 2, pp. 552-559, May 2005.
[22] Shilpa P. Metkar, and Sanjay N. Talbar, “Fast Motion Estimation Using Modified Orthogonal Search Algorithm for Video Compression,” Springer, Signal, Image and Video Processing, vol. 4, no.1, pp. 123-128, 2010.
[23] S. Immanuel Alex Pandian, G. Josemin Bala and J. Anitha, 'Enhanced modified orthogonal search for motion estimation,' IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 907-910, 2011.
[24] Purwar, R.K.,Rajpal, N., “A fast block motion estimation algorithm using dynamic pattern search,” Springer, Signal, Image and Video Processing , vol.7, no.1, pp. 151-161, 2011.
[25] N. A. Hamid, A. M. Darsono, N. A. Manap, R. A. Manap, and H. A.Sulaiman, “A New Orthogonal – Diamond Search Algorithm for Motion Estimation,” International Conference on Computer, Communications, and Control Technology (I4CT), pp. 467–471, 2014.
[26] Hadi Amirpour and Amir Mousavinia, “A dynamic search pattern motion estimation algorithm using prioritized motion vectors,” Springer, Signa,l Image and Video Processing, vol. 10, no. 8, pp 1393–1400, Nov. 2016
[27] Jong-Nam Kim, Sung-Cheal Byun, Yong-Hoon Kim and Byung-Ha Ahn, 'Fast full search motion estimation algorithm using early detection of impossible candidate vectors,' IEEE Transactions on Signal Processing, vol. 50, no. 9, pp. 2355-2365, Sep 2002.
[28] Yankang Wang, Yanqun Wang, and H. Kuroda, “A globally adaptive pixel-decimation algorithm for block-motion estimation,” IEEE Transactions on Circuits and Systems for Video Technology, 10(6):1006 –1011, Sep 2000.
[29] Jong-Nam Kim and Tae-Sun Choi, 'Adaptive matching scan algorithm based on gradient magnitude for fast full search in motion estimation,' IEEE Transactions on Consumer Electronics, vol. 45, no. 3, pp. 762-772, Aug 1999.
[30] C. Chok-Kwan and P. Lai-Man, 'Normalized partial distortion search algorithm for block motion estimation,' IEEE Transactions on Circuits& Systems for Video Technology, vol. 10, pp. 417-22, 2000.
[31] K. Lengwehasarit and A. Ortega, 'Probabilistic partial-distance fast matching algorithms for motion estimation,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 2, pp. 139-152, Feb 2001.
[32] Chung-Neng Wang, Shin-Wei Yang, Chi-Min Liu, and Tihao Chiang, “A hierarchical decimation lattice based on n-queen with an application for motion estimation,” IEEE Signal Processing Letters, vol. 10, no.8, pp. 228 – 231, Aug. 2003.
[33] Aroh Barjatya, 'Block Matching Algorithms for Motion Estimation', Digital Image Processing, [Online], Apr. 26, 2004, Utah State Univesity, URL: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8761&objectType=File.
[34] B. Montrucchio and D. Quaglia, “New sorting-based lossless motion estimation algorithms and a partial distortion elimination performance analysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 2, pp. 210 – 220, Feb. 2005.
[35] Mei-Juan Chen, Liang-Gee Chen, Tzi-Dar Chiueh, and Yung-Pin Lee, “A new blockmatching criterion for motion estimation and its implementation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no.3, pp. 231 –236, Jun 1995.
[36] Jong-Nam Kim, Sung-Cheal Byun, Yong-Hoon Kim and Byung-Ha Ahn, 'Fast full search motion estimation algorithm using early detection of impossible candidate vectors,' IEEE Transactions on Signal Processing, vol. 50, no. 9, pp. 2355-2365, Sep 2002.
[37] Purwar, R.K., Rajpal, N.: A fast block motion estimation algorithm using dynamic pattern search. Springer, Signa,l Image and Video Processing, vol. 7 no.1, pp. 151–161, 2013.
C. Feature-based Motion Estimation
[38] M. M. Mizuki, U. Y. Desai, I. Masaki, and A. Chandrakasan, “A binary block matching architecture with reduced power consumption and silicon area requirements,” IEEE ICASSP-96, Atlanta, 1996, vol.6, pp. 3248–3251.
[39] K. T. Choi, S. C. Chan, and T. S. Ng, “A new fast motion estimation algorithm using hexagonal subsampling pattern and multiple candidates search,” Proc. ICIP, vol. 2, pp. 497–500, 1996.
[40] B. Natarajan, V. Bhaskaran and K. Konstantinides, 'Low-complexity block-based motion estimation via one-bit transforms,' in IEEE Transactions on Circuits and Systems for Video Technology, vol. 7, no. 4, pp. 702-706, Aug 1997.
[41] A. Erturk and S. Erturk, 'Two-bit transform for binary block motion estimation,' IEEE Transactions on Circuits and Systems for Video Technology, vol. 15, no. 7, pp. 938-946, July 2005.
[42] Changryoul Choi, Jechang Jeong, 'Constrained two-bit transform for low complexity motion estimation,' IEEE International Conference on Consumer Electronics (ICCE), pp. 350-351, 2013.
[43] Changryoul Choi, Jechang Jeong, 'Low Complexity Weighted Two-Bit Transforms Based Multiple Candidates Motion Estimation Exploiting the Redundant Computations,“ Computer Graphics, Imaging and Visualization (CGIV), pp. 101-104, Sep. 2010
[44] Changryoul Choi and Jechang Jeong, “ Fast Motion Estimation Algorithm Using Dual Bit-plane Matching Criteria,” Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 398-401, May 2014.
[45] C. Choi and J. Jeong, 'Bit-inverted Gray coded bit-plane matching for low complexity motion estimation,' International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS), pp. 230-234, Feb. 2015.
[46] P. Bhagya Sri, E. Roohi, Osman Siddiqui, P. Muralidhar and C.B. Rama Rao, “Filtered two-bit transform for block based Motion Estimation,” Signal Processing, Communication and Networking (ICSCN), pp. 1-5, Mar. 2015
[47] C. Choi and J. Jeong, 'Successive Elimination Algorithm for Constrained One-bit Transform Based Motion Estimation Using the Bonferroni Inequality,' IEEE Signal Processing Letters, vol. 21, no. 10, pp. 1260-1264, Oct. 2014.
[48] Wai Chong Chia, Li Wern Chew, Li-Minn Ang, and Kah Phooi Seng, “2D One-Bit-Transform Motion Estimation Algorithm with Smoothing and Preprocessing,” Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), Mar. 2009.
[49] M. K. Gullu, 'Weighted constrained one-bit transform based fast block motion estimation,' IEEE Transactions on Consumer Electronics, vol. 57, no. 2, pp. 751-755, May 2011.
[50] S. Yavuz, A. Celebi, M. Aslam and O. Urhan, 'Selective gray-coded bit-plane based low-complexity motion estimation and its hardware architecture,' IEEE Transactions on Consumer Electronics, vol. 62, no. 1, pp. 76-84, February 2016.
[51] Celebi, A., et al, “Truncated Gray-coded bit-plane matching based motion estimation method and its hardware architecture,” IEEE Trans. Consumer Electronics, vol. 55, no. 3, pp. 1530-1536, Aug. 2009.
[52] S. Erturk, 'Multiplication-Free One-Bit Transform for Low-Complexity Block-Based Motion Estimation,' IEEE Signal Processing Letters, vol. 14, no. 2, pp. 109-112, Feb. 2007.
[53] C. Choi and J. Jeong, 'Enhanced two-bit transform based motion estimation via extension of matching criterion,' IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1883-1889, Aug. 2010.
[54] R. M. Haralick and L. G. Shapiro, “Computer and Robot Vision,” Vol. I, Addison Wesley, Reading, MA, 1992.
[55] O. Urhan, and S. Ertürk, “Constrained one-bit transform for low complexity block motion estimation,” IEEE Transactions Circuits and Systems Video Technology, vol. 17, no.4, pp. 478-482, Apr. 2007.
D. Adaptive Arithmetic Coding
[56] P. G. Howard and J. S. Vitter, “Practical implementations of arithmetic coding,” in Image and Text Compression, J. A. Storer, Ed. Boston, MA: Kluwer, pp. 85–112, 1992.
[57] Abdullah Al Muhit, H.264 Baseline Codec (Encoder/Decoder), [online source] https://sites.google.com/site/almuhit/research/video-coding-compression
[58] L. Zhang, D. Wang and D. Zheng, 'Improved adaptive arithmetic coding based on optimal segmentation of code symbols for lossless motion vector coding,' IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), pp. 1-5, 2011.
[59] L. Zhang, D. Wang and D. Zheng, 'Segmentation of Source Symbols for Adaptive Arithmetic Coding,' IEEE Transactions on Broadcasting, vol. 58, no. 2, pp. 228-235, June 2012.
[60] J. J. Ding, Y. W. Huang, and H. H. Chen, “Weighted adaptive arithmetic coding,” National Computer Symposium, Taichung, Taiwan, Dec. 2013.
E. Sub-pixel Motion Estimation without Interpolation by Optical Flow and Feature Mask
[61] J. Jain and A. Jain, 'Displacement Measurement and Its Application in Interframe Image Coding,' IEEE Transactions on Communications, vol. 29, no. 12, pp. 1799-1808, Dec 1981.
[62] Richard Szeliski, Computer Vision: Algorithms and Applications, 2010.
[63] Michal Irani and Shmuel Peleg, “Improving resolution by image registration,” in CVGIP: Graphical Models and Image Processing, vol. 53, pp. 324–335, 1993.
[64] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” ARTIFICAL INTELLIGENCE, vol. 17, pp. 185–203, 1981.
[65] J. Barron, S. Beauchemin, and D. Fleet, “Performance of Optical Flow Techniques,” Int’l J. Computer Vision, vol. 12, no. 1, pp. 43-77, 1994.
[66] T. Brox and J. Malik, 'Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 500-513, March 2011.
[67] Zoltan Kato, “Optical Flow,” (online)
http://www.inf.u-szeged.hu/~kato/teaching/computervision/08-OpticalFlow.pdf.
[68] B. Horn and B. Schunck, “Determining optical flow,” Artificial Intelligence, 17:185–203, 1981.
[69] S. Uras, F. Girosi, A. Verri, and V. Torre, “A computational approach to motion perception,” Biological Cybernetics, 60:79–87, 1988.
[70] S. H. Chan, D. Vo, and T. Q. Nguyen, “Sub-pixel motion estimation without interpolation,” IEEE Proceedings of Conference on Acoustics, Speech and Signal Processing (ICASSP '10), pp. 722-725, 2010.
[71] Online Source Code of [70]:
http://scholar.harvard.edu/stanleychan/software/subpixel-motion-estimation-without-interpolation
[72] A. Saha, J. Mukherjee, and S. Sural, “New pixel decimation patterns for block matching in motion estimation,” Image Communication, vol. 23, no. 10, pp. 725–738, Nov. 2008.
[73] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2007.
[74] J. Canny, 'A Computational Approach to Edge Detection,' in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986.
[75] Shih-Chung Chuang, 'Image rendering techniques and depth recovery for light field images,' M.S. thesis, National Taiwan University, Taipei, Taiwan, 2015.
F. Video Sequences Resources
[76] Xiph.org Video Test Media [online] https://media.xiph.org/video/derf/
[77] Changryoul Choi (denebchoi@gmail.com), “Providing Dancer.yuv and Children.yuv video sequences,” (private communication), Hanyang, Korea, 2016.
G. Published Conference Paper
[78] Li-Ang Chen, Hung-Yi Chen and Jian-Jiun Ding, “Shape Encoding and Shape Adaptive Prediction for Object Oriented Image Compression,” Computer Vision, Graphics, and Image Processing, Keelung, Taiwan, Aug. 2016.
[79] Hung-Yi Chen, Jian-Jiun Ding and Chiou-Shann Fuh, “A Region of Interest Based Surveillance Video Coding,” Computer Vision, Graphics, and Image Processing, Keelung, Taiwan, Aug. 2016.
[80] Chi-Wei Wang, Jian-Jiun Ding and Hung-Yi Chen, “Two-Stage Haze Removal Algorithm with Color Preserving,” International Congress on Engineering and Information, Osaka, Japan, May 2016.
[81] Yu-Chen Liu, Jian-Jiun Ding, Yao-Ren Chang and Hung-Yi Chen, “Real Time Sensing and Shadow Robustness Video Foreground Segmentation Algorithm,” International Congress on Engineering and Information, Osaka, Japan, May 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59612-
dc.description.abstract影像及視訊的服務在現代人的生活中事很重要的一環,不管是在網路影音串流(Youtube)或是影音儲存媒體 (藍光光碟Blu-ray Disc),都需要影像和視訊壓縮技術。近年來更由於影像與視訊應用的快速成長,人們對視訊服務的需求也日漸增加,例如:近年來很多電影或遊戲都提供觀眾更好的視覺感受,2020年奧運主辦國日本已將8K UHD(4320p),也就是7680×4320解析度列為奧運直播的標準。由上述例子可以預見,在未來人們會有比現在更好的視覺感受,但也需要在更短的時間內,處理更大量的影像及視訊資料,因此提供一個在資料儲存與運算時間都能更有效率的影像及視訊的服務有其必要性。
針對視訊資料的畫面間預測編碼在現行視訊壓縮標準是很重要的一部分,而動態估測 (Motion Estimation)是畫面間預測編碼中最重要的一個函式。因為目前廣為流通的視訊壓縮標準 (MPEG4, H.264/AVC 和 HEVC)並未定義動態估測的實現方式,但為求絕對精準性大部分皆採用竭盡式搜尋法(Full Search)來找到方塊最佳匹配,然而這造成運算量與運算時間非常龐大。在這篇論文裡我們首先提出一個有效率的搜尋演算法,它能提供接近理論上限的匹配精準度以及非常低的搜尋成本。它具備兩大特徵:推展的支持區域 (Region of support)和利用抽樣點陣塊 (Decimation lattice)來實現低成本搜尋。跟過去的方法相比,我們所提出的演算法有著更高的匹配精準度與更低的搜尋成本。
有些動態估測的方法先利用一位元轉換將影片畫格轉成非零即一的單位元畫格,之後在使用特徵式動態估測去減低運算複雜度。在本論文的第二部分,我們引進一個加權式的模板匹配方法,利用前一段所提出的特徵點搜尋法,在快速搜尋法的架構底下依然能找到精準的動態估測結果。與其他特徵式動態估測演算法比較的實驗結果顯示,平均而言,我們提出的方法有著最高的匹配精準度以及最低的搜尋成本。
熵編碼器的效率提升也是影像視訊壓縮裡很重要的一個課題。H.264/AVC編碼標準所使用的殘餘編碼為適應性變動長度編碼法以及指數哥倫布編碼,我們針對參考前後文選用編碼表的方法本身做微幅改良,以提升更好的編碼效果。另外,我們也提出改良式算術編碼,針對動作估測殘餘、動作向量殘餘做更有效率的編碼。
此外在視訊編碼裡,從H.263開始的標準 (包含後面的H.264/AVC,HEVC)都引入次像素 (sub-pixel)的概念來找出更細微的動態資訊,然而現行方法之次像素動態估測的最小單位以及相對應的內插濾波器必須事前先定義好,不免有其局限性。為了解決這個問題,我們提出了使用光流來做動態估測的方法,它的好處是摒棄內插濾波器並能根據使用者定義的最小單位做動態估測。
zh_TW
dc.description.abstractNowadays image and video services play essential roles in human life. No matter in online video streams such as Youtube or video storage components such as blue-ray disc, image and video compression techniques become extremely important. With the rapid growth of video applications, the demands on novel video applications becomes larger. For instance, many movies and online games aim to provide better visual enjoyment for people. Japan, which is the host country of 2020 Olympic, has set up the 8K UHD (4320p) to be the only resolution of live broadcast services. Based on the phenomena above, we could anticipate that people would have better visual experiences in the future, but as compensation, processing larger images and video sequences in limited time. Thus, providing applications with high efficiency on data storage and processing is urgent.
Temporal prediction coding for video data is a crucial part of video compression standards, while motion estimation is the essential function in the temporal prediction coding. The frequently-adopted video coding standards such as MPEG-4, H.264/ABC and H.264 haven’t defined the detailed implementation of motion estimation, so many methods acquired the best block matching results by using full search algorithm. In this thesis, we first propose an efficient search algorithm which provides the near-optimal motion estimation results but with extremely low search cost. There are two key features: Expanding the region of support and introducing the decimation lattice to fulfill the low-cost search. The comparisons with the previous methods show that the proposed algorithm outperforms other algorithms in either matching accuracy and search cost. Some efficient motion estimation methods first transform the image frames into binary planes by one-bit transform, then implement the feature based motion estimation to cut down on the computational complexity. In the second part of the thesis, we propose a weighted block matching criterion and combine it with the proposed fast search algorithm to pursuit matching results with higher accuracy. Based on the subjective comparisons, the proposed algorithm has the highest matching accuracy and lowest search cost on average.
Besides, the requirements for entropy coder with higher coding efficiency are also noticeable subjects in image and video compression. H.264/AVC baseline adopts context-based adaptive variable length coding (CAVLC) and exponential-Golomb coding as their entropy coder to implement residual coding. In this thesis, we follow the architecture of CAVLC but some critical parts would be stepped up to achieve a higher coding performance. In addition, we propose an improved adaptive arithmetic coding in order to tackle the problems such as motion compensation residual or motion vector differences.
Last but not least, video compression starts from H.263 (including later presented H.264/AVC and HEVC) all introduce the sub-pixel techniques to extract minor motion performances. Nevertheless, in order to implement sub-pixel based motion, users should define the motion estimation accuracy and corresponding Interpolation filter previously, which is lack of flexibility. To overcome such a limitation, we introduce the optical flow to execute the motion estimation procedure, which provides two benefits that we could not only discard the Interpolation filter but also tuning the sub-pixel accuracy between different scales elastically.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:29:58Z (GMT). No. of bitstreams: 1
ntu-106-R03942139-1.pdf: 4749709 bytes, checksum: d64fb22d4c5c2d42970d890627a96f74 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
ACKNOWLEDGEMENTS (誌謝) i
MANDARIN ABSTRACT (中文摘要) ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES xi
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Benefits of Motion Estimation 1
1.2 Motivation 3
1.3 Contribution of This Thesis 6
1.4 Thesis Organization 6
Chapter 2 Review of Video Coding Concepts 8
2.1 Overview of Video Compression 8
2.1.1 MPEG/H.26x Video Compression Standards Overview 9
2.1.2 Color Conversion and Down-sampling 10
2.2 Spatial Prediction 13
2.3 Temporal Prediction 16
2.3.1 Sub-pixel Based Motion Estimation 17
2.3.2 Macroblock Partitions 20
2.3.3 Motion Vector Prediction 21
2.4 Transform, Quantization and Scanning 23
2.4.1 Transform Coding 24
2.4.2 Quantization 29
2.4.3 Scanning Order 32
2.5 Entropy Coding 32
2.5.1 Huffman Coding 33
2.5.2 Arithmetic Coding 34
2.5.3 Golomb coding 35
2.6 Transform Coding and Quantization in H.264/AVC 36
2.7 Entropy Coding Techniques in H.264/AVC 39
2.7.1 Exp-Golomb Coding 39
2.7.2 The Context-based Adaptive Variable Length Coding (CAVLC) 42
2.7.3 The Context-based Adaptive Binary Arithmetic Coding (CABAC) 44
2.8 Summary 45
Chapter 3 The Proposed Fast Search Algorithm for Motion Estimation 46
3.1 Introduction of Fast search Algorithms 48
3.1.1 Traditional Matching Error Criteria 49
3.1.2 Fast Search Techniques 50
3.2 Related Works: Efficient Matching Techniques 56
3.2.1 Efficient Decimation Block Matching Patterns 56
3.3 The Proposed Improved Block Matching Algorithm with Advanced Referencing and Small-Motion Prejudgment 60
3.3.1 Overview of Our Proposed Algorithm 60
3.3.2 Advanced Referencing by Expanding the Region of Support in Proposed Algorithm 61
3.3.3 Data Analysis of Optimal Motion Vectors 64
3.3.4 Small-Motion Prejudgment (SMP) 66
3.4 Experimental Results and Discussions 69
3.5 Summary 72
Chapter 4 The Proposed Feature-based Bit-plane Matching for Motion Estimation 74
4.1 Binary Feature-based Block Matching Methods Review 74
4.2 Related Works of Proposed Method 79
4.3 Proposed Feature-based Bit-plane Matching 83
4.3.1 Contrast Stretching and Edge Sharpening 85
4.3.2 Feature Extracting with Constrained Condition and Fast search Algorithm with Small Motion Prejudgment 87
4.3.3 Motion Compensation using Bicubic Interpolation 88
4.4 Experimental Results and Discussions 91
4.5 Summary 94
Chapter 5 Adaptive Arithmetic Coding in Video Compression Side Information Coding and Improvements for Context-based Adaptive Variable Length Coding 96
5.1 Adaptive Arithmetic Coding 97
5.2 Proposed Improvements for Adaptive Arithmetic Based Coding 97
5.2.1 Range Adjustment Technique 98
5.2.2 Increasing the Step Size for Frequency Adjustment 98
5.2.3 Frequency table Initialization 100
5.2.4 Local Frequency Table 100
5.2.5 Frequency Table Regulation for More Significant Symbols Suppression 102
5.3 Adaptive Arithmetic Coding with Proposed Techniques for Motion Vector Differences Coding 103
5.3.1 Parameters Setting of Proposed Techniques 103
5.3.2 Simulation Results 108
5.4 Proposed Revises for Context-based Adaptive Variable Length Coding and Simulation Results 112
5.5 Summary 115
Chapter 6 Proposed Sub-pixel Accuracy Motion Estimation Algorithm with Optical Flow and Feature Masks 117
6.1 Reviews of Motion Estimation with Sub-pixel Accuracy 117
6.1.1 Forward and Backward Motion Estimation 117
6.1.2 Block-based Motion Estimation 120
6.2 Optical Flow 122
6.2.1 Matching Based Constancy Assumption 123
6.2.2 Gradient Based Constancy Assumption. 124
6.2.3 Smoothness Assumption 125
6.2.4 Abstract of Optical Flow Introduction 126
6.3 Related Work: Sub-pixel Motion Estimation using Two-Step Scheme 126
6.3.1 Block Matching Algorithm and Chan’s Logarithmic Search 127
6.3.2 Simplified Optical Flow by Taylor expansion 129
6.4 Proposed Motion Estimation Methods 131
6.4.1 Proposed Revised Adaptive Rood Pattern Search Algorithm and Proposed Hybrid Optical Flow Technique 131
6.4.2 Weighted Block Distortion Criterion Adopting Feature Masks 134
6.5 Simulation Results of Motion Estimation Results and Discussions 137
6.6 Video Compression Performance and Proposed Entropy Coding Methods 141
6.7 Summary 145
Chapter 7 Conclusion and Future Work 147
7.1 Conclusion of the Thesis 147
7.2 Future Work 150
REFERENCE 152
dc.language.isoen
dc.subject視訊壓縮zh_TW
dc.subject動態估測zh_TW
dc.subject區塊匹配zh_TW
dc.subject快速搜尋法zh_TW
dc.subject抽樣點陣塊zh_TW
dc.subject位元平面匹配zh_TW
dc.subject一位元轉換zh_TW
dc.subject適應性算數編碼zh_TW
dc.subject適應性變動長度編碼法zh_TW
dc.subject光流zh_TW
dc.subjectH.264/AVC視訊編碼標準zh_TW
dc.subject視訊壓縮zh_TW
dc.subject動態估測zh_TW
dc.subject區塊匹配zh_TW
dc.subject快速搜尋法zh_TW
dc.subject抽樣點陣塊zh_TW
dc.subject位元平面匹配zh_TW
dc.subject一位元轉換zh_TW
dc.subject適應性算數編碼zh_TW
dc.subject適應性變動長度編碼法zh_TW
dc.subject光流zh_TW
dc.subjectH.264/AVC視訊編碼標準zh_TW
dc.subjectMotion estimationen
dc.subjectdecimation latticeen
dc.subjectbit-plane matchingen
dc.subjectone-bit transformen
dc.subjectadaptive arithmetic codingen
dc.subjectcontext-based adaptive variable-length codeen
dc.subjectoptical flowen
dc.subjectH.264/AVC video coding standarden
dc.subjectvideo compressionen
dc.subjectblock matchingen
dc.subjectfast search algorithmen
dc.subjectdecimation latticeen
dc.subjectbit-plane matchingen
dc.subjectone-bit transformen
dc.subjectadaptive arithmetic codingen
dc.subjectcontext-based adaptive variable-length codeen
dc.subjectoptical flowen
dc.subjectH.264/AVC video coding standarden
dc.subjectvideo compressionen
dc.subjectfast search algorithmen
dc.subjectblock matchingen
dc.subjectMotion estimationen
dc.title運用先進動作預測與殘餘編碼技術之視訊壓縮應用zh_TW
dc.titleVideo Compression with Advanced Motion Estimation and Residue Encoding Methodsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭景明(Jing-Ming Guo),葉敏宏(Min-Hung Yeh),許文良(Wen-Liang Hsue)
dc.subject.keyword動態估測,區塊匹配,快速搜尋法,抽樣點陣塊,位元平面匹配,一位元轉換,適應性算數編碼,適應性變動長度編碼法,光流,H.264/AVC視訊編碼標準,視訊壓縮,zh_TW
dc.subject.keywordMotion estimation,block matching,fast search algorithm,decimation lattice,bit-plane matching,one-bit transform,adaptive arithmetic coding,context-based adaptive variable-length code,optical flow,H.264/AVC video coding standard,video compression,en
dc.relation.page161
dc.identifier.doi10.6342/NTU201700672
dc.rights.note有償授權
dc.date.accepted2017-03-03
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
4.64 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved