請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59604完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳健銘(Chien-Ming Wu) | |
| dc.contributor.author | Yi-Chang Chen | en |
| dc.contributor.author | 陳逸昌 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:29:40Z | - |
| dc.date.available | 2018-06-12 | |
| dc.date.copyright | 2017-06-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-03-13 | |
| dc.identifier.citation | Arakawa, A. and Wu, C.-M. (2013). A unified representation of deep moist convection in numerical modeling of the atmosphere. part i. Journal of the Atmospheric Sciences, 70(7):1977–1992.
Benedict, J. J. and Randall, D. A. (2007). Observed characteristics of the mjo relative to maximum rainfall. Journal of the Atmospheric Sciences, 64(7):2332–2354. Bladé, I. and Hartmann, D. L. (1993). Tropical intraseasonal oscillations in a simple nonlinear model. Journal of the Atmospheric Sciences, 50(17):2922–2939. Chien, M.-H. and Wu, C.-M. (2016). Representation of topography by partial steps using the immersed boundary method in a vector vorticity equation model (vvm). Journal of Advances in Modeling Earth Systems, 8(1):212–223. Dawe, J. T. and Austin, P. H. (2012). Statistical analysis of an les shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmospheric Chemistry and Physics, 12(2):1101–1119. Heus, T. and Seifert, A. (2013). Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations. Geoscientific Model Development, 6(4):1261–1273. Jung, J.-H. and Arakawa, A. (2008). A three-dimensional anelastic model based on the vorticity equation. Monthly Weather Review, 136(1):276–294. Khairoutdinov, M. and Randall, D. (2006). High-resolution simulation of shallow-to-deep convection transition over land. Journal of the Atmospheric Sciences, 63(12):3421–3436. Knutson, T. R. and Weickmann, K. M. (1987). 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115(7):1407–1436. Krueger, S. K., Fu, Q., Liou, K. N., and Chin, H.-N. S. (1995). Improvements of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. Journal of Applied Meteorology, 34(1):281–287. Madden, R. A. and Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. Journal of the Atmospheric Sciences, 28(5):702–708. Plant, R. S. (2009). Statistical properties of cloud lifecycles in cloud-resolving models. Atmospheric Chemistry and Physics, 9(6):2195–2205. Ray, P. and Zhang, C. (2010). A case study of the mechanics of extratropical influence on the initiation of the madden–julian oscillation. Journal of the Atmospheric Sciences, 67(2):515–528. Riley, E. M., Mapes, B. E., and Tulich, S. N. (2011). Clouds associated with the madden–julian oscillation: A new perspective from cloudsat. Journal of the Atmospheric Sciences, 68(12):3032–3051. Seifert, A. and Heus, T. (2013). Large-eddy simulation of organized precipitating trade wind cumulus clouds. Atmospheric Chemistry and Physics, 13(11):5631–5645. Seigel, R. B. (2014). Shallow cumulus mixing and subcloud-layer responses to variations in aerosol loading. Journal of the Atmospheric Sciences, 71(7):2581–2603. Trivej, P. and Stevens, B. (2010). The echo size distribution of precipitating shallow cumuli. Journal of the Atmospheric Sciences, 67(3):788–804. Wu, C.-M. and Arakawa, A. (2011). Inclusion of surface topography into the vector vorticity equation model (vvm). Journal of Advances in Modeling Earth Systems, 3(2).M04002. Wu, C.-M. and Arakawa, A. (2014). A unified representation of deep moist convection in numerical modeling of the atmosphere. part ii. Journal of the Atmospheric Sciences, 71(6):2089–2103. Wu, C.-M., Lo, M.-H., Chen, W.-T., and Lu, C.-T. (2015). The impacts of heterogeneous land surface fluxes on the diurnal cycle precipitation: A framework for improving the gcm representation of land atmosphere interactions. Journal of Geophysical Research: Atmospheres, 120(9):3714–3727. 2014JD023030. Xu, W. and Rutledge, S. A. (2014). Convective characteristics of the madden–julian oscillation over the central indian ocean observed by shipborne radar during dynamo. Journal of the Atmospheric Sciences, 71(8):2859–2877. Xu, W. and Rutledge, S. A. (2016). Time scales of shallow-to-deep convective transition associated with the onset of madden-julian oscillations. Geophysical Research Letters, 3(6):2880–2888. 016GL068269. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59604 | - |
| dc.description.abstract | 在本研究中針對MJO 的抑制相位(suppressed phase) 時,淺至深對流過程(Shallow-to-Deep Transition,SDT) 進行探討。其中,我們可以辨別出對流雲自我集結過程。研究使用三維渦度向量方程式的雲解析模式(VVM),進行理想化實驗。初始環境場及大尺度沉降場是取自DYNAMO/CINDY 在2011 所進行的觀測,並取自其中的抑制相位的部份。本研究的對流雲自我集結過程,可以經由雲的尺寸分佈來進行辨別。經由深度優先搜尋(DFS) 連結所有相鄰有雲水的網格,使其形成一個雲物件,以利討論的進行。同時,兩個在相鄰的離散時間點上雲物件,可以使用簡單的搜尋法連結,並一個雲物件估計生命週度。本研究顯示,淺至深對流過程中,雲的自我集結效應,可以經由雲的數量及雲的平均大小來辨別。在本研究中平均對流雲大小,在計算的淺至深對流過程中,約有一倍的成長,同時對流雲的數量約增加2.5倍。另外在 SDT 後期與前期的比較中可以發現,後期的質量通量相對大且生命週期長的雲,較前期的比例上有增加的趨勢。本研究同時也指出,對流雲的自我集結效應,對於對流溼化環境貢獻的重要性。 | zh_TW |
| dc.description.abstract | In this study, the self-aggregation process is identified in shallow-to-deep transition of convection during MJO suppressed phase. An idealized experiment is performed using the Vector Vorticity cloud resolving Model (VVM). The initial soundings and subsidence profiles are adopted from the suppressed phase of CINDY/DYNAMO campaign in 2011. The self-aggregation process is identified by the cloud size distribution. The cloud size is calculated using Depth-First Search (DFS) algorithm which treats connected cloudy points as a single cloud object. In addition, the life cycle of the cloud object in discrete model output can also be estimated using a searching algorithm.
The result shows that the convective cloud self-aggregation can be identified by the increasing of number and averaged volume during diurnal cycles in the SDT process. The average size of convective clouds increases about 100% during the SDT process and the number of convective clouds becomes 2:5 times larger as well. Our results also show that the ratio of cloud that contains relative larger mass flux and longer life-cycle increase during the SDT process. The results also suggest the importance of convective moistening contributed by self-aggregation of the convective clouds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:29:40Z (GMT). No. of bitstreams: 1 ntu-106-R03229021-1.pdf: 1715176 bytes, checksum: b26abc002f9cc06e62e40bd272212b5a (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 iii
誌謝 v 摘要 vii Abstract ix 1 Introduction 1 2 Data and Methodology 7 3 Result and Discussion 13 4 Concluding Remark 19 5 Figures 21 Bibliography 33 Appendix : Cloud-Connecting Algorithm 37 Appendix : Cloud Mapping Algorithm 39 Appendix : Variable Time Step in VVM 41 | |
| dc.language.iso | en | |
| dc.subject | MJO | zh_TW |
| dc.subject | 抑制相位 | zh_TW |
| dc.subject | 雲追蹤 | zh_TW |
| dc.subject | 雲解析模式 | zh_TW |
| dc.subject | 淺對流 | zh_TW |
| dc.subject | MJO | zh_TW |
| dc.subject | 抑制相位 | zh_TW |
| dc.subject | 雲追蹤 | zh_TW |
| dc.subject | 雲解析模式 | zh_TW |
| dc.subject | 淺對流 | zh_TW |
| dc.subject | Cloud Tracking | en |
| dc.subject | MJO | en |
| dc.subject | MJO | en |
| dc.subject | Suppresed Phase | en |
| dc.subject | Cloud-Resolving Model | en |
| dc.subject | Shallow Convection | en |
| dc.subject | Cloud-Resolving Model | en |
| dc.subject | Cloud Tracking | en |
| dc.subject | Suppresed Phase | en |
| dc.subject | Shallow Convection | en |
| dc.title | 雲解析模式模擬 MJO 抑制相位中集結淺對流雲之特徵 | zh_TW |
| dc.title | Cloud Characteristics of Aggregated Shallow Convection
in MJO Suppressed Phase Using CRM Simulations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳維婷(Wei-Ting Chen),李威良(Wei-Liang Lee) | |
| dc.subject.keyword | MJO,抑制相位,雲追蹤,雲解析模式,淺對流, | zh_TW |
| dc.subject.keyword | MJO,Suppresed Phase,Cloud Tracking,Cloud-Resolving Model,Shallow Convection, | en |
| dc.relation.page | 42 | |
| dc.identifier.doi | 10.6342/NTU201700683 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-03-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
