Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59523
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳丕燊(Pisin Chen)
dc.contributor.authorYao-Chieh Huen
dc.contributor.author胡耀傑zh_TW
dc.date.accessioned2021-06-16T09:26:34Z-
dc.date.available2017-07-20
dc.date.copyright2017-07-20
dc.date.issued2016
dc.date.submitted2017-06-01
dc.identifier.citationPart I
Bibliography
[1] Hartland S. Snyder, “Quantized Space-Time”, Phys. Rev. 71, 38 (1947).
[2] H.-W. Chiang, Y.-C. Hu, P. Chen, “Quantization of Spacetime Based on Space- time Interval Operator', Accepted for publication in Phys. Rev. D, April 1, 2016. [arXiv:1512.03157].
[3] David Mattingly, “Modern Tests of Lorentz Invariance”, Living Rev. Relativity 8, 5 (2005), arxiv:gr-qc/0502097.
[4] Shahn Majid and Henri Ruegg, “Bicrossproduct structure of κ-Poincaré group and non-commutative geometry”, Phys. Lett. B334, 348 (1994), arxiv:hep- th/9405107.
[5] JerzyKowalski-GlikmanandSebastianNowak,“Non-commutativespace-time of Doubly Special Relativity theories”, Int. J. Mod. Phys. D12, 299 (2003), arxiv:hep-th/0204245.
[6] Jerzy Kowalski-Glikman, “Introduction to Doubly Special Relativity”, Planck Scale Effects in Astrophysics and Cosmology pp 131, Springer Berlin Heidel- berg (2005), arxiv:hep-th/0405273.
[7] AlainConnesandJohnLott,“Particlemodelsandnoncommutativegeometry”, Nucl. Phys. B18, 29 (1991), library of UMichigan.
[8] Alain Connes, “Gravity coupled with matter and the foundation of non commutative geometry”, Commun. Math. Phys. 182, 155 (1996), arxiv:hep- th/9603053.
[9] Eliezer Batista and Shahn
Majid, “Noncommutative Geometry Of Angular Momentum Space U(su(2))”, J. Math. Phys. 44, 107 (2003), arxiv:hep-th/0205128.
[10] Laurent Freidel and Shahn Majid, “Noncommutative harmonic analysis, sam- pling theory and the Duflo map in 2+1 quantum gravity”, Class. Quantum Grav. 25, 045006 (2008), arxiv:hep-th/0601004.
[11] Eliezer Batista and Shahn Majid, “Three dimensional quantum geometry and deformed symmetry”, J. Math. Phys. 50, 052503 (2009), arxiv:0806.4121.
[12] Sergio Doplicher, Klaus Fredenhagen, and John E. Roberts, “The quantum structure of spacetime at the Planck scale and quantum fields”, Commun. Math. Phys. 172, 187 (1995), arxiv:hep-th/0303037.
[13] Ronald J. Adler, “A quantum theory of distance along a curve”, Unpublished (2014), arxiv:1402.5921.
[14] U. Carow-Watamura, M. Schlieker, M. Scholl and S. Watamura, “Tensor Rep- resentation of the Quantum Group SLq(2,C) and Quantum Minkowski Space”, Z. Phys. C 48, 159 (1990), Springer.
[15] T. Thiemann, “A length operator for canonical quantum gravity”, J. Math. Phys. 39, 3372-3392 (1998), arxiv:gr-qc/9606092.
[16] M. Peskin and D. Schroeder, Introduction to Quantum Field Theory
[17] Sidney Coleman, “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D11, 2088 (1975), Freie Universität Berlin.
[18] Edward Witten, “Non-belian Bosonization in Two Dimensions”, Commun. Math. Phys. 92, 455-472 (1984), Project Euclid.
[19] Paul J. Steinhardt, “Baryons and baryonium in QCD2”, Nucl. Phys. B176, 100- 112 (1980).
[20] Francois Foucart, Evan O’Connor, Luke Roberts, Matthew D. Duez, Roland Haas, Lawrence E. Kidder, Christian D. Ott, Harald P. Pfeiffer, Mark A. Scheel, and Bela Szilagyi “Post-merger evolution of a neutron star- black hole binary with neutrino transport”, Phys. Rev. D91, 124021 (2015), arxiv:1502.04146.
[21] Carlo Rovelli, “Lorentzian Connes Distance, Spectral Graph Distance and Loop Gravity”, Unpublished (2014), arxiv:1408.3260.
[22] Eugenio Bianchi, “The length operator in Loop Quantum Gravity”, Nucl. Phys. B807, 591 (2009), arxiv:0806.4710.
---
Part II
Bibliography
[1] Coleman, Sidney. 'Fate of the false vacuum: Semiclassical theory.' Physical Review D 15.10 (1977): 2929.
[2] Weinberg, Erick J. Classical solutions in quantum field theory: Solitons and Instantons in High Energy Physics. Cambridge University Press, 2012.
[3] Pisin Chen, Yao-Chieh Hu, and Dong-han Yeom. 'Two interpretations on thin-shell instantons.' arXiv preprint arXiv:1512.03914 (2015).
[4] Sidney Coleman, and Frank De Luccia. 'Gravitational effects on and of vac- uum decay.' Physical Review D 21.12 (1980): 3305.
[5] Adam R. Brown, and Erick J. Weinberg. 'Thermal derivation of the Coleman- De Luccia tunneling prescription.' Physical Review D 76.6 (2007): 064003.
[6] Edward Farhi, Alan H. Guth, and Jemal Guven. 'Is it possible to create a universe in the laboratory by quantum tunneling?.' Nuclear Physics B 339.2 (1990): 417-490.
[7] Willy Fischler, Daniel Morgan, and Joseph Polchinski. 'Quantization of false- vacuum bubbles: A Hamiltonian treatment of gravitational tunneling.' Phys-
ical Review D 42.12 (1990): 4042.
[8] Ruth Gregory, Ian G. Moss, and Benjamin Withers. 'Black holes as bubble nucleation sites.' Journal of High Energy Physics 2014.3 (2014): 1-27.
[9] S. W. Hawking, Phys. Rev. D 14, 2460 (1976).
[10] S. W. Hawking and R. Penrose, Proc. Roy. Soc. Lond. A 314, 529 (1970); A. Borde, A. H. Guth and A. Vilenkin, Phys. Rev. Lett. 90, 151301 (2003) [gr-qc/0110012].
[11] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
[12] J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).
[13] W. Israel, Nuovo Cim. B 44, 1 (1966) [Erratum-ibid. B 48, 463 (1967)].
[14] P. Chen, Y. C. Ong and D. Yeom, arXiv:1412.8366 [gr-qc].
[15] J. M. Maldacena, JHEP 0304, 021 (2003) [arXiv:hep-th/0106112].
[16] S. W. Hawking, Phys. Rev. D 72, 084013 (2005) [arXiv:hep-th/0507171]; S. W. Hawking, arXiv:1401.5761 [hep-th].
[17] M. Sasaki and D. Yeom, JHEP 1412, 155 (2014) [arXiv:1404.1565 [hep-th]].
[18] B. H. Lee, W. Lee and D. Yeom, Phys. Rev. D 92, no. 2, 024027 (2015)
[arXiv:1502.07471 [hep-th]].
[19] P. Chen, G. Doménech, M. Sasaki and D. Yeom, arXiv:1512.00565 [hep-th].
[20] S. R. Coleman and F. De Luccia, Phys. Rev. D 21, 3305 (1980).
[21] S. W. Hawking and I. G. Moss, Phys. Lett. B 110, 35 (1982).
[22] A. R. Brown and E. J. Weinberg, Phys. Rev. D 76, 064003 (2007) [arXiv:0706.1573 [hep-th]].
[23] S. W. Hawking and N. Turok, Phys. Lett. B 425, 25 (1998) [hep-th/9802030].
[24] B. H. Lee, W. Lee and D. Yeom, Int. J. Mod. Phys. A 28, 1350082 (2013)
[arXiv:1206.7040 [hep-th]].
[25] J. C. Hackworth and E. J. Weinberg, Phys. Rev. D 71, 044014 (2005) [hep- th/0410142];
B. -H. Lee, C. H. Lee, W. Lee and C. Oh, Phys. Rev. D 85, 024022 (2012) [arXiv:1106.5865 [hep-th]];
B. H. Lee, W. Lee, D. Ro and D. Yeom, Phys. Rev. D 91, no. 12, 124044 (2015) [arXiv:1409.3935 [hep-th]].
[26] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).
[27] E. Farhi, A. H. Guth and J. Guven, Nucl. Phys. B 339, 417 (1990).
[28] W. Fischler, D. Morgan and J. Polchinski, Phys. Rev. D 41, 2638 (1990); W. Fischler, D. Morgan and J. Polchinski, Phys. Rev. D 42, 4042 (1990).
[29] R. Gregory, I. G. Moss and B. Withers, JHEP 1403, 081 (2014) [arXiv:1401.0017 [hep-th]];
P. Burda, R. Gregory and I. Moss, Phys. Rev. Lett. 115, 071303 (2015)[arXiv:1501.04937 [hep-th]];
P. Burda, R. Gregory and I. Moss, JHEP 1508, 114 (2015) [arXiv:1503.07331 [hep-th]].
[30] S. Ansoldi, A. Aurilia, R. Balbinot and E. Spallucci, Class. Quant. Grav. 14, 2727 (1997) [gr-qc/9706081].
[31] S. Ansoldi and T. Tanaka, J. Exp. Theor. Phys. 120, no. 3, 460 (2015) [arXiv:1410.6202 [gr-qc]].
[32] J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 2188 (1976).
[33] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, JHEP 1302, 062 (2013) [arXiv:1207.3123 [hep-th]];
A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, JHEP 1309, 018 (2013) [arXiv:1304.6483 [hep-th]].
[34] D. Hwang, B. -H. Lee and D. Yeom, JCAP 1301, 005 (2013) [arXiv:1210.6733 [gr-qc]];
W. Kim, B. -H. Lee and D. Yeom, JHEP 1305, 060 (2013) [arXiv:1301.5138 [gr-qc]];
B. -H. Lee and D. Yeom, Nucl. Phys. Proc. Suppl. 246-247, 178 (2014) [arXiv:1302.6006 [gr-qc]];
P. Chen and D. Yeom, JCAP 1510, no. 10, 022 (2015) [arXiv:1506.06713 [gr- qc]];
P. Chen, Y. C. Ong, D. N. Page, M. Sasaki and D. Yeom, arXiv:1511.05695
[hep-th].
[35] L. Susskind, L. Thorlacius and J. Uglum, Phys. Rev. D 48, 3743 (1993) [arXiv:hep-th/9306069].
[36] D.YeomandH.Zoe,Phys.Rev.D78,104008(2008)[arXiv:0802.1625[gr-qc]]; S. E. Hong, D. Hwang, E. D. Stewart and D. Yeom, Class. Quant. Grav. 27, 045014 (2010) [arXiv:0808.1709 [gr-qc]];
D. Yeom, Int. J. Mod. Phys. Conf. Ser. 1, 311 (2011) [arXiv:0901.1929 [gr-qc]]; D. Yeom and H. Zoe, Int. J. Mod. Phys. A 26, 3287 (2011) [arXiv:0907.0677 [hep-th]];
P. Chen, Y. C. Ong and D. Yeom, JHEP 1412, 021 (2014) [arXiv:1408.3763 [hep-th]].
---
Part III
Bibliography
[1] Penrose, Roger. 'Relativistic symmetry groups.' Group Theory in non-linear Problems. Springer Netherlands, 1974. 1-58.
[2] A. Strominger, JHEP 1407, 152 (2014) [arXiv:1312.2229 [hep-th]].
[3] S. W. Hawking, M. J. Perry and A. Strominger, Phys. Rev. Lett. 116, no. 23,
231301 (2016) [arXiv:1601.00921 [hep-th]].
[4] D. Kapec, M. Pate and A. Strominger, arXiv:1506.02906 [hep-th].
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59523-
dc.description.abstract第一部分我們建立了一個擁有自旋性質的時空量子化模型,這個模型的出發 點是建立在改良由陳丕燊教授在史丹佛大學的同事R.J. Adler提出對於時空代數的 調整。我們得出了一個在小尺度下不連續的時空模型,並且連結到迴圈量子重力 以及超弦理論。我們預測了廣義話的測不準原理、全像的性質以及在觀測上的預 測。這份工作是與蔣序文合作並在陳丕燊教授指導下完成,結果發表於Physical Review D。
第二部分我們研究了時空與黑洞的半古典穿隧,我們詳細的學習了薄殼瞬 子(thin-shell instanton)的性質以及其物理上的詮釋;我們給出了在文獻中提及的 兩種詮釋為等價的證明,並且藉此驗證在一定的條件下正則(canonical)與歐氏路 徑積分(Euclidean path integral)的處理方法會得到同樣的物理結果,可以幫助人 們對於歐氏路徑積分處理量子宇宙或量子重力有更深的了解。這份工作是與廉 東漢(Dong-han Yeom)博士合作並在陳丕燊教授指導下完成,結果發表於Physical Review D。
第三部分是我在瑞典斯德哥爾摩大學(Stockholm University)以及北歐五國理論 物理研究中心(NORDITA)訪問並在Ingemar Bengtsson教授指導下的研究結果,我 們主要目標是了解時空邊界的BMS群;我們詳細的學習了電磁場在時空邊界的性 質。
zh_TW
dc.description.abstractThe first part of my thesis is about a spinorial quantization of spacetime. Motivated by both concepts of R.J. Adler’s recent work on utilizing Clifford algebra as the linear line element ds = γμ dXμ, and the fermionization of the cylindrical world-sheet Polyakov action, we introduce a new type of spacetime quantization that is fully covariant. The theory is based on the reinterpretation of Adler’s linear line element as ds = γμ λγμ , where λ is the characteristic length of the theory. We name this new operator as 'spacetime interval operator', and argue that it can be regarded as a natural extension to the one-forms in the U(su(2)) non-commutative geometry. By treating Fourier momentum as the particle momentum, the generalized uncertainty principle of the U(su(2)) non-commutative geometry, as an approximation to the generalized uncertainty principle of our theory, is derived, and is shown to have a lowest order correction term of the order p2 similar to that of Snyder’s. The holography nature of the theory is demonstrated, and the predicted fuzziness of the geodesic is shown to be much smaller than conceivable astrophysical bounds.
The second part of my thesis is about semiclassical solution in black hole physics. For O(4)-symmetric instantons, there are two complementary interpretations for their analytic continuations. One is the nothing-to-something interpretation, where the initial and the final hypersurfaces are disconnected by Euclidean manifolds. The other is the something-to-something interpretation, introduced by Brown and Weinberg, where the initial and the final hypersurfaces are connected by the Euclidean manifold. These interpretations have their own pros and cons and hence these are complementary. In this paper, we consider analytic continuations of thin-shell instantons that have less symmetry, i.e., the spherical symmetry. When we consider the Farhi-Guth-Guven/Fischler-Morgan-Polchinski tunneling, the something- to-something interpretation has been used in the usual literature. On the other hand, we can apply the nothing-to-something interpretation with some limited conditions. We argue that even for both interpretations, we can give the consistent decay rate. As we apply and interpret following the nothing-to-something interpretation, a stationary black hole can emit an expanding shell that results a spacetime without a singularity nor an event horizon.
The third part of my these is about asymptotic electromagnetic field behaviors on null infinities, which is based on my studies at Stockholm University and NORDITA in Sweden.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:26:34Z (GMT). No. of bitstreams: 1
ntu-105-R04244003-1.pdf: 3683778 bytes, checksum: eabc7a0bc99afd7d78e34382139b0deb (MD5)
Previous issue date: 2016
en
dc.description.tableofcontentsContents
Acknowledgments i
Abstract iii
List of Figures xii
List of Tables xvi
I Quantum Aspects of Spacetime xvii
Chapter 1 Introdution 1
1.1 Lorentz symmetry, Pythagorean theorem and Minimal Length . . . . 1
1.2 Main Streams of Qunatum Gravity..................... 2
1.3 Linearized Line Element as a Clue to Spacetime Quantization . . . . 3
Chapter 2 Spacetime Quantization—A Review 4
2.1 Snyder’s Proposal ............................... 4
2.2 κ-Poincaré Group................................ 5
2.3 Angular Momentum Space Theory ..................... 6

Chapter 3 Adler’s Spacetime Quantization 8
3.1 Linear Line Element Operator........................ 8
3.2 Discussions.................................... 9
3.2.1 Lorentz Symmetry Broken by Direction-Depentendt Uncertainty 10
3.2.2 Pathological Null State........................ 11
Chapter 4 Quantization via Spacetime Interval Operator 13
4.1 Spacetime Interval Operator......................... 14
4.2 Uncertainty Principle and Minimal Length . . . . . . . . . . . . . . . . 15
4.3 Comparison with Adler’s Proposal ..................... 17
4.3.1 Arrow of Time ............................. 17
4.3.2 Quantized Geodesic .......................... 17
Chapter 5 Theory 19
5.1 Construction via Bosonization........................ 19
5.2 Non-Commutativity of Spacetime...................... 24
5.3 Holographic Property ............................. 25
5.4 Generalized Uncertainty Principle ..................... 26
Chapter 6 Conclusion and Future Work 29
Bibliography 31
II Interpretations of Thin-Shell Instanton 34
Chapter 7 Introduction 35
7.1 Semi-Classical Behavior of Gravity—Wave Function, Instantons and BlackHole.................................... 35
7.2 What is an Interpretation? .......................... 36
Chapter 8 Two interpretations in de Sitter space—O(4) Symmetry 38
8.1 Coordinates of Euclidean de Sitter ..................... 38
8.2 Analytic continuations ............................ 39
8.3 Discussions ................................... 42
Chapter 9 Two Interpretations with Spherical Symmetry 45
9.1 Theoretical Setting............................... 45
9.2 Two Approaches toward Tunneling Process . . . . . . . . . . . . . . . . 47
9.2.1 Usual interpretation: something-to-something . . . . . . . . . . 50
9.2.2 Special interpretation: nothing-to-something . . . . . . . . . . . 50
9.3 Discussions.................................... 56
Chapter 10 Decay Rates as a Consistency Check 57
10.1Decay rates in the Euclidean approach................... 57
10.2Decay rates in the Hamiltonian approach . . . . . . . . . . . . . . . . . 58
Chapter 11 Conclusions 60
Bibliography 63
III Asymptotic Behaviors of Electrodynamics on Null Infinities 68
Chapter 12 Introduction and Preliminary 69
12.1Symmetry Group Relations of Spacetime . . . . . . . . . . . . . . . . . 69
12.1.1SL(2,C) and SO+(3,1) ........................ 70
12.1.2Higher dimensional analogue .................... 71
12.1.3Definition of C(2)............................ 72
12.1.4C(2) and SO+(3,1)........................... 74
12.1.5O(4,2) and C(3,1) ........................... 76
12.2 Conformal Compactification of Minkowski Spacetime . . . . . . . . . . 77
Chapter 13 Conformal Realization of Antipodal Map at Spatial Infinity 81
13.1Strominger’s Antipodal Map ......................... 81
13.2Description of Our Problem.......................... 82
13.3Projective Compactification Scheme at i0 . . . . . . . . . . . . . . . . . 84
13.3.1New scheme .............................. 84
13.3.2Singular Coulomb field at i0 ..................... 86
13.4Lienard-Wiechart Fields at i0 ........................ 88
13.4.1 Relativistic Electric Field Formula for Charged Moving Particle 88
13.4.2Asymptotic Field Behaviors at i0 .................. 89
Chapter 14 Energy Distribution on Null Infinities 92
14.1 Energy Density Distribution on Conformal Sphere . . . . . . . . . . . 92

14.1.1Extreme Values ............................ 94
14.1.2Deviation from Northpole ...................... 95
14.1.3Discussions ............................... 95
14.2DipoleField at i0 ................................ 98
Bibliography 101
Chapter A Details on the Consistency Check 1
Chapter B Why Euclidean? 4
B.1 Minimizing Tunneling Exponent as MPEP . . . . . . . . . . . . . . . . 4
B.2 Jacobi’s Principle................................ 6
B.3 Hamilton’s Principlein Euclidean Spacetime . . . . . . . . . . . . . . . 7
B.4 Conclusion.................................... 9
dc.language.isoen
dc.subject黑洞zh_TW
dc.subject量子重力zh_TW
dc.subject黑洞zh_TW
dc.subject量子重力zh_TW
dc.subjectBlack Holesen
dc.subjectInstantonsen
dc.subjectInstantonsen
dc.subjectBlack Holesen
dc.subjectQuantum Gravityen
dc.subjectQuantum Gravityen
dc.title量子化時空與黑洞的半古典穿隧zh_TW
dc.titleQuantum Aspects of Spacetime and Semi-Classical Tunnelings of Black Holesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee細道和夫(Kazuo hosomichi),廉東漢(Dong-han Yeom)
dc.subject.keyword量子重力,黑洞,zh_TW
dc.subject.keywordQuantum Gravity,Black Holes,Instantons,en
dc.relation.page153
dc.identifier.doi10.6342/NTU201700821
dc.rights.note有償授權
dc.date.accepted2017-06-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved