請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59609完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽(Feng-Yu Tsai) | |
| dc.contributor.author | Che-Chen Hsu | en |
| dc.contributor.author | 許哲誠 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:29:51Z | - |
| dc.date.available | 2017-06-12 | |
| dc.date.copyright | 2017-06-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-03-07 | |
| dc.identifier.citation | (1) Hussain, A. M.; Hussain, M. M. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications. Adv. Mater. 2016, 28 (22), 4219–4249.
(2) Bagheri, M.; Mohammadi, M.; Steele, T. W. J.; Ramezani, M. Nanomaterial Coatings Applied on Stent Surfaces. Nanomed. 2016, 11 (10), 1309–1326. (3) Zhang, C.; Chen, P.; Hu, W. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations. Small 2016, 12 (10), 1252–1294. (4) Tan, B.; Thomas, N. L. A Review of the Water Barrier Properties of Polymer/clay and Polymerigraphene Nanocomposites. J. Membr. Sci. 2016, 514, 595–612. (5) Lai, Y.; Huang, J.; Cui, Z.; Ge, M.; Zhang, K.-Q.; Chen, Z.; Chi, L. Recent Advances in TiO2-Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Small 2016, 12 (16), 2203–2224. (6) Paniagua, S. A.; Giordano, A. J.; Smith, O. L.; Barlow, S.; Li, H.; Armstrong, N. R.; Pemberton, J. E.; Bredas, J.-L.; Ginger, D.; Marder, S. R. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chem. Rev. 2016, 116 (12), 7117–7158. (7) Jeon, W.-S.; Yang, S.; Lee, C.; Kang, S.-W. Atomic Layer Deposition of Al2 O 3 Thin Films Using Trimethylaluminum and Isopropyl Alcohol. J. Electrochem. Soc. 2002, 149 (6), C306–C310. (8) George, S. M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110 (1), 111–131. (9) Park, J.-S.; Chae, H.; Chung, H. K.; Lee, S. I. Thin Film Encapsulation for Flexible AM-OLED: A Review. Semicond. Sci. Technol. 2011, 26 (3), 034001. (10) Feinle, A.; Elsaesser, M. S.; Huesing, N. Sol-Gel Synthesis of Monolithic Materials with Hierarchical Porosity. Chem. Soc. Rev. 2016, 45 (12), 3377–3399. (11) Ko, S. H. Low Temperature Thermal Engineering of Nanoparticle Ink for Flexible Electronics Applications. Semicond. Sci. Technol. 2016, 31 (7), 073003. (12) Chen, K.; Gao, W.; Emaminejad, S.; Kiriya, D.; Ota, H.; Nyein, H. Y. Y.; Takei, K.; Javey, A. Printed Carbon Nanotube Electronics and Sensor Systems. Adv. Mater. 2016, 28 (22), 4397–4414. (13) Gong, X.; Yang, Z.; Walters, G.; Comin, R.; Ning, Z.; Beauregard, E.; Adinolfi, V.; Voznyy, O.; Sargent, E. H. Highly Efficient Quantum Dot near-Infrared Light-Emitting Diodes. Nat. Photonics 2016, 10 (4), 253–257. (14) Kim, A.; Lee, H.; Kwon, H.-C.; Jung, H. S.; Park, N.-G.; Jeong, S.; Moon, J. Fully Solution-Processed Transparent Electrodes Based on Silver Nanowire Composites for Perovskite Solar Cells. Nanoscale 2016, 8 (12), 6308–6316. (15) Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R.; Sun, Y.; Xia, Y.; Yang, P. Langmuir−Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Lett. 2003, 3 (9), 1229–1233. (16) Zhuk, A.; Mirza, R.; Sukhishvili, S. Multiresponsive Clay-Containing Layer-by-Layer Films. ACS Nano 2011, 5 (11), 8790–8799. (17) Scharber, M. C.; Sariciftci, N. S. Efficiency of Bulk-Heterojunction Organic Solar Cells. Prog. Polym. Sci. 2013, 38 (12), 1929–1940. (18) Hodes, G. Perovskite-Based Solar Cells. Science 2013, 342 (6156), 317–318. (19) Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D. High-Efficiency Solution-Processed Perovskite Solar Cells with Millimeter-Scale Grains. Science 2015, 347 (6221), 522–525. (20) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. Chem. 2014, 6 (3), 242–247. (21) Niu, G.; Guo, X.; Wang, L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. J. Mater. Chem. A 2015, 3 (17), 8970–8980. (22) Seo, J. H.; Koo, J.-R.; Lee, S. J.; Seo, B. M.; Kim, Y. K. Efficient Organic Photovoltaic Devices by Using PEDOT:PSSs with Excellent Hole Extraction Ability. J. Nanosci. Nanotechnol. 2011, 11 (8), 7307–7310. (23) Nardes, A. M.; Kemerink, M.; de Kok, M. M.; Vinken, E.; Maturova, K.; Janssen, R. A. J. Conductivity, Work Function, and Environmental Stability of PEDOT:PSS Thin Films Treated with Sorbitol. Org. Electron. 2008, 9 (5), 727–734. (24) Chen, S.; Manders, J. R.; Tsang, S.-W.; So, F. Metal Oxides for Interface Engineering in Polymer Solar Cells. J. Mater. Chem. 2012, 22 (46), 24202–24212. (25) Widjonarko, N. E.; Ratcliff, E. L.; Perkins, C. L.; Sigdel, A. K.; Zakutayev, A.; Ndione, P. F.; Gillaspie, D. T.; Ginley, D. S.; Olson, D. C.; Berry, J. J. Sputtered Nickel Oxide Thin Film for Efficient Hole Transport Layer in Polymer–fullerene Bulk-Heterojunction Organic Solar Cell. Thin Solid Films 2012, 520 (10), 3813–3818. (26) Irwin, M. D.; Buchholz, B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J. P-Type Semiconducting Nickel Oxide as an Efficiency-Enhancing Anode Interfacial Layer in Polymer Bulk-Heterojunction Solar Cells. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (8), 2783–2787. (27) Kettle, J.; Waters, H.; Horie, M.; Chang, S.-W. Effect of Hole Transporting Layers on the Performance of PCPDTBT : PCBM Organic Solar Cells. J. Phys. Appl. Phys. 2012, 45 (12), 125102. (28) Wong, K. H.; Ananthanarayanan, K.; Heinemann, M. D.; Luther, J.; Balaya, P. Enhanced Photocurrent and Stability of Organic Solar Cells Using Solution-Based NiO Interfacial Layer. Sol. Energy 2012, 86 (11), 3190–3195. (29) Mustafa, B.; Griffin, J.; Alsulami, A. S.; Lidzey, D. G.; Buckley, A. R. Solution Processed Nickel Oxide Anodes for Organic Photovoltaic Devices. Appl. Phys. Lett. 2014, 104 (6), 063302. (30) Manders, J. R.; Tsang, S.-W.; Hartel, M. J.; Lai, T.-H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23 (23), 2993–3001. (31) Shim, J. W.; Fuentes-Hernandez, C.; Dindar, A.; Zhou, Y.; Khan, T. M.; Kippelen, B. Polymer Solar Cells with NiO Hole-Collecting Interlayers Processed by Atomic Layer Deposition. Org. Electron. 2013, 14 (11), 2802–2808. (32) Cheun, H.; Fuentes-Hernandez, C.; Zhou, Y.; Potscavage, W. J.; Kim, S.-J.; Shim, J.; Dindar, A.; Kippelen, B. Electrical and Optical Properties of ZnO Processed by Atomic Layer Deposition in Inverted Polymer Solar Cells. J. Phys. Chem. C 2010, 114 (48), 20713–20718. (33) Kang, Y.-J.; Kim, C. S.; Kwack, W.-S.; Ryu, S. Y.; Song, M.; Kim, D.-H.; Hong, S. W.; Jo, S.; Kwon, S.-H.; Kang, J.-W. Air-Stable Inverted Organic Solar Cells with an Ultrathin Electron-Transport Layer Made by Atomic Layer Deposition http://ssl.ecsdl.org (accessed Jun 2, 2015). (34) Branham, M. S.; Hsu, W.-C.; Yerci, S.; Loomis, J.; Boriskina, S. V.; Hoard, B. R.; Han, S. E.; Chen, G. 15.7% Efficient 10-μm-Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures. Adv. Mater. 2015, 27 (13), 2182–2188. (35) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar Cell Efficiency Tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23 (1), 1–9. (36) Saga, T. Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Mater. 2010, 2 (3), 96–102. (37) Shimoda, T.; Matsuki, Y.; Furusawa, M.; Aoki, T.; Yudasaka, I.; Tanaka, H.; Iwasawa, H.; Wang, D.; Miyasaka, M.; Takeuchi, Y. Solution-Processed Silicon Films and Transistors. Nature 2006, 440 (7085), 783–786. (38) Sontheimer, T.; Amkreutz, D.; Schulz, K.; Wöbkenberg, P. H.; Guenther, C.; Bakumov, V.; Erz, J.; Mader, C.; Traut, S.; Ruske, F.; Weizman, M.; Schnegg, A.; Patz, M.; Trocha, M.; Wunnicke, O.; Rech, B. Solution-Processed Crystalline Silicon Thin-Film Solar Cells. Adv. Mater. Interfaces 2014, 1 (3), n/a – n/a. (39) Alharbi, F. H.; Kais, S. Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089. (40) Lee, S.; Jeong, Y.; Jeong, S.; Lee, J.; Jeon, M.; Moon, J. Solution-Processed ZnO Nanoparticle-Based Semiconductor Oxide Thin-Film Transistors. Superlattices Microstruct. 2008, 44 (6), 761–769. (41) Konstantatos, G.; Sargent, E. H. Solution-Processed Quantum Dot Photodetectors. Proc. IEEE 2009, 97 (10), 1666–1683. (42) Jang, J.; Shim, H. C.; Ju, Y.; Song, J. H.; An, H.; Yu, J.-S.; Kwak, S.-W.; Lee, T.-M.; Kim, I.; Jeong, S. All-Solution-Processed PbS Quantum Dot Solar Modules. Nanoscale 2015, 7 (19), 8829–8834. (43) Tu, C.-C.; Tang, L.; Huang, J.; Voutsas, A.; Lin, L. Y. Solution-Processed Photodetectors from Colloidal Silicon Nano/micro Particle Composite. Opt. Express 2010, 18 (21), 21622–21627. (44) Wu, F.-G.; Zhang, X.; Kai, S.; Zhang, M.; Wang, H.-Y.; Myers, J. N.; Weng, Y.; Liu, P.; Gu, N.; Chen, Z. One-Step Synthesis of Superbright Water-Soluble Silicon Nanoparticles with Photoluminescence Quantum Yield Exceeding 80%. Adv. Mater. Interfaces 2015, 2 (16), n/a – n/a. (45) Sato, S.; Swihart, M. T. Propionic-Acid-Terminated Silicon Nanoparticles: Synthesis and Optical Characterization. Chem Mater 2006, 18 (17), 4083–4088. (46) Liu, S. M.; Yang, Y.; Sato, S.; Kimura, K. Enhanced Photoluminescence from Si Nano-Organosols by Functionalization with Alkenes and Their Size Evolution. Chem. Mater. 2006, 18 (3), 637–642. (47) Hua, F.; Swihart, M. T.; Ruckenstein, E. Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation. Langmuir 2005, 21 (13), 6054–6062. (48) Li, X. G.; He, Y. Q.; Swihart, M. T. Surface Functionalization of Silicon Nanoparticles Produced by Laser-Driven Pyrolysis of Silane Followed by HF-HNO3 Etching. Langmuir 2004, 20 (11), 4720–4727. (49) Hua, F.; Erogbogbo, F.; Swihart, M. T.; Ruckenstein, E. Organically Capped Silicon Nanoparticles with Blue Photoluminescence Prepared by Hydrosilylation Followed by Oxidation. Langmuir ACS J. Surf. Colloids 2006, 22 (9), 4363–4370. (50) Hua, F. J.; Swihart, M. T.; Ruckenstein, E. Efficient Surface Grafting of Luminescent Silicon Quantum Dots by Photoinitiated Hydrosilylation. Langmuir 2005, 21 (13), 6054–6062. (51) Weeks, S. L.; Macco, B.; van de Sanden, M. C. M.; Agarwal, S. Gas-Phase Hydrosilylation of Plasma-Synthesized Silicon Nanocrystals with Short- and Long-Chain Alkynes. Langmuir 2012, 28 (50), 17295–17301. (52) Uhlenbrock, S.; Scharfschwerdt, C.; Neumann, M.; Illing, G.; Freund, H.-J. The Influence of Defects on the Ni 2p and O 1s XPS of NiO. J. Phys. Condens. Matter 1992, 4 (40), 7973–7978. (53) Kim, K. S.; Winograd, N. X-Ray Photoelectron Spectroscopic Studies of Nickel-Oxygen Surfaces Using Oxygen and Argon Ion-Bombardment. Surf. Sci. 1974, 43 (2), 625–643. (54) Bachmann, J.; Zolotaryov, A.; Albrecht, O.; Goetze, S.; Berger, A.; Hesse, D.; Novikov, D.; Nielsch, K. Stoichiometry of Nickel Oxide Films Prepared by ALD. Chem. Vap. Depos. 2011, 17 (7-9), 177–180. (55) Franta, D.; Negulescu, B.; Thomas, L.; Dahoo, P. R.; Guyot, M.; Ohlidal, I.; Mistrik, J.; Yamaguchi, T. Optical Properties of NiO Thin Films Prepared by Pulsed Laser Deposition Technique. Appl. Surf. Sci. 2005, 244 (1-4), 426–430. (56) Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-Surface NiOOH Species in Solution-Processed NiO x Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics. Chem. Mater. 2011, 23 (22), 4988–5000. (57) Groner, M. D.; George, S. M.; McLean, R. S.; Carcia, P. F. Gas Diffusion Barriers on Polymers Using Al2O3 Atomic Layer Deposition. Appl. Phys. Lett. 2006, 88 (5), 051907. (58) Cooper, R.; Upadhyaya, H. P.; Minton, T. K.; Berman, M. R.; Du, X.; George, S. M. Protection of Polymer from Atomic-Oxygen Erosion Using Al2O3 Atomic Layer Deposition Coatings. Thin Solid Films 2008, 516 (12), 4036–4039. (59) Yu, W.; Shen, L.; Ruan, S.; Meng, F.; Wang, J.; Zhang, E.; Chen, W. Performance Improvement of Inverted Polymer Solar Cells Thermally Evaporating Nickel Oxide as an Anode Buffer Layer. Sol. Energy Mater. Sol. Cells 2012, 98, 212–215. (60) Li, X. G.; He, Y. Q.; Talukdar, S. S.; Swihart, M. T. Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum. Langmuir 2003, 19 (20), 8490–8496. (61) Wolkin, M. V.; Jorne, J.; Fauchet, P. M.; Allan, G.; Delerue, C. Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen. Phys. Rev. Lett. 1999, 82 (1), 197–200. (62) Fortunato, E.; Ginley, D.; Hosono, H.; Paine, D. C. Transparent Conducting Oxides for Photovoltaics. MRS Bull. 2007, 32 (03), 242–247. (63) Lewis, B. G.; Paine, D. C. Applications and Processing of Transparent Conducting Oxides. MRS Bull. 2000, 25 (08), 22–27. (64) Jun, H.; Im, B.; Kim, J. Y.; Im, Y.-O.; Jang, J.-W.; Kim, E. S.; Kim, J. Y.; Kang, H. J.; Hong, S. J.; Lee, J. S. Photoelectrochemical Water Splitting over Ordered Honeycomb Hematite Electrodes Stabilized by Alumina Shielding. Energy Environ. Sci. 2012, 5 (4), 6375–6382. (65) Lin, Y.; Yuan, G.; Sheehan, S.; Zhou, S.; Wang, D. Hematite-Based Solar Water Splitting: Challenges and Opportunities. Energy Environ. Sci. 2011, 4 (12), 4862–4869. (66) Pan, H.; Li, J.; Feng, Y. Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 2010, 5 (3), 654–668. (67) Lee, D.-J.; Kim, H.-M.; Kwon, J.-Y.; Choi, H.; Kim, S.-H.; Kim, K.-B. Structural and Electrical Properties of Atomic Layer Deposited Al-Doped ZnO Films. Adv. Funct. Mater. 2011, 21 (3), 448–455. (68) Yuan, H.; Luo, B.; Yu, D.; Cheng, A.-J.; Campbell, S. A.; Gladfelter, W. L. Atomic Layer Deposition of Al-Doped ZnO Films Using Ozone as the Oxygen Source: A Comparison of Two Methods to Deliver Aluminum. J. Vac. Sci. Technol. Vac. Surf. Films 2012, 30 (1), 01A138–01A138–8. (69) Chou, C.-T.; Yu, P.-W.; Tseng, M.-H.; Hsu, C.-C.; Shyue, J.-J.; Wang, C.-C.; Tsai, F.-Y. Transparent Conductive Gas-Permeation Barriers on Plastics by Atomic Layer Deposition. Adv. Mater. 2013, 25 (12), 1750–1754. (70) Elam, J. W.; Routkevitch, D.; George, S. M. Properties of ZnO/Al2O3 Alloy Films Grown Using Atomic Layer Deposition Techniques. J. Electrochem. Soc. 2003, 150 (6), G339–G347. (71) Ding, X.; Yan, J.; Li, T.; Zhang, L. Transparent Conductive ITO/Cu/ITO Films Prepared on Flexible Substrates at Room Temperature. Appl. Surf. Sci. 2012, 258 (7), 3082–3085. (72) Kim, D. The Influence of Au Thickness on the Structural, Optical and Electrical Properties of ZnO/Au/ZnO Multilayer Films. Opt. Commun. 2012, 285 (6), 1212–1214. (73) Lee, S.; Bang, S.; Park, J.; Park, S.; Ko, Y.; Jeon, H. AZO/Au/AZO Multilayer as a Transparent Conductive Electrode. Phys. Status Solidi A 2012, 209 (4), 698–701. (74) Girtan, M. Comparison of ITO/metal/ITO and ZnO/metal/ZnO Characteristics as Transparent Electrodes for Third Generation Solar Cells. Sol. Energy Mater. Sol. Cells 2012, 100, 153–161. (75) Dai, M.; Kwon, J.; Halls, M. D.; Gordon, R. G.; Chabal, Y. J. Surface and Interface Processes during Atomic Layer Deposition of Copper on Silicon Oxide. Langmuir 2010, 26 (6), 3911–3917. (76) Kukli, K.; Kemell, M.; Puukilainen, E.; Aarik, J.; Aidla, A.; Sajavaara, T.; Laitinen, M.; Tallarida, M.; Sundqvist, J.; Ritala, M.; Leskelä, M. Atomic Layer Deposition of Ruthenium Films from (Ethylcyclopentadienyl)(pyrrolyl)ruthenium and Oxygen. J. Electrochem. Soc. 2011, 158 (3), D158–D165. (77) Gregorczyk, K.; Henn-Lecordier, L.; Gatineau, J.; Dussarrat, C.; Rubloff, G. Atomic Layer Deposition of Ruthenium Using the Novel Precursor bis(2,6,6-Trimethyl-Cyclohexadienyl)ruthenium. Chem. Mater. 2011, 23 (10), 2650–2656. (78) Geidel, M.; Junige, M.; Albert, M.; Bartha, J. W. In-Situ Analysis on the Initial Growth of Ultra-Thin Ruthenium Films with Atomic Layer Deposition. Microelectron. Eng. 2013, 107, 151–155. (79) Lee, B. H.; Hwang, J. K.; Nam, J. W.; Lee, S. U.; Kim, J. T.; Koo, S.-M.; Baunemann, A.; Fischer, R. A.; Sung, M. M. Low-Temperature Atomic Layer Deposition of Copper Metal Thin Films: Self-Limiting Surface Reaction of Copper Dimethylamino-2-Propoxide with Diethylzinc. Angew. Chem. Int. Ed Engl. 2009, 48 (25), 4536–4539. (80) Knisley, T. J.; Ariyasena, T. C.; Sajavaara, T.; Saly, M. J.; Winter, C. H. Low Temperature Growth of High Purity, Low Resistivity Copper Films by Atomic Layer Deposition. Chem. Mater. 2011, 23 (20), 4417–4419. (81) Lecohier, B.; Calpini, B.; Philippoz, J.-M.; Bergh, H. van den. Low‐pressure Chemical Vapor Deposition of Copper: Dependence of the Selectivity on the Water Vapor Added to a Hydrogen or Helium Carrier Gas. J. Appl. Phys. 1992, 72 (5), 2022–2026. (82) Lin, Y.-Y.; Hsu, C.-C.; Tseng, M.-H.; Shyue, J.-J.; Tsai, F.-Y. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition. Acs Appl. Mater. Interfaces 2015, 7 (40), 22610–22617. (83) Cui, Y.; Kundalwal, S. I.; Kumar, S. Gas Barrier Performance of Graphene/polymer Nanocomposites. Carbon 2016, 98, 313–333. (84) Berry, V. Impermeability of Graphene and Its Applications. Carbon 2013, 62, 1–10. (85) Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G. Advanced Mechanical Properties of Graphene Paper. J. Appl. Phys. 2011, 109 (1), 014306. (86) Wang, H.; Xie, G.; Fang, M.; Ying, Z.; Tong, Y.; Zeng, Y. Electrical and Mechanical Properties of Antistatic PVC Films Containing Multi-Layer Graphene. Compos. Part B Eng. 2015, 79, 444–450. (87) Goli, P.; Ning, H.; Li, X.; Lu, C. Y.; Novoselov, K. S.; Balandin, A. A. Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films. Nano Lett. 2014, 14 (3), 1497–1503. (88) Cui, Y.; Kumar, S.; Kona, B. R.; Houcke, D. van. Gas Barrier Properties of Polymer/clay Nanocomposites. RSC Adv. 2015, 5 (78), 63669–63690. (89) Xu, Z.; Gao, C. Graphene in Macroscopic Order: Liquid Crystals and Wet-Spun Fibers. Acc. Chem. Res. 2014, 47 (4), 1267–1276. (90) Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Highly Thermally Conductive and Mechanically Strong Graphene Fibers. Science 2015, 349 (6252), 1083–1087. (91) Akbari, A.; Sheath, P.; Martin, S. T.; Shinde, D. B.; Shaibani, M.; Banerjee, P. C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-Area Graphene-Based Nanofiltration Membranes by Shear Alignment of Discotic Nematic Liquid Crystals of Graphene Oxide. Nat. Commun. 2016, 7, 10891. (92) Narayan, R.; Kim, J. E.; Kim, J. Y.; Lee, K. E.; Kim, S. O. Graphene Oxide Liquid Crystals: Discovery, Evolution and Applications. Adv. Mater. 2016, 28 (16), 3045–3068. (93) Kim, J. E.; Han, T. H.; Lee, S. H.; Kim, J. Y.; Ahn, C. W.; Yun, J. M.; Kim, S. O. Graphene Oxide Liquid Crystals. Angew. Chem.-Int. Ed. 2011, 50 (13), 3043–3047. (94) Xu, Z.; Gao, C. Aqueous Liquid Crystals of Graphene Oxide. Acs Nano 2011, 5 (4), 2908–2915. (95) Lin, F.; Tong, X.; Wang, Y.; Bao, J.; Wang, Z. M. Graphene Oxide Liquid Crystals: Synthesis, Phase Transition, Rheological Property, and Applications in Optoelectronics and Display. Nanoscale Res. Lett. 2015, 10 (1), 435. (96) Bai, H.; Li, C.; Wang, X.; Shi, G. A pH-Sensitive Graphene Oxide Composite Hydrogel. Chem. Commun. 2010, 46 (14), 2376–2378. (97) Dan, B.; Behabtu, N.; Martinez, A.; Evans, J. S.; Kosynkin, D. V.; Tour, J. M.; Pasquali, M.; Smalyukh, I. I. Liquid Crystals of Aqueous, Giant Graphene Oxide Flakes. Soft Matter 2011, 7 (23), 11154–11159. (98) Jalili, R.; Aboutalebi, S. H.; Esrafilzadeh, D.; Konstantinov, K.; Moulton, S. E.; Razal, J. M.; Wallace, G. G. Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route toward the Next Generation of Self-Assembled Layer-by-Layer Multifunctional 3D Architectures. ACS Nano 2013, 7 (5), 3981–3990. (99) Luo, J.; Kim, J.; Huang, J. Material Processing of Chemically Modified Graphene: Some Challenges and Solutions. Acc. Chem. Res. 2013, 46 (10), 2225–2234. (100) Ceriotti, G.; Romanchuk, A. Y.; Slesarev, A. S.; Kalmykov, S. N. Rapid Method for the Purification of Graphene Oxide. RSC Adv. 2015, 5 (62), 50365–50371. (101) Tegou, E.; Pseiropoulos, G.; Filippidou, M. K.; Chatzandroulis, S. Low-Temperature Thermal Reduction of Graphene Oxide Films in Ambient Atmosphere: Infra-Red Spectroscopic Studies and Gas Sensing Applications. Microelectron. Eng. 2016, 159, 146–150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59609 | - |
| dc.description.abstract | 本研究將原子層沉積技術及奈米結構應用於製備功能性薄膜,以解決現今太陽能電池等替代能源及減碳產業之關鍵議題。為有效解決全球暖化的危機,除了考量到技術的表現外,能否相容於現有的工業化製程以合理的成本進行大規模的生產也是問題的核心之一。本研究針對光電元件中常見的功能性薄膜進行開發,包括:太陽能電池中的吸光層與載子傳輸層、透明導電薄膜及封裝層,以解決綠能產業中效率、穩定性及成本高昂等重要議題。
薄膜的製程技術中,主要可分為真空製程及溶液態製程兩大類。為考量日後與可撓式軟性基板及捲對捲製程技術的整合性,真空製程中我們選用原子層沉積技術,溶液態製程則是以奈米材料的懸浮液進行塗膜。兩者相較於其他同類型的技術都有可低溫製程的優點,並各同時擁有獨特的性質,而有機會製備出具多功能性的薄膜。 針對太陽能電池的部分,我們以原子層沉積技術製備了電洞傳輸層,並嘗試開發矽奈米顆粒的溶液態製程以作為新穎的吸光層。藉由適當的調整製程參數,我們成功的開發出可精準控制厚度的氧化鎳製程,並以超薄的氧化鎳薄膜(4奈米)作為電洞傳輸層,取代不穩定的有機材料,達到與其相仿的光電轉化效率。我們亦開發出具共軛連結的改質技術,成功的提升矽奈米顆粒的穩定性。藉由分析光電特性,可推論出此共軛連結具有載子傳輸的特性,有利於未來吸光層之應用。溶液態製程的矽奈米顆粒薄膜經雷射退火後,可達到與真空製程的非晶矽相近的載子傳輸特性。 在透明導電薄膜的開發中,我們使用本實驗室所開發的混合層摻雜技術,搭配前驅物暴露製程,進一步的改善氧化鉿摻雜氧化鋅薄膜的導電度,使其電阻率低達4.5 10-4 Ω cm-1。我們亦嘗試以原子層沉積技術所開發的低溫銅薄膜製程,欲於氧化鉿摻雜氧化鋅中插入金屬材料,進而改善其導電性及可撓性。雖然我們成功的於120 °C的低溫下,製備出電阻率與銅塊相近,僅17奈米的銅膜,然而由於此技術缺乏自我限制的特性,因此無法達到原子層沉積技術該有的再現性。 最後,為了開發薄膜的上封裝層,我們驗證了以高分子單體混摻氧化石墨烯製備多功能阻氣薄膜的可行性。藉由選用可與氧化石墨烯有強作用力的單體,如具有苯環或羥基的丙烯酸酯,成功的將其均勻的分散在單體中。其中又以甲基丙烯酸羥乙酯具有較低的黏度,可提高超音波破碎的效率,進而得到脫層的氧化石墨烯。其低起始黏度也可容納較多的氧化石墨烯含量,在濃度達到三的重量百分比時,此分散液的外觀具有牛奶的光澤,顯示氧化石墨烯於溶液中具有一定程度的排整。在成膜時,此排整將有助於控制氧化石墨烯的排列,延長氣體的穿透路徑,提升阻擋氣體的能力。此漿料亦具有絕佳的存放及熱穩定性,除了有利於規模化生產外,適當的調整熱固化參數將有機會同時還原氧化石墨烯,製備出具有特殊導熱或導電性質的多功能阻氣薄膜。 | zh_TW |
| dc.description.abstract | Applications of atomic layer deposition (ALD) and nanostructures in functional thin films were studied to address the key issues of finding alternative energy and reducing carbon emission. In addition to the device performance, the compatibility of techniques with cost-effective mass production is also the heart of matter. In the study, we focused on the development of common functional films in optoelectronics, including charge transporting layer and absorbing layer of photovoltaics, transparent conductive film (TCF) and gas barrier, to solve the essential problems of performance, stability and high cost in green energy industry.
Thin film fabrication can be divided into two categories: vacuum process and solution process. Considering the compatibility with the flexible plastic substrates and roll-to-roll process, we chose ALD and solution process from nanostructure dispersion for their low process temperature among other techniques. In addition, both of them possess unique characteristics, rendering the as-fabricated films with multifunctionality. In the part of photovoltaics, we deposited hole transporting layer (HTL) with ALD and tried to fabricate novel absorbing layer with solution process from silicon nanoparticles dispersion. Through properly adjusting process parameters, we successfully developed nickel oxide (NiO) process able to control film thickness with great precision. The power conversion efficiency (PCE) achieved with an ultrathin NiO film (4 nm) was comparable to that of devices with the commonly-used but instable organic HTL, (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). In the attempt to develop absorbing layer, stable Si nanoparticles dispersion was successfully fabricated with conjugated linkage between particles and functional groups. From the analysis of optical properties, we suggested the linkage had the capability of assisting charge transport between nanoparticles and functional groups, which might benefit the application in solar harvesting. Solution-processed Si film with electrical properties similar to that of amorphous Si film deposited by vacuum process was obtained from Si nanoparticles dispersion. In the field of TCF, the resistivity of hafnium-doped zinc oxide (Hf:ZnO), a good transparent conductive gas barrier process developed in our laboratory, was further improved to 0.00045 Ω/cm by an additional 2 s exposure after doping. To further improve the conductivity and flexibility, we tried to insert a metal layer in Hf:ZnO by a low temperature copper process. Although a relatively good conductivity close to the value of bulk Cu was obtained in a 17 nm Cu film at process temperature as low as 120 °C, the reproducibility was poor due to the lack of a self-limiting growth mechanism. In the last part of the dissertation, the feasibility of blending monomer with graphene oxide (GO) for fabricating multifunctional gas barrier was verified. Monomers with ligands which formed strong interaction with GO, e.g. phenyl or hydroxyl groups, were found to disperse GO well. Among the studied monomers, (Hydroxyethyl)methacrylate (HEMA) possessed low viscosity, able to obtain better sonication efficiency and therefore well-exfoliated GO sheets. In addition, the dispersion could accommodate GO concentration high enough to form liquid crystal (LC) without becoming too viscous. At 3 wt% GO in HEMA, the dispersion appeared milky, indicating certain degree of self-orientation of GO. The orientation was beneficial for controlling GO arrangement during film formation, increasing the length of gas permeation path and therefore gas barrier property. Besides, GO/HEMA dispersion showed great storage and thermal stability, which were compatible with industrial production and post reduction of GO for fabricating multifunctional gas barrier film. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:29:51Z (GMT). No. of bitstreams: 1 ntu-106-F97527017-1.pdf: 3584054 bytes, checksum: f076573b223dc30e846ff6dbefcaf3b5 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Acknowledgement ………………………………………………………………………i
Abstract (Chinese) ………………………………………………………………………ii Abstract (English) ……………………………………………………………………....iv Table of Contents ………………………………………………………………………vii List of Figures …………………………………………………………………………...x List of Tables …………………………………………….........………………………xiv 1. Chapter 1 Introduction 1 1.1. Overview of thin film technology 1 1.2. Vacuum process: atomic layer deposition 2 1.3. Solution process: nanostructures dispersion 5 1.4. Motivation and objective statements 6 2. Chapter 2 Functional Layers in Photovoltaics 10 2.1. Introduction 10 2.1.1. Hole transporting layer (HTL) 10 2.1.2. Absorbing layer 12 2.2. Experimental 15 2.2.1. ALD NiO as HTL in OPVs 15 2.2.2. Solution-processed Si film as absorbing layer 17 2.3. Results and Discussion 20 2.3.1. ALD NiO as HTL in OPV 20 2.3.2. Solution-processed Si film as absorbing layer 31 2.4. Summary 41 3. Chapter 3 Transparent Conductive Films 43 3.1. Introduction 43 3.2. Experimental 47 3.2.1. ALD HZO as TCF 47 3.2.2. ALD Cu as insertion layer for HZO 47 3.3. Results and discussion 49 3.3.1. Interface engineering of HZO 49 3.3.2. ALD Cu as insertion layer for HZO 49 3.4. Summary 58 4. Chapter 4 Multifunctional Gas Barrier 59 4.1. Introduction 59 4.2. Experimental 67 4.3. Results and discussion 68 4.4. Summary 75 5. Chapter 5 Conclusion and Future Works 76 Reference ……………………………………………………………………………....77 | |
| dc.language.iso | en | |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | 透明導電阻氣薄膜 | zh_TW |
| dc.subject | 透明導電阻氣薄膜 | zh_TW |
| dc.subject | 電洞傳輸層 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | 溶液態製程 | zh_TW |
| dc.subject | 矽奈米顆粒 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | 氧化石墨烯 | zh_TW |
| dc.subject | 氧化石墨烯 | zh_TW |
| dc.subject | 電洞傳輸層 | zh_TW |
| dc.subject | 矽奈米顆粒 | zh_TW |
| dc.subject | 溶液態製程 | zh_TW |
| dc.subject | atomic layer deposition | en |
| dc.subject | solar cells | en |
| dc.subject | hole transporting layer | en |
| dc.subject | transparent conductive gas barrier | en |
| dc.subject | solution process | en |
| dc.subject | silicon nanoparticles | en |
| dc.subject | graphene oxide | en |
| dc.subject | solar cells | en |
| dc.subject | hole transporting layer | en |
| dc.subject | transparent conductive gas barrier | en |
| dc.subject | atomic layer deposition | en |
| dc.subject | solution process | en |
| dc.subject | silicon nanoparticles | en |
| dc.subject | graphene oxide | en |
| dc.title | 原子層沉積技術與奈米結構於功能性薄膜之應用: 太陽能電池之吸光與載子傳輸層、透明導電薄膜及封裝 | zh_TW |
| dc.title | Applications of Atomic Layer Deposition and Nanostructures in Functional Thin Films: Absorbing and Carrier Transporting Layers in Photovoltaics, Transparent Conductive Films and Encapsulation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林唯芳(Wei-Fang Su),童國倫(Kuo-Lun Tung),童世煌(Shih-Huang Tung),羅世強(Shyh-Chyang Luo) | |
| dc.subject.keyword | 太陽能電池,電洞傳輸層,透明導電阻氣薄膜,原子層沉積技術,溶液態製程,矽奈米顆粒,氧化石墨烯, | zh_TW |
| dc.subject.keyword | solar cells,hole transporting layer,transparent conductive gas barrier,atomic layer deposition,solution process,silicon nanoparticles,graphene oxide, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU201700678 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-03-07 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
