Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59515
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔(Si-Chen Lee)
dc.contributor.authorYi-Jen Huangen
dc.contributor.author黃義仁zh_TW
dc.date.accessioned2021-06-16T09:26:17Z-
dc.date.available2019-07-20
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-06-04
dc.identifier.citationReferences
[1] Doo Seok Jeong, Reji Thomas, RS Katiyar, JF Scott, H Kohlstedt, A Petraru, and Cheol Seong Hwang, Reports on progress in physics 75 (7), 076502 (2012).
[2] An Chen, Solid-State Electronics 125, 25 (2016).
[3] Doo Seok Jeong, Reji Thomas, RS Katiyar, JF Scott, H Kohlstedt, A Petraru, and Cheol Seong Hwang, Reports on progress in physics 75 (7), 076502 (2012).
[4] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen Tseng, Nanoscale research letters 9 (1), 526 (2014).
[5] H-S Philip Wong and Sayeef Salahuddin, Nature nanotechnology 10 (3), 191 (2015).
[6] Dawon Kahng and Simon M Sze, Bell Labs Technical Journal 46 (6), 1288 (1967).
[7] Tseung-Yuen Tseng, Nonvolatile memory: materials, devices and applications. (American Scientific Publishers, 2012).
[8] Marco AA Sanvido, Frank R Chu, Anand Kulkarni, and Robert Selinger, Proceedings of the IEEE 96 (11), 1864 (2008).
[9] Kirk Prall and Krishna Parat, presented at the Electron Devices Meeting (IEDM), 2010 IEEE International, 2010.
[10] James F Scott, Paz De Araujo, and A Carlos, Science (Washington, D. C.) 246 (4936), 1400 (1989).
[11] JF Scott, science 315 (5814), 954 (2007).
[12] Rui Guo, Lu You, Yang Zhou, Zhi Shiuh Lim, Xi Zou, Lang Chen, R Ramesh, and Junling Wang, Nature communications 4, 1990 (2013).
[13] Jian-Gang Zhu, Proceedings of the IEEE 96 (11), 1786 (2008).
[14] Huanlong Liu, Daniel Bedau, Dirk Backes, JA Katine, Jürgen Langer, and AD Kent, Applied Physics Letters 97 (24), 242510 (2010).
[15] Jia-Mian Hu, Zheng Li, Long-Qing Chen, and Ce-Wen Nan, Nature communications 2, 553 (2011).
[16] Hendrik F Hamann, Martin O'Boyle, Yves C Martin, Michael Rooks, and H Kumar Wickramasinghe, Nature materials 5 (5), 383 (2006).
[17] Duygu Kuzum, Rakesh GD Jeyasingh, Byoungil Lee, and H-S Philip Wong, Nano letters 12 (5), 2179 (2011).
[18] M Cassinerio, N Ciocchini, and D Ielmini, Advanced Materials 25 (41), 5975 (2013).
[19] Abu Sebastian, Manuel Le Gallo, and Daniel Krebs, Nature communications 5, 4314 (2014).
[20] Yi-Jen Huang, Shih-Chun Chao, Der-Hsien Lien, Cheng-Yen Wen Jr-Hau He, and Si-Chen Lee, Scientific Reports 6, 23945 (2016).
[21] Yi-Jen Huang, Tzu-Hsien Shen, Lan-Hsuan Lee, Cheng-Yen Wen, and Si-Chen Lee, AIP Advances 6 (6), 065022 (2016).
[22] Rainer Waser and Masakazu Aono, Nature materials 6 (11), 833 (2007).
[23] Akihito Sawa, Materials today 11 (6), 28 (2008).
[24] J Joshua Yang, Matthew D Pickett, Xuema Li, Douglas AA Ohlberg, Duncan R Stewart, and R Stanley Williams, Nature nanotechnology 3 (7), 429 (2008).
[25] Rainer Waser, Regina Dittmann, Georgi Staikov, and Kristof Szot, Advanced materials 21 (25‐26), 2632 (2009).
[26] Deok-Hwang Kwon, Kyung Min Kim, Jae Hyuck Jang, Jong Myeong Jeon, Min Hwan Lee, Gun Hwan Kim, Xiang-Shu Li, Gyeong-Su Park, Bora Lee, and Seungwu Han, Nature nanotechnology 5 (2), 148 (2010).
[27] Myoung-Jae Lee, Chang Bum Lee, Dongsoo Lee, Seung Ryul Lee, Man Chang, Ji Hyun Hur, Young-Bae Kim, Chang-Jung Kim, David H Seo, and Sunae Seo, Nature materials 10 (8), 625 (2011).
[28] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu Chen, Byoungil Lee, Frederick T Chen, and Ming-Jinn Tsai, Proceedings of the IEEE 100 (6), 1951 (2012).
[29] J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart, Nature nanotechnology 8 (1), 13 (2013).
[30] F Pan, S Gao, C Chen, C Song, and F Zeng, Materials Science and Engineering: R: Reports 83, 1 (2014).
[31] Mark H Kryder and Chang Soo Kim, IEEE Transactions on Magnetics 45 (10), 3406 (2009).
[32] Bernard Dieny, Ronald B Goldfarb, and Kyung-Jin Lee, Introduction to magnetic random-access memory. (John Wiley & Sons, 2016).
[33] Hasan Hayat, Krisztian Kohary, and C David Wright, Nanotechnology 28 (3), 035202 (2016).
[34] TW Hickmott, Journal of Applied Physics 33 (9), 2669 (1962).
[35] Akifumi Kawahara, Ryotaro Azuma, Yuuichirou Ikeda, Ken Kawai, Yoshikazu Katoh, Yukio Hayakawa, Kiyotaka Tsuji, Shinichi Yoneda, Atsushi Himeno, and Kazhiko Shimakawa, IEEE Journal of Solid-State Circuits 48 (1), 178 (2013)
[36] Cong Xu, Dimin Niu, Shimeng Yu, and Yuan Xie, presented at the Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific, 2014.
[37] Muxi Yu, Yimao Cai, Zongwei Wang, Yichen Fang, Yefan Liu, Zhizhen Yu, Yue Pan, Zhenxing Zhang, Jing Tan, and Xue Yang, Scientific reports 6, 21020 (2016).
[38] Seunghyun Lee, Joon Sohn, Zizhen Jiang, Hong-Yu Chen, and H-S Philip Wong, Nature communications 6, 8407 (2015).
[39] Yue Bai, Huaqiang Wu, Kun Wang, Riga Wu, Lin Song, Tianyi Li, Jiangtao Wang, Zhiping Yu, and He Qian, Scientific Reports 5, 13785 (2015).
[40] Yue Bai, Huaqiang Wu, Riga Wu, Ye Zhang, Ning Deng, Zhiping Yu, and He Qian, Scientific Reports 4, 5780 (2014).
[41] Hong-Yu Chen, Shimeng Yu, Bin Gao, Rui Liu, Zizhen Jiang, Yexin Deng, Bing Chen, Jinfeng Kang, and HS Philip Wong, Nanotechnology 24 (46), 465201 (2013).
[42] Shimeng Yu, Hong-Yu Chen, Bin Gao, Jinfeng Kang, and H-S Philip Wong, ACS nano 7 (3), 2320 (2013).
[43] Eike Linn, Roland Rosezin, Carsten Kügeler, and Rainer Waser, Nature materials 9 (5), 403 (2010).
[44] Myoung-Jae Lee, Dongsoo Lee, Seong-Ho Cho, Ji-Hyun Hur, Sang-Moon Lee, David H Seo, Dong-Sik Kim, Moon-Seung Yang, Sunghun Lee, and Euichul Hwang, Nature communications 4, 2629 (2013).
[45] Sung Hyun Jo, Tanmay Kumar, Sundar Narayanan, and Hagop Nazarian, IEEE Transactions on Electron Devices 62 (11), 3477 (2015).
[46] Zi-Jheng Liu, Jon-Yiew Gan, and Tri-Rung Yew, Applied Physics Letters 100 (15), 153503 (2012).
[47] Gang Niu, Hee-Dong Kim, Robin Roelofs, Eduardo Perez, Markus Andreas Schubert, Peter Zaumseil, Ioan Costina, and Christian Wenger, Scientific Reports 6, 28155 (2016).
[48] Hai Yang Peng, Yong Feng Li, Wei Nan Lin, Yu Zhan Wang, Xing Yu Gao, and Tom Wu, Scientific Reports 2, 442 (2012).
[49] Haitao Sun, Qi Liu, Congfei Li, Shibing Long, Hangbing Lv, Chong Bi, Zongliang Huo, Ling Li, and Ming Liu, Advanced Functional Materials 24 (36), 5679 (2014).
[50] Myungwoo Son, Joonmyoung Lee, Jubong Park, Jungho Shin, Godeuni Choi, Seungjae Jung, Wootae Lee, Seonghyun Kim, Sangsu Park, and Hyunsang Hwang, IEEE Electron Device Letters 32 (11), 1579 (2011).
[51] Seo Hyoung Chang, Shin Buhm Lee, Dae Young Jeon, So Jung Park, Gyu Tae Kim, Sang Mo Yang, Seung Chul Chae, Hyang Keun Yoo, Bo Soo Kang, and Myoung‐Jae Lee, Advanced materials 23 (35), 4063 (2011).
[52] Myungwoo Son, Xinjun Liu, Sharif Md Sadaf, Daeseok Lee, Sangsu Park, Wootae Lee, Seonghyun Kim, Jubong Park, Jungho Shin, and Seungjae Jung, IEEE Electron Device Letters 33 (5), 718 (2012).
[53] Xinjun Liu, Sharif Md Sadaf, Myungwoo Son, Jubong Park, Jungho Shin, Wootae Lee, Kyungah Seo, Daeseok Lee, and Hyunsang Hwang, IEEE Electron Device Letters 33 (2), 236 (2012).
[54] Seonghyun Kim, Xinjun Liu, Jubong Park, Seungjae Jung, Wootae Lee, Jiyong Woo, Jungho Shin, Godeuni Choi, Chumhum Cho, and Sangsu Park, presented at the VLSI Technology (VLSIT), 2012 Symposium on, 2012.
[55] Euijun Cha, Jiyong Woo, Daeseok Lee, Sangheon Lee, Jeonghwan Song, Yunmo Koo, Jihyun Lee, Chan Gyung Park, Moon Young Yang, and Katsumasa Kamiya, presented at the Electron Devices Meeting (IEDM), 2013 IEEE International, 2013.
[56] Xinjun Liu, Sanjoy Kumar Nandi, Dinesh Kumar Venkatachalam, Kidane Belay, Sannian Song, and Robert Glen Elliman, IEEE Electron Device Letters 35 (10), 1055 (2014).
[57] SH Chang, JS Lee, SC Chae, SB Lee, C Liu, B Kahng, D-W Kim, and TW Noh, Physical review letters 102 (2), 026801 (2009).
[58] Yoon-Jae Baek, Quanli Hu, Jae Woo Yoo, Young Jin Choi, Chi Jung Kang, Hyun Ho Lee, Seok-Hong Min, Hyun-Mi Kim, Ki-Bum Kim, and Tae-Sik Yoon, Nanoscale 5 (2), 772 (2013).
[59] Ludovic Goux and Ilia Valov, physica status solidi (a) 213, 274 (2015).
[60] Robert D Clark, Materials 7 (4), 2913 (2014).
[61] Yooichi Hirose and Haruo Hirose, Journal of Applied Physics 47 (6), 2767 (1976).
[62] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng, Nano letters 9 (4), 1636 (2009).
[63] Ee Wah Lim and Razali Ismail, Electronics 4 (3), 586 (2015).
[64] Fu-Chien Chiu, Advances in Materials Science and Engineering 2014 (2014).
[65] B Majkusiak, P Palestri, A Schenk, AS Spinelli, CM Compagnoni, and M Luisier, Nanoscale CMOS, 213 (2013).
[66] Murray A Lampert, Reports on Progress in Physics 27 (1), 329 (1964).
[67] Tuo-Hung Hou, Kuan-Liang Lin, Jiann Shieh, Jun-Hung Lin, Cheng-Tung Chou, and Yao-Jen Lee, Applied Physics Letters 98 (10), 103511 (2011).
[68] Yu-Chi Chang and Yeong-Her Wang, ACS applied materials & interfaces 6 (8), 5413 (2014).
[69] Yihui Sun, Xiaoqin Yan, Xin Zheng, Yichong Liu, Yanguang Zhao, Yanwei Shen, Qingliang Liao, and Yue Zhang, ACS applied materials & interfaces 7 (13), 7382 (2015).
[70] Steven M George, Chemical reviews 110 (1), 111 (2009).
[71] Rainer Waser, Nanoelectronics and information technology. (John Wiley & Sons, 2012).
[72] Jin Lu, 闾锦, Ting-Chang Chang, 張鼎張, Yu-Ting Chen, 陳侑廷, Jheng-Jie Huang, Po-Chun Yang, Shih-Ching Chen, and Hui-Chun Huang, Applied Physics Letters 96 (26), 262107 (2010).
[73] Ting-Chang Chang, Fu-Yen Jian, Shih-Cheng Chen, and Yu-Ting Tsai, Materials today 14 (12), 608 (2011).
[74] GW Burr, K Virwani, RS Shenoy, A Padilla, M BrightSky, EA Joseph, M Lofaro, AJ Kellock, RS King, and K Nguyen, presented at the VLSI Technology (VLSIT), 2012 Symposium on, 2012.
[75] Rohit S Shenoy, Geoffrey W Burr, Kumar Virwani, Bryan Jackson, Alvaro Padilla, Pritish Narayanan, Charles T Rettner, Robert M Shelby, Donald S Bethune, and Karthik V Raman, Semiconductor Science and Technology 29 (10), 104005 (2014).
[76] Jiun-Jia Huang, Yi-Ming Tseng, Chung-Wei Hsu, and Tuo-Hung Hou, IEEE Electron Device Letters 32 (10), 1427 (2011).
[77] Wootae Lee, Jubong Park, Seonghyun Kim, Jiyong Woo, Jungho Shin, Godeuni Choi, Sangsu Park, Daeseok Lee, Euijun Cha, and Byoung Hun Lee, ACS nano 6 (9), 8166 (2012).
[78] Yingtao Li, Hangbing Lv, Qi Liu, Shibing Long, Ming Wang, Hongwei Xie, Kangwei Zhang, Zongliang Huo, and Ming Liu, Nanoscale 5 (11), 4785 (2013).
[79] Yingtao Li, Qingchun Gong, and Xinyu Jiang, Applied Physics Letters 104 (13), 132105 (2014).
[80] Sung Hyun Jo and Wei Lu, Nano letters 8 (2), 392 (2008).
[81] Sang-Joon Park, Jeong-Pyo Lee, Jong Shik Jang, Hyun Rhu, Hyunung Yu, Byung Youn You, Chang Soo Kim, Kyung Joong Kim, Yong Jai Cho, and Sunggi Baik, Nanotechnology 24 (29), 295202 (2013).
[82] K Szot, M Rogala, W Speier, Z Klusek, A Besmehn, and R Waser, Nanotechnology 22 (25), 254001 (2011).
[83] Jyun-Bao Yang, Ting-Chang Chang, Jheng-Jie Huang, Yu-Ting Chen, Hsueh-Chih Tseng, Ann-Kuo Chu, Simon M Sze, and Ming-Jinn Tsai, Applied Physics Letters 103 (10), 102903 (2013).
[84] Yu-Chih Huang, Wan-Lin Tsai, Chia-Hsin Chou, Chung-Yun Wan, Ching Hsiao, and Huang-Chung Cheng, IEEE Electron Device Letters 34 (10), 1244 (2013).
[85] Hee-Dong Kim, Min Ju Yun, Seok Man Hong, and Tae Geun Kim, Nanotechnology 25 (12), 125201 (2014).
[86] Qi Liu, Shibing Long, Hangbing Lv, Wei Wang, Jiebin Niu, Zongliang Huo, Junning Chen, and Ming Liu, ACS nano 4 (10), 6162 (2010).
[87] Yu-Ting Tsai, Ting-Chang Chang, Chao-Cheng Lin, Shih-Cheng Chen, Chi-Wen Chen, Simon M Sze, Fon-Shan Yeh, and Tseung-Yuen Tseng, Electrochemical and Solid-State Letters 14 (3), H135 (2011).
[88] P Bousoulas, D Sakellaropoulos, J Giannopoulos, and D Tsoukalas, presented at the Solid State Device Research Conference (ESSDERC), 2015 45th European, 2015.
[89] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, Po-Shun Lin, Bae-Heng Tseng, Jang-Hung Shy, SM Sze, Chun-Yen Chang, and Chen-Hsin Lien, IEEE Electron Device Letters 28 (9), 809 (2007).
[90] Jaesik Yoon, Hyejung Choi, Dongsoo Lee, Ju-Bong Park, Joonmyoung Lee, Dong-Jun Seong, Yongkyu Ju, Man Chang, Seungjae Jung, and Hyunsang Hwang, IEEE Electron Device Letters 30 (5), 457 (2009).
[91] Kuan-Chang Chang, Tsung-Ming Tsai, Ting-Chang Chang, Yong-En Syu, Siang-Lan Chuang, Cheng-Hua Li, Der-Shin Gan, and Simon M Sze, Electrochemical and Solid-State Letters 15 (3), H65 (2011).
[92] Writam Banerjee, Sheikh Ziaur Rahaman, Amit Prakash, and Siddheswar Maikap, Japanese Journal of Applied Physics 50 (10S), 10PH01 (2011).
[93] YL Song, Y Liu, YL Wang, M Wang, XP Tian, LM Yang, and YY Lin, IEEE electron device letters 32 (10), 1439 (2011).
[94] GK Dalapati, CK Chia, CC Tan, HR Tan, SY Chiam, JR Dong, A Das, S Chattopadhyay, C Mahata, and CK Maiti, ACS applied materials & interfaces 5 (3), 949 (2013).
[95] S Gao, C Chen, Z Zhai, HY Liu, YS Lin, SZ Li, SH Lu, GY Wang, C Song, and F Zeng, Applied Physics Letters 105 (6), 063504 (2014).
[96] Yu-Lung Chung, Wen-Hui Cheng, Jiann-Shing Jeng, Wei-Chih Chen, Sheng-An Jhan, and Jen-Sue Chen, Journal of Applied Physics 116 (16), 164502 (2014).
[97] He Tian, Hong-Yu Chen, Tian-Ling Ren, Cheng Li, Qing-Tang Xue, Mohammad Ali Mohammad, Can Wu, Yi Yang, and H-S Philip Wong, Nano letters 14 (6), 3214 (2014).
[98] D Ielmini, F Nardi, and C Cagli, Nanotechnology 22 (25), 254022 (2011).
[99] J Joshua Yang, Feng Miao, Matthew D Pickett, Douglas AA Ohlberg, Duncan R Stewart, Chun Ning Lau, and R Stanley Williams, Nanotechnology 20 (21), 215201 (2009).
[100] Eun-Seok Choi and Sung-Kye Park, presented at the Electron Devices Meeting (IEDM), 2012 IEEE International, 2012.
[101] Hang-Ting Lue, Pei-Ying Du, Wei-Chen Chen, Ten-Hao Yeh, Kuo-Ping Chang, Yi-Hsuan Hsiao, Yen-Hao Shih, Chun-Hsiung Hung, and Chih-Yuan Lu, presented at the Electron Devices Meeting (IEDM), 2013 IEEE International, 2013.
[102] Pengxiao Sun, Nianduan Lu, Ling Li, Yingtao Li, Hong Wang, Hangbing Lv, Qi Liu, Shibing Long, Su Liu, and Ming Liu, Scientific Reports 5, 13504 (2015).
[103] Insun Jo, Michael Thompson Pettes, Jaehyun Kim, Kenji Watanabe, Takashi Taniguchi, Zhen Yao, and Li Shi, Nano letters 13 (2), 550 (2013).
[104] Nikhil Jain, Chris A Durcan, Robin Jacobs-Gedrim, Yang Xu, and Bin Yu, Nanotechnology 24 (35), 355202 (2013).
[105] Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han, David Chen, Richard D Piner, Luigi Colombo, and Rodney S Ruoff, Nano letters 9 (12), 4359 (2009).
[106] Un-Bin Han and Jang-Sik Lee, Scientific Reports 6, 25537 (2016).
[107] Byung Chul Jang, Hyejeong Seong, Jong Yun Kim, Beom Jun Koo, Sung Kyu Kim, Sang Yoon Yang, Sung Gap Im, and Sung-Yool Choi, 2D Materials 2 (4), 044013 (2015).
[108] S Trost, T Becker, K Zilberberg, A Behrendt, A Polywka, R Heiderhoff, P Görrn, and T Riedl, Scientific Reports 5, 7765 (2015).
[109] Nasir Alimardani and John F Conley Jr, Applied Physics Letters 102 (14), 143501 (2013).
[110] Dong-Wook Shin, Hyun Myoung Lee, Seong Man Yu, Kwang-Soo Lim, Jae Hoon Jung, Min-Kyu Kim, Sang-Woo Kim, Jae-Hee Han, Rodney S Ruoff, and Ji-Beom Yoo, ACS nano 6 (9), 7781 (2012).
[111] Peng Zhou, Songbo Yang, Qingqing Sun, Lin Chen, Pengfei Wang, Shijin Ding, and David Wei Zhang, Scientific Reports 4, 6448 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59515-
dc.description.abstract近來,由於非揮發性記憶體技術的快速發展,使數位科技產業如手機、顯示 器面板、USB、數位相機、電腦等產品都發生了巨大的變革。然而,快閃記憶體 為了達到更好的效能,在製程尺度不斷微縮之下,將面臨非常大的挑戰。為了提 供未來的電子元件在應用上能有更多可兼容的記憶記憶體元件,在各種新穎的記 憶體研究當中,電阻式記憶體(RRAM)由於擁有較高操作速度、有效降低功耗、高 耐用性和 CMOS 兼容性等優點,是最有希望可以在未來取代快閃記憶體之新記憶 體元件。更重要的是,由於 RRAM 簡單的結構,使其可以整合至 3D 水平(3D-HRAM) 和垂直(3D-VRAM)交叉記憶體陣列中,用以實現較高的存儲密度。儘管有多項優 點,RRAM 的技術仍未取代主流之快閃記憶體元件,主要是因為目前 RRAM 的功 耗及可靠性問題、較小的記憶視窗和記憶體陣列中之漏電流問題。因此,本論文 研究主要是通過以下三種不同的元件設計來提高 RRAM 記憶體之元件特性。
1. 基於氧離子之 push-pull 機制實現記憶體開關和臨限開關之雙功能電阻式開關 元件
利用過渡金屬氧化物實現同時擁有非揮發性記憶體開關和揮發性臨限開 關之功能,在交叉記憶體陣列中具有極大的潛力可以取代快閃記憶體元件。 此實驗中我們利用(非晶 TiOx)/(Ag 奈米顆粒)/(多晶 TiOx)作為電阻式開關層並 結合 ITO 上電極以及表面粗糙化的 FTO 下電極實出記憶體開關和臨限開關之 功能。元件具有不需要forming 過程可避免元件受到大電壓操作而受到破壞, 且元件俱有較低的操作電壓(< ±1 V)及自我限制電流(<50 μA)的功能,使元件 具有避免產生永久性崩潰之低功耗操作。當元件操作在臨限開關模式(Selector device),此時元件同樣俱有較低的操作電壓(< ±1 V)及較低的臨限開關電流 (-Ith = -2 μA and Ith = 0.1 μA, at -Vth = -0.8 V and Vth = 0.4 V)之特性,此優良的特 性有利於改善交叉式記憶體陣列之選擇性並有效抑制漏電流問題。
2. 藉由侷限導電絲的形成以實現低功耗之電阻式記憶體 為了進一步改善上述電阻式記憶體元件之功耗、記憶視窗、穩定度及可靠
度問題。此實驗中我們利用(TiOx)/(Ag 奈米顆粒)/(TiOx)/(AlTiOx)作為電阻式開 關層並結合 ITO 上電極以及表面粗糙化的 FTO 下電極,以實現優良之電阻式 記憶體特性。此電阻式記憶體元件具有較低的操作電壓(<±1 V)、低功耗(Pset = 〜10 μW 和 Preset = 〜0.65 μW)、較低的電阻變化率(HRS 和 LRS 的相對波動 率為 3.5 %和 7.6%)、可靠資料儲存以及較大的記憶視窗(〜300)。由於此元 件中使用了穩定的 AlTiOx 阻擋層來限制導電絲形成的數目,因此此元件極具 明顯功耗降低之特性。
3. 利用石墨烯和六方氮化硼異質結構設計垂直架構之電阻式記憶體元件
由於 3D 水平交叉記憶體陣列(3D-HRAM)在每一層的堆疊中需要關鍵的黃 光微影技術,並且這種製造成本會隨著堆疊數量呈現線性增加。因此,在此 實驗中,我們證實了利用石墨烯水平平面電極/多層六方氮化硼絕緣介電質堆 疊層、AlOx/TiOx 電阻式開關層以及 ITO 垂直柱狀電極組成的二維材料垂直
RRAM 結構可展現出可靠的記憶體元件特性,包含極低的功耗(Pset = 〜2 μW, Preset = 〜0.2 μW)及較大記憶視窗(> 300)。由於利用超薄(~2 nm)且絕緣及本身 高導熱特性之六方氮化硼,我們提出二維材料垂直 RRAM 結構經由增加堆疊 的層數,相信對未來的超高密度記憶體元件和黃光微影的成本降低具有巨大 的潛力。
zh_TW
dc.description.abstractRecently, the rapid development of nonvolatile memory technology has enabled a great revolution of digital technology including mobile phone, display panel, USB flash drivers, digital cameras and computer. However, the charge-based flash memories will face formidable device scaling challenges. In order to have more compatible storage devices for future electronic device applications, resistive random access memory (RRAM) is the most promising candidate to replace the charge-based flash memories due to its advantages, such as high-speed operation, low power consumption, high endurance, and CMOS compatible. More importantly, the simple structure of RRAM makes it feasible to be integrated into the 3D horizontal (3D-HRAM) and vertical (3D-VRAM) cross-point arrays to realize the high storage density. Nonetheless, RRAM technology has not yet begun to replace the mainstream flash technology which is mainly delayed by programing power consumption, small memory window, poor reliability and serious sneak current problems in the crossbar memory arrays. Therefore, the objective of the research is to improve the performance of the RRAM devices by several reliable designs as below.
1. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions
The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1V) and self-compliance to current up to 50 μA. Therefore, the operation voltage and current are significantly reduced. When it is used for threshold switching, the low threshold current (-Ith = -2 μA and Ith = 0.1 μA, at -Vth = -0.8 V and Vth = 0.4 V) is beneficial for improving the sneak current problem in crossbar memory arrays.
2. Low-Power Resistive Random Access Memory by Confining the Formation of Conducting Filaments
In order to further improve the power consumption, memory window, uniformity and reliability of RRAM device in section 1, a resistive switching material structure, TiOx/silver nanoparticles/TiOx/AlTiOx, fabricated between the fluorine-doped tin oxidebottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power (Pset = ~10 μW and Preset = ~0.65μW), small variation in resistance (The relative fluctuations of HRS and LRS are 3.5% and 7.6%), reliable data retention, and a large memory window (~300). The stable bottom AlTiOx barrier layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.
3. Graphene/h-BN Heterostructures for Vertical Architecture of RRAM Design
Because the 3D-HRAM requires critical lithography and other process for every stacked layer, and this fabrication cost overhead increases linearly with the number of stacks. Here, it is demonstrated that the 2D materials-based vertical RRAM structure composed of graphene plane electrode/multilayer h-BN insulating dielectric stacked layers, AlOx/TiOx resistive switching layer and ITO pillar electrode exhibits reliable device performance including forming-free, low power consumption (Pset = ~2 μW and Preset = ~0.2 μW), and large memory window (> 300). Owing to the ultrathin-insulating dielectric layer (~2 nm) and naturally high thermal conductivity characteristics of h-BN, the proposed vertical RRAM exhibits huge potential for future ultra high-density memory integration and per-bit lithography cost reduction by increasing the stacked layers.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:26:17Z (GMT). No. of bitstreams: 1
ntu-106-D01943017-1.pdf: 11359824 bytes, checksum: f218cb29cc6018263391d32e262f0263 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsCONTENT
口試委員審定書 i
致謝 iii
中文摘要 iv
ABSTRACT vi
CONTENT x
LIST OF FIGURES xvi
Chapter 1 Introduction 1
1.1 Trend of semiconductor memory technology 1
1.2 Emerging nonvolatile memory 6
1.2.1 Ferroelectric random access memory (FRAM) 6
1.2.2 Magnetic random access memory (MRAM) 8
1.2.3 Phase change random access memory (PCRAM) 11
1.2.4 Resistive random access memory (RRAM) 12
1.3 Motivation and objective of the research 14
1.3.1 Dual-functional memory and threshold resistive switching based on the push-pull mechanism of oxygen ions 14
1.3.2 Low-power resistive random access memory by confining the formation of conducting filaments 15
1.3.3 Graphene and h-BN heterostructures for vertical architecture of RRAM design 16
Chapter 2 Fundamentals of Resistive random access memory (RRAM) 18
2.1 Device structure and materials of RRAM 18
2.2 Resistive switching phenomenon of RRAM 19
2.3 Architecture development of RRAM 21
2.4 Resistive switching mechanism of RRAM 26
2.4.1 Thermochemical memory effect 27
2.4.2 Electrochemical memory effect 29
2.4.3 Valence-change memory effect 31
2.5 Current conduction mechanism of RRAM 34
2.5.1 Schottky emission 34
2.5.2 Fowler-Nordheim (F-N) tunneling 36
2.5.3 Direct tunneling 37
2.5.4 Poole-Frenkel (P-F) emission 38
2.5.5 Ohmic conduction 40
2.5.6 Space-charge-limitied conduction (SCLC) 41
2.5.7 Hopping conduction 42
Chapter 3 Experimental techniques 43
3.1 Fabrication techniques 43
3.1.1 Substrate preparation 43
3.1.2 Atomic layer chemical vapor deposition (ALD) 44
3.1.3 Reactive ion etching (RIE) 45
3.1.4 Thermal evaporation 46
3.1.5 Rapid thermal anneal (RTA) 47
3.1.6 Direct current (DC) sputtering 48
3.2 Measurement techniques 49
3.2.1 Atomic force microscope (AFM) 49
3.2.2 X-ray photoelectron spectroscopy (XPS) 49
3.2.3 Scanning electron microscopy (SEM) 50
3.2.4 Focused ion beam (FIB) 50
3.2.5 Transmission electron microscopy (TEM) 51
3.2.6 Energy dispersive spectrometer (EDS) 51
3.2.7 DC current-voltage characteristic measurements 52
Chapter 4 Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions 53
4.1 Introduction 54
4.2 Experiment 57
4.2.1 Device fabrication 57
4.2.2 Electrical measurements 61
4.2.3 Sample preparation for scanning transmission electron microscopy analysis 61
4.3 Results and discussion 62
4.3.1 Dual-functional resistive switching device structure and its electrical properties 62
4.3.2 Electrical performance for the memory switching and threshold switching operations 67
4.3.3 Composition redistribution during memory switching of the device 71
4.4 Conclusions 85
Chapter 5 Low-Power Resistive Random Access Memory by Confining the Formation of Conducting Filaments 86
5.1 Introduction 87
5.2 Experiment 89
5.2.1 Device fabrication 89
5.2.2 Electrical measurements 91
5.2.3 Sample preparation for transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) and EDS analysis 91
5.3 Results and discussion 92
5.3.1 Low power resistive switching device structure and its electrical properties 92
5.3.2 Scanning transmission electron microscopy analysis and composition distribution of the device 95
5.3.3 Electrical performance of the low power resistive switching device 97
5.4 Conclusions 103
Chapter 6 Graphene/h-BN Heterostructures for Vertical Architecture of RRAM Design 104
6.1 Introduction 106
6.2 Experiment 109
6.2.1 Device fabrication 109
6.2.2 Electrical measurements 111
6.2.3 Sample preparation for transmission electron microscopy analysis 111
6.3 Results and discussion 112
6.3.1 Structure and fabrication process of 2D materials-based vertical RRAM 112
6.3.2 Electrical performance of 2D materials-based vertical RRAM 116
6.3.3 Electrical properties of 2D materials-based vertical RRAM 121
6.4 Conclusions 130
Chapter 7 Conclusions 131
References 134
dc.language.isoen
dc.subject六方氮化硼zh_TW
dc.subject電阻式記憶體zh_TW
dc.subject氧化鈦zh_TW
dc.subject氧化鋁zh_TW
dc.subject石墨烯zh_TW
dc.subject記憶體開關zh_TW
dc.subject臨限開關zh_TW
dc.subject電阻式記憶體zh_TW
dc.subject氧化鈦zh_TW
dc.subject氧化鋁zh_TW
dc.subject石墨烯zh_TW
dc.subject六方氮化硼zh_TW
dc.subject記憶體開關zh_TW
dc.subject臨限開關zh_TW
dc.subjectResistive random access memoryen
dc.subjectThreshold switchingen
dc.subjectTitanium oxideen
dc.subjectAluminium oxideen
dc.subjectGrapheneen
dc.subjectHexagonal boron nitrideen
dc.subjectMemory switchingen
dc.subjectThreshold switchingen
dc.subjectResistive random access memoryen
dc.subjectTitanium oxideen
dc.subjectAluminium oxideen
dc.subjectGrapheneen
dc.subjectHexagonal boron nitrideen
dc.subjectMemory switchingen
dc.title低功耗電阻式記憶體之元件設計與其特性研究zh_TW
dc.titleArchitectures design and characterization of low power resistive random access memoryen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee胡振國(Jenn-Gwo Hwu),林浩雄(Hao-Hsiung Lin),劉致為(Chee-Wee Liu),陳敏璋(Miin-Jang Chen),溫政彥(Cheng-Yen Wen)
dc.subject.keyword電阻式記憶體,氧化鈦,氧化鋁,石墨烯,六方氮化硼,記憶體開關,臨限開關,zh_TW
dc.subject.keywordResistive random access memory,Titanium oxide,Aluminium oxide,Graphene,Hexagonal boron nitride,Memory switching,Threshold switching,en
dc.relation.page146
dc.identifier.doi10.6342/NTU201700727
dc.rights.note有償授權
dc.date.accepted2017-06-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
11.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved