Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59537Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳中明 | |
| dc.contributor.author | Cheng-Chi Lee | en |
| dc.contributor.author | 李丞騏 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:27:06Z | - |
| dc.date.available | 2017-07-20 | |
| dc.date.copyright | 2017-07-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-05-23 | |
| dc.identifier.citation | References
1. Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncol. 2013;15(suppl 2): ii1-ii56. 2. Jane JA Jr, Sulton LD, Laws ER Jr. Surgery for primary brain tumors at United States academic training centers: results from the Residency Review Committee for neurological surgery. J Neurosurg. 2005;103(5):789-793. 3. Pollack IF. Brain tumors in children. N Engl J Med. 1994;331(22): 1500-1507. 4. Partington MD, Davis DH, Laws ER Jr, et al. Pituitary adenomas in childhood and adolescence. Results of transsphenoidal surgery. J Neurosurg. 1994;80(2):209-216. 5. Yamada S, Kovacs K, Horvath E, et al. Morphological study of clinically nonsecreting pituitary adenomas in patients under 40 years of age. J Neurosurg. 1991;75(6):902-905. 6. Mindermann T, Wilson CB. Age-related and gender-related occur¬rence of pituitary adenomas. Clin Endocrinol (Oxf). 1994;41(3): 359-364. 7. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16(suppl 4): iv1-iv63. 8. Jane JA Jr, Laws ER Jr. The surgical management of pituitary ade¬nomas in a series of 3,093 patients. J Am Coll Surg. 2001;193(6): 651-659. 9. Thapar K, Kovacs K, Muller PJ. Clinical-pathological correlations of pituitary tumours. Baillieres Clin Endocrinol Metab. 1995;9(2): 243-270. 10. Mohr G, Hardy J. Hemorrhage, necrosis, and apoplexy in pituitary adenomas. Surg Neurol. 1982;18(3):181-189. 11. Wakai S, Fukushima T, Teramoto A, et al. Pituitary apoplexy: its incidence and clinical significance. J Neurosurg. 1981;55(2): 187-193. 12. Bills DC, Meyer FB, Laws ER Jr, et al. A retrospective analysis of pituitary apoplexy. Neurosurgery. 1993;33(4):602-609. 13. Bonicki W, Kasperlik-Zaluska A, Koszewski W, et al. Pituitary apo¬plexy: endocrine, surgical and oncological emergency. Incidence, clinical course and treatment with reference to 799 cases of pituitary adenomas. Acta Neurochir (Wien). 1993;120(3–4):118-122. 14. Ebersold MJ, Laws ER Jr, Scheithauer BW, et al. Pituitary apoplexy treated by transsphenoidal surgery. A clinicopathological and immunocytochemical study. J Neurosurg. 1983;58(3):315-320. 15. Kim W, Clelland C, Yang I, et al. Comprehensive review of stereo¬tactic radiosurgery for medically and surgically refractory pituitary adenomas. Surg Neurol Int. 2012;3(suppl 2):S79-S89. 16. Jagannathan J, Sheehan JP, Pouratian N, et al. Gamma knife radio¬surgery for acromegaly: outcomes after failed transsphenoidal surgery. Neurosurgery. 2008;62(6):1262-1270. 17. Losa M, Picozzi P, Redaelli MG, et al. Pituitary radiotherapy for Cushing’s disease. Neuroendocrinology. 2010;92(suppl 1):107-110. 18. Snead FE, Amdur RJ, Morris CG, et al. Long-term outcomes of radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys. 2008;71(4):994-998. 19. Estrada J, Boronat M, Mielgo M, et al. The long-term outcome of pituitary irradiation after unsuccessful transsphenoidal surgery in Cushing’s disease. N Engl J Med. 1997;336(3):172-177. 20. Flickinger JC, Nelson PB, Martinez AJ, et al. Radiotherapy of non¬functional adenomas of the pituitary gland. Results with long-term follow-up. Cancer. 1989;63(12):2409-2414. 21. Littley MD, Shalet SM, Beardwell CG, et al. Radiation-induced hypopituitarism is dose-dependent. Clin Endocrinol (Oxf). 1989;31(3):363-373. 22. Littley MD, Shalet SM, Beardwell CG, et al. Hypopituitarism following external radiotherapy for pituitary tumours in adults. Q J Med. 1989;70(262):145-160. 23. Molitch ME. Pathologic hyperprolactinemia. Endocrinol Metab Clin North Am. 1992;21(4):877-901. 24. Klibanski A, Zervas NT. Diagnosis and management of hormone-secreting pituitary adenomas. N Engl J Med. 1991;324(12):822-831. 25. Vance ML, Evans WS, Thorner MO. Drugs five years later. Bro¬mocriptine. Ann Intern Med. 1984;100(1):78-91. 26. Hamilton DK, Vance ML, Boulos PT, et al. Surgical outcomes in hyporesponsive prolactinomas: analysis of patients with resistance or intolerance to dopamine agonists. Pituitary. 2005;8(1):53-60. 27. Molitch ME. Management of medically refractory prolactinoma. J Neurooncol. 2014;117(3):421-428. 28. Iglesias P, Diez JJ. Macroprolactinoma: a diagnostic and therapeutic update. Q J Med. 2013;106(6):495-504. 29. Babey M, Sahli R, Vajtai I, et al. Pituitary surgery for small prolac¬tinomas as an alternative to treatment with dopamine agonists. Pituitary. 2011;14(3):222-230. 30. Bloomgarden E, Molitch ME. Surgical treatment of prolactinomas: cons. Endocrine. 2014;47(3):730-733. 31. Kreutzer J, Buslei R, Wallaschofski H, et al. Operative treatment of prolactinomas: indications and results in a current consecutive series of 212 patients. Eur J Endocrinol. 2008;158(1):11-18. 32. Kauppinen-Makelin R, Sane T, Reunanen A, et al. A nationwide survey of mortality in acromegaly. J Clin Endocrinol Metab. 2005;90(7):4081-4086. 33. Colao A, Ferone D, Marzullo P, et al. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev. 2004;25(1):102-152. 34. Molitch ME. Clinical manifestations of acromegaly. Endocrinol Metab Clin North Am. 1992;21(3):597-614. 35. Melmed S. Acromegaly pathogenesis and treatment. J Clin Invest. 2009;119(11):3189-3202. 36. Giustina A, Chanson P, Kleinberg D, et al. Expert consensus docu¬ment: a consensus on the medical treatment of acromegaly. Nat Rev Endocrinol. 2014;10(4):243-248. 37. Ezzat S, Snyder PJ, Young WF, et al. Octreotide treatment of acro¬megaly: a randomized, multicenter study. Ann Intern Med. 1992;117(9):711-718. 38. Ahmed S, Elsheikh M, Stratton IM, et al. Outcome of transphenoi¬dal surgery for acromegaly and its relationship to surgical experi¬ence. Clin Endocrinol (Oxf). 1999;50(5):561-567. 39. Freda PU, Wardlaw SL, Post KD. Long-term endocrinological follow-up evaluation in 115 patients who underwent transsphenoi¬dal surgery for acromegaly. J Neurosurg. 1998;89(3):353-358. 40. Tritos NA, Biller BM, Swearingen B. Management of Cushing disease. Nat Rev Endocrinol. 2011;7(5):279-289. 41. Mampalam TJ, Tyrrell JB, Wilson CB. Transsphenoidal microsur¬gery for Cushing disease. A report of 216 cases. Ann Intern Med. 1988;109(6):487-493. 42. Bochicchio D, Losa M, Buchfelder M. Factors influencing the immediate and late outcome of Cushing’s disease treated by trans¬sphenoidal surgery: a retrospective study by the European Cush¬ing’s Disease Survey Group. J Clin Endocrinol Metab. 1995;80(11): 3114-3120. 43. Semple PL, Vance ML, Findling J, et al. Transsphenoidal surgery for Cushing’s disease: outcome in patients with a normal magnetic resonance imaging scan. Neurosurgery. 2000;46(3):553-558. 44. Degerblad M, Rahn T, Bergstrand G, et al. Long-term results of stereotactic radiosurgery to the pituitary gland in Cushing’s disease. Acta Endocrinol. 1986;112(3):310-314. 45. Sheehan JP, Starke RM, Mathieu D, et al. Gamma Knife radiosur¬gery for the management of nonfunctioning pituitary adenomas: a multicenter study. J Neurosurg. 2013;119(2):446-456. 46. Sheehan JP, Xu Z, Salvetti DJ, et al. Results of Gamma Knife surgery for Cushing’s disease. J Neurosurg. 2013;119(6):1486- 1492. 47. Brucker-Davis F, Oldfield EH, Skarulis MC, et al. Thyrotropin-secreting pituitary tumors: diagnostic criteria, thyroid hormone sensitivity, and treatment outcome in 25 patients followed at the National Institutes of Health. J Clin Endocrinol Metab. 1999;84(2): 476-486. 48. Caron P, Arlot S, Bauters C, et al. Efficacy of the long-acting octreo¬tide formulation (octreotide-LAR) in patients with thyrotropin-secreting pituitary adenomas. J Clin Endocrinol Metab. 2001;86(6): 2849-2853. 49. Kirkman MA, Jaunmuktane Z, Brandner S, et al. Active and silent TSH-expressing pituitary adenomas: presenting symptoms, treatment, outcomes and recurrence. World Neurosurg. 2014;82(6): 1224-1231. 50. Ebersold MJ, Quast LM, Laws ER, et al. Long-term results in transsphenoidal removal of nonfunctioning pituitary adenomas. J Neurosurg. 1986;64(5):713-719. 51. Laws ER Jr, Trautmann JC, Hollenhorst RW Jr. Transsphenoidal decompression of the optic nerve and chiasm: visual results in 62 patients. J Neurosurg. 1977;46(6):717-722. 52. Arafah BM, Brodkey JS, Manni A, et al. Recovery of pituitary func¬tion following surgical removal of large nonfunctioning pituitary adenomas. Clin Endocrinol (Oxf). 1982;17(3):213-222. 53. Laws ER Jr, Vance ML. Radiosurgery for pituitary tumors and craniopharyngiomas. Neurosurg Clin N Am. 1999;10(2):327-336. 54. Colao A, Pivonello R, Di Somma C, et al. Medical therapy of pituitary adenomas: effects on tumor shrinkage. Rev Endocr Metab Disord. 2009;10(2):111-123. 55. Dekkers OM, Pereira AM, Roelfsema F, et al. Observation alone after transsphenoidal surgery for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab. 2006;91:1796-1801. 56. Wichers RM, Hoven S, Kristof RA, et al. Non-functioning pituitary adenomas: endocrinological and clinical outcome after transsphenoidal and transcranial surgery. Exp Clin Endocrinol Diabetes. 2004;112:323-327. 57. Alameda C, Lucas T, Pineda E, et al. Experience in management of 51 non-functioning pituitary adenomas: indications for post-operative radiotherapy. J Endocrinol Invest. 2005;28:18-22. 58. Marazuela M, Astigarraga B, Vicente A, et al. Recovery of visual and endocrine function following transsphenoidal surgery of large nonfunctioning pituitary adenomas. J Endocrinol Invest. 1994;17:703-707. 59. Nomikos P, Buchfelder M, Fahlbusch R. The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure’. Eur J Endocrinol. 2005;152:379-387. 60. Arafah BM, Kailani SH, Nekl K E, et al. Immediate recovery of pituitary function after transsphenoidal resection of pituitary macroadenomas. J Clin Endocrinol Metab. 1994;79:348-354. 61. Comtois R, Beauregard H, Somma M, et al. The clinical and endocrine outcome to trans-sphenoidal microsurgery of non-secreting pituitary adenomas. Cancer. 1991;68:860-866. 62. Nomikos P, Ladar C, Fahlbusch R, et al. Impact of primary surgery on pituitary function in patients with non-functioning pituitary adenomas—a study on 721 patients. Acta Neurochir (Wien). 2004;146:27-35. 63. Dekkers OM, van der Klaauw AA, Pereira AM, et al. Quality of life is decreased after treatment for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab. 2006;91:3364-3369. 64. Auernhammer CJ, Vlotides G. Anterior pituitary hormone replacement therapy—a clinical review. Pituitary. 2007;10:1-15. 65. Vnitrni, L. Hypopituitarism--substitution therapy. Vnitr Lek. 2007;53:812-815. 66. Bassil N, Alkaade S, Morley JE. The benefits and risks of testosterone replacement therapy: a review. Ther Clin Risk Manag. 2009;5:427-448. 67. Arafah BM. Reversible hypopituitarism in patients with large nonfunctioning pituitary adenomas. J Clin Endocrinol Metab. 1986;62:1173. 68. Webb S M, Rigla M, Wagner A, et al. Recovery of hypopituitarism after neurosurgical treatment of pituitary adenoma. J. Clin. Endocrinol. Metab. 1999;84: 3696-3700. 69. Roelfsema F, Biermasz NR, Pereira AM. Clinical factors involved in the recurrence of pituitary adenomas after surgical remission: a structured review and meta-analysis. Pituitary. 2012;15(1):71-83. 70. Beauregard C, Truong U, Hardy J, et al. Long-term outcome and mortality after transsphenoidal adenomectomy for acromegaly. Clin Endocrinol (Oxf). 2003;58(1):86-91. 71. Hammer GD, Tyrrell JB, Lamborn KR, et al. Transsphenoidal microsurgery for Cushing's disease: initial outcome and long-term results. J Clin Endocrinol Metab. 2004;89(12):6348-6357. 72. Kelly DF. Transsphenoidal surgery for Cushing's disease: a review of success rates, remission predictors, management of failed surgery, and Nelson's Syndrome. Neurosurg Focus. 2007;23(3):1-6. 73. Kreutzer J, Vance ML, Lopes MB, et al. Surgical management of GH-secreting pituitary adenomas: an outcome study using modern remission criteria. J Clin Endocrinol Metab. 2001;86(9):4072-4077. 74. Melmed S. Medical progress: Acromegaly. N Engl J Med. 2006;355(24):2558-2573. 75. Zhang X, Fei Z, Zhang J, et al. Management of nonfunctioning pituitary adenomas with suprasellar extensions by transsphenoidal microsurgery. Surg Neur. 1999;52:380-385. 76. Ferreli F, Turri-Zanoni M, Canevari FR, et al. Endoscopic endonasal management of non-functioning pituitary adenomas with cavernous sinus invasion: a 10- year experience. Rhinology. 2015;53(4):308:316. 77. Li J, Cong Z, Ji X, et al. Application of intraoperative magnetic resonance imaging in large invasive pituitary adenoma surgery. Asian J Surg. 2015;38(3): 168-173. 78. Boelaert K, Gittoes NJ. Radiotherapy for non-functioning pituitary adenomas. Eur J Endocrinol. 2001;144(6):569-575. 79. Park P, Chandler WF, Barkan AL, et al. The role of radiation therapy after surgical resection of nonfunctional pituitary macroadenomas. Neurosurgery. 2004;55(1):100-106. 80. Brada M, Rajan B, Traish D, et al. The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol (Oxf). 1993;38(6):571-578. 81. Tsang RW, Brierley JD, Panzarella T, et al. Role of radiation therapy in clinical hormonally-active pituitary adenomas. Radiother Oncol. 1996;41(1):45-53. 82. Pollock BE, Cochran J, Natt N, et al. Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol Biol Phys. 2008;70(5):1325-1329. 83. Lindholm J, Nielsen EH, Bjerre P, et al. Hypopituitarism and mortality in pituitary adenoma. Clin Endocrinol (Oxf). 2006;65(1):51-58. 84. Hartman ML, Crowe BJ, Biller BM, et al. Which patients do not require a GH stimulation test for the diagnosis of adult GH deficiency? J Clin Endocrinol Metab. 2002;87:477-485. 85. Lee CC, Lee ST, Chang CN, et al. Volumetric Measurement for Comparison of the Accuracy between Intraoperative Computed Tomography and Post-operative Magnetic Resonance Imaging in Pituitary Adenoma Surgery. Am J Neuroradiol. 2011;32:1539-1544. 86. Kovacs K, Scheithauer BW, Horvath E, et al. The World Health Organization classification of adenohypophysial neoplasms. A proposed five-tier scheme. Cancer. 1996;78:502-510. 87. Klibanski, A. Nonsecreting pituitary tumors. Endocrinol Metab Clin North Am. 1987;16:793-804. 88. Losa M, Mortini P, Barzaghi R, et al. Endocrine inactive and gonadotroph adenomas: diagnosis and management. J Neurooncol. 2001;54:167-177. 89. Dekkers OM, Pereira AM, Romijn JA. Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. J Clin Endocrinol Metab. 2008;93:3717-3726. 90. Arafah BM, Harrington JF, Madhoun ZT, et al. Improvement of pituitary function after surgical decompression for pituitary tumor apoplexy. J Clin Endocrinol Metab. 1990;71:323-328. 91. Nelson AT Jr, Tucker HS Jr, Becker DP. Residual anterior pituitary function following transsphenoidal resection of pituitary macroadenomas. J. Neurosurg. 1984;61:577-580. 92. Aron DC, Howlett TA. Pituitary incidentalomas. Endocrinol Metab Clin North Am. 2000;29:205-221. 93. Greenman Y, Tordjman K, Kisch E, et al. Relative sparing of anterior pituitary function in patients with growth hormone-secreting macroadenomas: comparison with nonfunctioning macroadenomas. J Clin Endocrinol Metab. 1995;80:1577-1583. 94. Greenman Y, Ouaknine G, Veshchev I, et al. Post-operative surveillance of clinically nonfunctioning pituitary macroadenomas: markers of tumour quiescence and regrowth. Clinical Endocrinology. 2003;58:763-769. 95. Bourdelot A, Coste J, Hazebroucq V, et al. Clinical, hormonal and magnetic resonance imaging (MRI) predictors of transsphenoidal surgery outcome in acromegaly. Eur J Endocrinol. 2004;150:763-771. 96. De Tommasi C, Vance ML, Okonkwo DO, et al. Surgical management of adrenocorticotropic hormone-secreting macroadenomas: outcome and challenges in patients with Cushing’s disease or Nelson’s syndrome. J Neurosurg. 2005;103: 825-830. 97. Esposito V, Santoro A, Minniti G, et al. Transsphenoidal adenomectomy for GH-, PRL- and ACTH-secreting pituitary tumours: outcome analysis in a series of 125 patients. Neurol Sci. 2004;25:251-256. 98. Kristof RA, Schramm J, Redel L, et al. Endocrinological outcome following firsttime transsphenoidal surgery for GH-, ACTH-, and PRL-secreting pituitary adenomas. Acta Neurochir (Wien). 2002;144:555-561. 99. Losa M, Valle M, Mortini P, et al. Gamma knife surgery for treatment of residual nonfunctioning pituitary adenomas after surgical debulking. J Neurosurg. 2004;100(3):438-444. 100. O'Sullivan EP, Woods C, Glynn N, et al. The natural history of surgically treated but radiotherapy-naïve nonfunctioning pituitary adenomas. Clin Endocrinol (Oxf). 2009;71(5):709-714. 101. Brochier S, Galland F, Kujas M, et al. Factors predicting relapse of nonfunctioning Pituitary macroadenomas after neurosurgery: a study of 142 patients. Eur J Endocrinol. 2010;163(2):193-200. 102. Ferrante E, Ferraroni M, Castrignanò T, et al. Nonfunctioning pituitary adenoma database: a useful resource to improve the clinical management of pituitary tumors. Eur J Endocrinol. 2006;155(6):823-829. 103. Losa M, Mortini P, Barzaghi R, et al. Early results of surgery in patients with nonfunctioning pituitary adenoma and analysis of the risk of tumor recurrence. J Neurosurg. 2008;108(3):525-532. 104. Tanaka Y, Hongo K, Tada T, et al. Growth pattern and rate in residual nonfunctioning pituitary adenomas: correlations among tumor volume doubling time, patient age, and MIB-1 index. J Neurosurg. 2003;98(2):359-365. 105. Chen Y, Wang CD, Su ZP, et al. Natural History of Postoperative Nonfunctioning PituitaryAdenomas: A Systematic Review and Meta-Analysis. Neuroendocrinology. 2012;96:333-342. 106. Dekkers OM, Hammer S, de Keizer RJ, et al. The natural course of non-functioning pituitary macroadenomas. Eur J Endocrinol. 2007;156(2):217-224. 107. Gopalan R, Schlesinger D, Vance ML, et al. Long-term outcomes after Gamma Knife radiosurgery for patients with a nonfunctioning pituitary adenoma. Neurosurgery. 2011;69(2):284-293. 108. McCord MW, Buatti JM, Fennell EM, et al. Radiotherapy for pituitary adenoma: long-term outcome and sequelae. Int J Radiat Oncol Biol Phys. 1997;39(2):437-444. 109. Milker-Zabel S, Debus J, Thilmann C, et al. Fractionated stereotactically guided radiotherapy and radiosurgery in the treatment of functional and nonfunctional adenomas of the pituitary gland. Int J Radiat Oncol Biol Phys. 2001;50(5);1279-1286. 110. Colin P, Jovenin N, Delemer B, et al. Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys. 2005;59(4):333-341. 111. Milker-Zabel S, Zabel A, Huber P, et al. Stereotactic conformal radiotherapy in patients with growth hormone-secreting pituitary adenoma. Int J Radiat Oncol Biol Phys. 2004;59(4):1088-1096. 112. Roth J, Gorden P, Brace, K. Efficacy of conventional pituitary irradiation in acromegaly. N Engl J Med. 1970;282(25):1385-1391. 113. Ciccarelli E, Valetto MR, Vasario E, et al. Hormonal and radiological effects of megavoltage radiotherapy in patients with growth hormone-secreting pituitary adenoma. J Endocrinol Invest. 1993;16(8):565-572. 114. Tsagarakis S, Grossman A, Plowman PN, et al. Megavoltage pituitary irradiation in the management of prolactinomas: long-term follow-up. Clin Endocrinol (Oxf). 1991;34(5):399-406. 115. Woollons AC, Hunn MK, Rajapakse YR, et al. Non-functioning pituitary adenomas: indications for postoperative radiotherapy. Clin Endocrinol (Oxf). 2000;53(6):713-717. 116. Gittoes, N. J. Radiotherapy for non-functioning pituitary tumours–when and under what circumstances? Pituitary. 2003;6:103-108. 117. Al-Mefty O, Kersh JE, Routh A, et al. The long-term side effects of radiation therapy for benign brain tumors in adults. J Neurosurg. 1990;73(4):502-512. 118. Brada M, Ford D, Ashley S, et al. Risk of second brain tumour after conservative surgery and radiotherapy for pituitary adenoma. BMJ.1992;304(6838):1343-1346. 119. Hahn CA, Zhou SM, Raynor R, et al. Dose-dependent effects of radiation therapy on cerebral blood flow, metabolism, and neurocognitive dysfunction. Int J Radiat Oncol Biol Phys. 2009;73(4):1082-1087. 120. Tsang RW, Laperriere NJ, Simpson WJ, et al. Glioma arising after radiation therapy for pituitary adenoma. A report of four patients and estimation of risk. Cancer. 1993;72(7):2227-2233. 121. Minniti G, Traish D, Ashley S, et al. Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab. 2005;90(2):800-804. 122. Roelz R, Strohmaier D, Jabbarli R, et al. Residual Tumor Volume as Best Outcome Predictor in Low Grade Glioma - A Nine-Years Near-Randomized Survey of Surgery vs. Biopsy. Sci Rep. 2016;6:doi: 10.1038/srep32286. 123. Barbosa BJ, Dimostheni A, Teixeira MJ, et al. Insular gliomas and the role of intraoperative assistive technologies: Results from a volumetry-based retrospective cohort. Clin Neurol Neurosurg. 2016;149:104-110. 124. Meier R, Knecht U, Loosli T, et al. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry. Sci Rep. 2016;6: doi: 10.1038/srep23376. 125. Egger J, Kapur T, Nimsky C, et al. Pituitary adenoma volumetry with 3D Slicer. PLoS One. 2012;7:doi: 10.1371/journal.pone.0051788. 126. Huber T, Alber G, Bette S, et al. Reliability of Semi-Automated Segmentations in Glioblastoma. Clin Neuroradiol. 2015;doi: 10.1007/s00062-015-0471-2. 127. Chow DS, Qi J, Guo X, et al. Semiautomated volumetric measurement on postcontrast MR imaging for analysis of recurrent and residual disease in glioblastoma multiforme. AJNR Am J Neuroradiol. 2014;35(3):498-503. 128. Hashimoto N, Rabo CS, Okita Y, et al. Slower growth of skull base meningiomas compared with non-skull base meningiomas based on volumetric and biological studies. J. Neurosurg. 2012;116(3):574-580. 129. Iliadis G, Selviaridis P, Kalogera-Fountzila A, et al. The importance of tumor volume in the prognosis of patients with glioblastoma: comparison of computerized volumetry and geometric models. Strahlenther Onkol. 2009;185(11): 743-750. 130. Roldan-Valadez E, Garcia-Ulloa AC, Gonzalez-Gutierrez O, et al. 3D volumetry comparison using 3T magnetic resonance imaging between normal and adenoma-containing pituitary glands. Neurol India. 2011;59(5):696-699. 131. Riley GT, Armitage PA, Batty R, et al. Diffuse intrinsic pontine glioma: is MRI surveillance improved by region of interest volumetry? Pediatr Radiol. 2015;45(2): 203-210. 132. Xu Y, Iftimia N, Jiang H, et al. Three dimensional diffuse optical tomography of bones and joints. J. Biomed. Opt. 2002;7:88-92. 133. Leff DR, Warren OJ, Enfield LC, et al. Diffuse optical imaging of the healthy and diseased breast: A systematic review. Breast Cancer Res. Treat. 2008;108:9-22. 134. Custo A, Boas DA, Tsuzuki D, et al. Anatomical atlas-guided diffuse optical tomography of brain activation. Neuroimage. 2009;49:561-567. 135. Hebden JC, Gibson A, Yusof RM, et al. Threedimensional optical tomography of the premature infant brain. Phys. Med. Biol. 2002;47:4155-4166. 136. Asgari S, Röhrborn HJ, Engelhorn T, et al. Intraoperative measurement of cortical oxygen saturation and blood volume adjacent to cerebral arteriovenous malformations using near-infrared spectroscopy. Neurosurgery. 2003;52(6):1298-1304. 137. Lee JY, Thawani JP, Pierce J, et al. Intraoperative Near-Infrared Optical Imaging Can Localize Gadolinium-Enhancing Gliomas During Surgery. Neurosurgery. 2016;79(6):856-871. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59537 | - |
| dc.description.abstract | 腦下垂體是人體荷爾蒙的控制中心,位於顱底正中央的蝶鞍(sella turcica)凹陷裡。這個位置正處於兩條視覺神經交叉點之下。腦下垂體產生多種激素來維持身體機能恆定:腎上腺皮質刺激素刺激腎上腺分泌腎上腺皮質素;甲狀腺刺激素刺激甲狀腺分泌甲狀腺激素;黃體刺激素和濾泡刺激素與性器官產生作用;生長激素會幫助糖類新陳代謝和細胞成長;泌乳激素會影響泌乳。腦下垂體腺瘤約佔所有腦瘤10~15%,在眾多腦腫瘤中是屬於生長緩慢的。若以大小來分類,較小的腫瘤(少於1公分直徑)稱為微腺瘤(microadenoma),較大的腫瘤(大於1 公分直徑)稱為巨腺瘤(macroadenoma)。腦下垂體腫瘤若依功能來分類可分為功能性和非功能性腫瘤。功能性腫瘤會產生激素,影響生理機能,較容易被發現,此時腫瘤一般不會太大。相對地,非功能性腫瘤因不產生激素,不容易被診斷出來,直到大到一定程度後有視力障礙或內分泌功能低下才會檢查出來,此時往往腫瘤已經長到2~3 公分了。非功能性的巨腺瘤因為壓迫腦下垂體,導致性腺素、腎上腺皮質素、甲狀腺素及抗利尿激素低下,程度較嚴重的病人即使接受手術,術後仍需長期或終生補充口服或針劑荷爾蒙。這些荷爾蒙不足影響比想象中深遠,病人日常生活表現差、肌肉萎縮、提不起精神整天病懨懨。因此,如何在術前預估腦下垂體功能於術後是否能復原,就可以於手術前強調及早手術的必要性以及術後需補充荷爾蒙的可能性。以往文獻也提到腫瘤的直徑大小、腫瘤切除的多寡等與荷爾蒙低下改善的相關性,但是多以腫瘤直徑,也就是一維空間的長度來做判斷預估的標準,不僅不夠嚴謹,當遇到不規則型的腫瘤時更難界定。所以我們利用計算核磁共振影像上腫瘤體積的方法,以三維空間更精密的數據來預估是否須於術後長期補充荷爾蒙。再者,藉由體積可以得到腫瘤切除率(殘存率),亦可以探討全切除(grossly total resection)、次全切除(subtotal resection)、腫瘤殘存率(residual ratio)是否與補充荷爾蒙有關。
另外,用來計算腫瘤體積的方法長久以來一直是以1/2(長x寬x高)來估算,甚至只以一維長度來測量並依此來判斷腫瘤為穩定(stationary)、生長(growing)或是萎縮(regressive),這樣的方法在形狀規則或是(橢)圓形的病灶其估算出來的體積並不會有太大誤差,但是一但遇到侵犯性高(highly invasive)生長快速或是手術後導致形狀不規則的腫瘤,以傳統估算方法不但無法精確計算,更會造成後續對腫瘤現狀判斷的誤差,甚至導致病患接受不必要的治療,如再次手術、放射治療等等。這些不必要的治療或多或少會有併發症,包括腦下垂體功能失調、續發性腦部癌變、腦部認知功能缺損等等沒有必要且可以事先避免的副作用。因此,我們在研究中所採取的方法為OsiriX,此法利用segmentation process,且已經多次被證實可以用來精確計算腫瘤體積,其結果也被刊登在不同的期刊上。經由與傳統算法比較後可以發現:OsiriX方法優於傳統算法,尤其是對於形狀不規則或是術後的腫瘤 (p<0.0001)。除此之外,我們更採用了另一種3D slicer segmentation process的方法來計算,並比較與OsiriX法兩者之間的差距,統計結果顯示這兩種電腦軟體不論在術前(p=0.4964)或術後(p=0.4062)均沒有估算體積上的差別。 總之,以精密方法計算腫瘤體積,不但可以先行預測腫瘤可能會引起的臨床效應,更是腫瘤後續追蹤以及決定下一步治療方式的關鍵因素。尤其對於形狀不規則的腫瘤,更是應該以精密的方式來追蹤與計算,才可以避免因誤判腫瘤現況與後續不必要的治療所帶來的併發症。 | zh_TW |
| dc.description.abstract | The pituitary gland regulates the secretion of hormones in the human body. It is located on the sella turcica, a bony cavity in the center of the cranial fossa and below the optic chiasm. Normally, the pituitary gland produces several hormones to maintain constant body functions and homeostasis. Pituitary adenomas accounting for approximately 10%–15% of all brain tumors, are relatively slow-growing tumors. When classified by size, tumors that are < 1 cm in diameter are defined as microadenomas, whereas those ≥ 1 cm as macroadenomas. Pituitary adenomas are also classified as functioning and nonfunctioning adenomas. Functioning adenomas produce excess hormones and are discovered by hypersecretion functions. By contrast, nonfunctioning adenomas do not produce hormones and are thus not detected until visual impairment or hypopituitarism occurs. These tumors are generally 2–3 cm in diameter when discovered. The external mass compression of a macroadenoma damages gland functions, resulting in different kinds of hormone deficiency. Patients with severe hormone-related problems require long-term hormone supplementation postoperatively. Hormone deficiency has a greater impact on patients than was previously thought, and these patients may experience fatigue and decreased muscle strength that interfere with their daily activities. Therefore, predicting the likelihood of postoperative pituitary function recovery can enable us to emphasize the necessity of early surgery to avoid the requirement of lifelong hormone supplementation. Previous studies have investigated whether tumor size and the amount of tumor resection are correlated with hormone deficiency improvement. However, the majority of these studies predicted using tumor diameter (i.e., one-dimensional length). This approach not only lacks rigorousness, but also presents difficulties when defining irregularly shaped tumors. Therefore, we calculated tumor volume using this precise three-dimensional data and then predicted the need of long-term postoperative hormone supplementation.
In addition, volumetric measurement of tumors has long been calculated by the geometric formula (length × width × height)/2. Some clinicians have even determined whether a tumor is stationary, growing, or regressive using only its diameter. This method does not result in many errors when used for regularly shaped tumors. However, it cannot make accurate calculations for highly invasive tumors with rapid growth or irregularly shaped tumors that have formed postoperatively, and it may lead to errors in determining tumor status and even unnecessary treatment such as surgery and radiotherapy, which may lead to complications that could have been avoided, including pituitary insufficiency, secondary malignancy, and cognitive dysfunction. To prevent such problems, our second study used OsiriX to perform the precise volumetric measurement of tumors. The segmentation process has been long employed for its accuracy, and its outcomes have been published in various journals. A comparison revealed that OsiriX yielded more favorable outcomes than the traditional method, particularly for post-operative irregularly shaped tumors (p<0.0001). We also compared the OsiriX method with another 3D slicer segmentation process, and the statistical results revealed that no differences between these two softwares in estimating pre-operative (p=0.4964) or post-operative tumor volume (p=0.4062). In summary, precise volumetric measurement not only predicts the potential clinical effects of a tumor, but is also critical for residual tumor follow-ups and determining whether subsequent treatment is necessary. Irregularly shaped tumors should be identified and tracked using this method to avoid misjudgment of the current status and complications caused by unnecessary treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:27:06Z (GMT). No. of bitstreams: 1 ntu-106-D00548014-1.pdf: 11805983 bytes, checksum: 1018fef54154bd6377157cfe0caf8934 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
序言及謝辭……………………………..………………………….I 中文摘要………………………………………………………………II 英文摘要……………………………………………………………….IV Chapter 1 Introduction 1.1 Pituitary gland…………….………………..........................……...1 1.1.1 Epidemiology…………...…..…………..………………………2 1.1.2 Anatomy, morphology and function of the pituitary gland…2 1.2 Classifications…………………….…………………………...6 1.2.1 Clinical and endocrinologic classifications…..…………….6 1.2.2 Imaging classification.…………………..………………….6 1.3 Clinical presentation…………………………………………….7 1.3.1 General considerations……….………………………….7 1.3.2 Hormone excess states…………………….…………….8 1.3.3 Pituitary insufficiency……………….….……….………9 1.3.4 Mass effect………………………………..………………9 1.3.5 Pituitary apoplexy……………..…………….…….…….11 1.4 Management…………….………..……….…….…………….12 1.4.1 Indications and goals of surgery…….…..….………12 1.4.2 Radiation therapy…….…………..……..…..…….…..13 1.5 Special considerations…………………….……………..13 1.5.1 Prolactinoma…………………………….…………….13 1.5.1.1 Clinical presentation……………….……………13 1.5.1.2 Treatment options…………………….…………..14 1.5.2 Growth-hormone secreting pituitary adenoma……15 1.5.2.1 Clinical presentation………………….……………15 1.5.2.2 Treatment options……………………….…………..15 1.5.3 Corticotroph pituitary adenomas………….…………17 1.5.3.1 Clinical presentation………………….……………17 1.5.3.2 Treatment options.…………………….…………..17 1.5.4 Thyrotroph pituitary adenomas………….…………19 1.5.5 Clinical nonfunctioning pituitary macroadenomas (NFPAs)………….……………………………………19 1.5.5.1 Clinical presentation………………….……………19 1.5.5.2 Treatment options……………………….…………..20 1.6 Background and purpose…………………..………………22 1.6.1 Precise measurement of pre-operative volume of pituitary adenoma in predicting long-term post-operative testosterone replacement requirement…………………………........……23 1.6.2 Comparison between different volumetric measurement methods in pituitary adenomas and the clinical importance..25 Chapter 2 Material and Method 2.1 Precise measurement of pre-operative volume of pituitary adenoma in predicting the requirement of long-term post-operative testosterone replacement…........……28 2.1.1 Material and method..……………………………….………28 2.1.1.1 Patient population…..……………..…..…….….……..28 2.1.1.2 Patient subgroups based on different characteristics…...29 2.1.1.3 Assessment of pituitary function..…….…..….…...30 2.1.1.4 Imaging interpretation………..………….……...…....31 2.1.1.5 Tumor volume calculation…….….…………..…......31 2.1.1.6 Endocrine and radiologic follow-up.………..….....33 2.1.1.7 Hormone replacement.…….………….……..…......34 2.1.1.8 Statistical methodology.….……….……….………....34 2.2 Comparison between different volumetric measurement methods in pituitary adenomas and the clinical importance……….36 2.2.1 Material and method..……………………………….………36 2.2.1.1 Patient population…..……………..…..…….….……..36 2.2.1.2 Transsphenoidal surgery…………..…..…….….……..37 2.2.1.3 Treatment criteria for recurrent and residual tumors..37 2.2.1.4 Radiologic follow-up..……….……..…..…….….……..37 2.2.1.5 Imaging interpretation.……………..…..…….….……..38 2.2.1.6 Subgroups and tumor volume calculation...…..……..38 2.2.1.7 Statistical methodology..………..…..……….….……..41 Chapter 3 Results 3.1 Precise measurement of pre-operative volume of pituitary adenoma in predicting the requirement of long-term post-operative testosterone replacement……………42 3.1.1 Patient subgroups based on different characteristics………42 3.1.2 Correlation coefficient between the pre-operative tumor volume and the serum testosterone level……………..……43 3.1.3 Subgroups receiving long-term testosterone replacement…..45 3.1.4 Univariate logistic regression and categorical analyses….….46 3.1.5 Multivariate logistic regression analysis for evaluation of the relationship between pre-operative tumor volume, serum testosterone level, residual tumor ratio, resection status, second surgery, and the need for long-term testosterone………….51 3.1.6 Analysis of the association between risk factors associated with long-term testosterone therapy by using multivariate logistic regression stratified by the pre-operative tumor volume…..53 3.2 Comparison between different volumetric measurement methods in pituitary adenomas and the clinical importance…..……55 3.2.1 Patient subgroups based on different characteristics…...55 3.2.2 Wilcoxon signed rank test……………………………….56 3.2.3 Univariate logistic regression and categorical analyses….58 3.2.4 Multivariate logistic regression analysis……………………62 Chapter 4 Discussion 4.1 Precise measurement of pre-operative volume of pituitary adenoma in predicting the requirement of long-term post-operative testosterone replacement……........……64 4.1.1 Pre-operative hypogonadism…………………………………66 4.1.2 Hypogonadism after surgery…………………………….…..67 4.1.3 Prediction of post-operative pituitary function…………….68 4.1.3.1 Determination of the cut-off value…………….………68 4.1.3.2 Pre-operative tumor size and volume.…………………70 4.1.3.3 Intraoperative resection status and residual tumor ratio...72 4.1.3.4 Second surgery…………………………………………76 4.2 Comparison between different volumetric measurement methods in pituitary adenomas and the clinical importance…..……79 4.2.1 Determination of tumor recurrent or residual tumor growth and the timing and indications for radiation therapy………80 4.2.2 Pre-operative volume differences………….………..………..82 4.2.3 Post-operative volume differences.…………………….……86 4.2.4 Post-operative volume differences in distinct groups.……..90 4.2.5 Volume estimation results of the OsiriX and 3D slicer method..92 Chapter 5 Conclusion……………………………………………….95 Chapter 6 Future Works……………………………………………….97 6.1 Increase the efficiency of segmentation……………...……97 6.2 Prove and improve the accuracy of the estimated volume..97 6.3 Near-infrared spectroscopy (NIRS) and the clinical application in brain arteriovenous malformation (AVM) and tumor resection….98 6.3.1 NIRS and tissue oxygenation during and after AVM resection surgery…………………………………..99 6.3.2 Intraoperative utilization of near infrared and indocyanide green (ICG) to localize enhancing malignant gliomas…100 References………………………………………..…………………102 Publication List……………………………………………………….124 List of Figures Fig. 1.1 Anatomy of the sellar region, in a coronal schematic………..3 Fig. 1.2 Pituitary gland, gross section, sagittal view.………4 Fig. 1.3 Topographic distribution of specific hormone-secreting regions within the pituitary gland…………..………….5 Fig. 1.4 Visual field plots from our patient demonstrating bitemporal hemianopsia…………………………..10 Fig. 3.1.1 Scatter diagram showing that a larger pre-operative tumor volume negatively impacts the pre-operative serum level of testosterone………………………………….44 Fig. 4.1.1 Patients had a much larger tumor volume with greater paracavernous invasion……………………………….73 Fig. 4.1.2 Patient with the residual tumor resided in the paracavernous area, and the sella was extensively decompressed…………74 Fig. 4.2.1 Pre-operative MRI of a 64-year-old female patient revealed an extremely large tumor…………………………………….85 Fig. 4.2.2 Pre-operative MRI of a 57-year-old male patient revealed an extremely small tumor (green area)……………………85 Fig. 4.2.3 Pre-operative MRI of a 62-year-old female patient revealed a typical NFPA with a regularly shaped tumor……..……..86 Fig. 4.2.4 Post-operative MRI of a 55-year-old male patient revealed an irregularly shaped residual tumor with CS invasion after STR (green area)……………..………………..……………89 Fig. 4.2.5 GTR status was achieved in a 60-year-old male patient, the post-operative MRI revealed no tumor remnants but did exhibit a regularly shaped pituitary gland and granulation tissue (excluding the stalk; green area)………….……..89 List of Tables Table 3.1.1 Subgroups of the 52 surgeries……………………….....43 Table 3.1.2 Hormone replacement in different groups………………46 Table 3.1.3 Univariate logistic regression: association and outcome prediction of pre-operative tumor volume and testosterone therapy……………………………………48 Table 3.1.4 Univariate logistic regression: association and outcome prediction of residual tumor ratio and testosterone therapy..48 Table 3.1.5 Univariate logistic regression: association and outcome prediction of pre-operative testosterone level and testosterone therapy………....…………………………49 Table 3.1.6 Univariate analysis: association between factors and the need of long-tern testosterone therapy……..…………..50 Table 3.1.7 Multivariate logistic regression: association between factors and the need of long-term testosterone therapy………….52 Table 3.1.8 Multivariate logistic regression: association between factors and the need of long-term testosterone therapy………….52 Table 3.1.9 Multivariate logistic regression: association between factors and the risk/need of long-term testosterone therapy……...53 Table 3.1.10 Stratification analysis: association between factors and risk of long-tern testosterone therapy, stratified by pre-operative tumor volume……………………………………………..54 Table 3.2.1 Baseline characteristics…………………………………..56 Table 3.2.2 Volume estimation and the results of Wilcoxon signed rank test.……………….………………………………..57 Table 3.2.3 Univariate analysis: association between factors and pre-operative volume differences(O1 − A1)≥1SE…………..59 Table 3.2.4 Univariate analysis: association between factors and post-operative volume differences(O2 – A2)≥1SE.…………60 Table 3.2.5 Univariate analysis of: association between factors when post-operative volume difference(O2 − A2)≥1SE and pre-operative volume difference difference(O1 − A1)<1SE…61 Table 3.2.6 Univariate analysis: association between factors when post-operative volume difference (O2 − A2)≥1SE and pre-operative volume difference (O1 − A1)≥1SE…………..62 Table 3.2.7 Multivariate logistic regression: association between factors and post-operative volume difference(O2 − A2)≥1SE..63 Table 4.1.1 Effect of transsphenoidal surgery in clinically nonfunctioning adenomas on pituitary function………………………….65 | |
| dc.language.iso | en | |
| dc.subject | 放射線治療 | zh_TW |
| dc.subject | 腦下垂體腫瘤 | zh_TW |
| dc.subject | 精密腫瘤體積計算與比較 | zh_TW |
| dc.subject | 殘存腫瘤追蹤 | zh_TW |
| dc.subject | 術中腫瘤切除率 | zh_TW |
| dc.subject | 長期睪固酮補充及預測 | zh_TW |
| dc.subject | surgical tumor resection rate | en |
| dc.subject | radiotherapy | en |
| dc.subject | long-term testosterone supplementation and prediction | en |
| dc.subject | precise volumetric measurement | en |
| dc.subject | pituitary adenoma | en |
| dc.subject | residual tumor follow-up | en |
| dc.title | 腦下垂體腫瘤體積精密計算法在臨床上的重要性及其在評估病人預後與治療成效上之應用 | zh_TW |
| dc.title | Clinical Importance of Precise Volumetric Measurement of Pituitary Adenoma and Its Application in Patient Prognosis and Treatment Outcome Evaluation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡瑞章,魏國珍,林慶波,崔博翔 | |
| dc.subject.keyword | 腦下垂體腫瘤,精密腫瘤體積計算與比較,殘存腫瘤追蹤,術中腫瘤切除率,長期睪固酮補充及預測,放射線治療, | zh_TW |
| dc.subject.keyword | pituitary adenoma,precise volumetric measurement,residual tumor follow-up,surgical tumor resection rate,long-term testosterone supplementation and prediction,radiotherapy, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU201700832 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-05-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| Appears in Collections: | 醫學工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf Restricted Access | 11.53 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
