Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5950
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌
dc.contributor.authorChia-Hsuan Hsiehen
dc.contributor.author謝佳璇zh_TW
dc.date.accessioned2021-05-16T16:18:40Z-
dc.date.available2015-08-20
dc.date.available2021-05-16T16:18:40Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-14
dc.identifier.citation1. Belitz, K. P., P. Steven, J. M. Gronberg, (1993). Numerical simulation of ground-water flow in the central part of the western San Joaquin Valley, California. Water Supply Paper.
2. Boonyatharkol, W., W. R. Walker (1979). Evapotranspiration under depleting soil moisture, J. Irrig. Drain. Div. Am. Soc. Civil Eng., 105 , pp. 391–402.
3. Bredehoeft, J. D. (2011). Hydrologic trade-offs in conjunctive use management, Ground Water, 49(4), 468-475.
4. Buras, N. (1963). Conjunctive operation of dams and aquifers, J. Hydrul. Div. Amer. Soc. Civil Eng., 89(HY6), 111-131.
5. Burt, O. R. (1964). The economics of conjunctive use of ground and surface water, Hilgardia, 36(2), 31-111.
6. Chang, L. C., C. C. Ho, M. S. Yeh, and C.C. Yang (2011). An integrating approach for conjunctive-use planning of surface and subsurface water system, Water Resources Management, 25: 59-78, DOI 10.1007/s11269-010-9687-8.
7. Chow, V. T., D. R. Maidment, L. W. Mays (1988). Applied Hydrology, McGraw-Hill, New York (1988) 572
8. Feng, L. H., C. F. Huang (2008). A Risk Assessment Model of Water Shortage Based on Information Diffusion Technology and its Application in Analyzing Carrying Capacity of Water Resources, Water Resources Management, 22, pp.621-633.
9. Feng, L. H., X. C. Zhang, and G.Y. Luo (2008). Application of System Dynamics in Analyzing the Carrying Capacity of Water Resources in Yiwu City, China., Mathematics and Computers in Simulation, Vol. 79, pp.269-278.
10. Glover, F. (1993). Tabu Thresholding: Improved Search by Nonmonotonic Trajectories, ORSA Journal on Computing, Vol. 7, No. 4, pp.426-442.
11. Glover, F. (1997). A Template for Scatter Search and Path Relinking, Lecture Notes in Computer Science, 1363, J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers (Eds.), pp. 13-54.
12. Glover F. (1999). Scatter Search and Path Relinking, D Corne, M Dorigo and F Glover (eds.) New Ideas in Optimisation, Wiley.
13. Hamon, W. R. (1961). Estimating potential evapotranspiration. J. Hydr. Div., ASCE , 87 (3 ), 107–120.
14. Lin, H. C. J., D. R. Richards, G. T. Yeh, J. R. Cheng, H. P. Cheng and N. L. Jones (1997). FEMWATER : A Three-Dimensional Finite Element Computer Model for Simulating Density-Dependent Flow and Transport in Variably Saturated Media.
15. Matsukawa, J., A. B. Finney, and R. Willis (1992). Conjunctive use planning in Mad River Basin, California, J. of Water Resources Planning and Management, 118(2), 115-131.
16. Meadows, D. H., et al. (1972). The Limits to Growth: A Report to The Club of Rome, Universe Books, New York.
17. McDonald, M. G., A. W. Harbaugh, (1988). Techniques of water resources investigations of the United States Geological Survey. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, Book, 6, 11-1.
18. McDonald, M. G., A. W. Harbaugh, (1996). User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model. U.S. Geological Survey Open-File Report 96–485.
19. Ogrosky, H. O., V. Mockus, (1964). Hydrology of agricultural lands. Handbook of applied hydrology, V. T. Chow, ed., McGraw‐Hill, New York, N.Y.
20. Souza, W. R. (1987). Documentation of a graphical display program for the saturated- unsaturated transport (SUTRA) finite-element simulation model. Water-Resources Investigations Report: 122.
21. Spiegel, N. (1962). Hydraulics of certain stream-connected aquifer systems. New Mexico State Engineer Office, Special Report, 105. Santa Fe, New Mexico: State Engineer Office.
22. Tsur, V. (1990). The stabilization role of groundwater when surface water supplies are uncertain: the implications for groundwater development, Water Resources Research, 26(5), 811-818.
23. Tung, C. P. and D. A. Haith, (1995). Global Warming Effects on New York Streamflows. Journal of Water Resources Planning and management 121(2): 216-225.
24. US Army Corps of Enginners (1970). Uses of Simulation in River Basin Planning. Hydrologic Engirneering Center.
25. VENSIM, Ventana Systems Inc., http://www.VENSIM.com/
26. Voss, C. I. (1984). A finite-element simulation model for saturated-unsaturated, fluid-density-dependent ground-water flow with energy transport or chemically- reactive single-species solute transport. Water-Resources Investigations Report: 409.
27. 台灣農田水利數位博物館網站:
'http://taoyuan.randdf.com/digimuseum/default.htm.'
28. 自來水公司第八管理處網站 http://www8.water.gov.tw/.
29. 周俊安 (2002). 禁忌演算法應用於優選地下水模式參數之分區, 生物環境系統工程學研究所碩士論文。
30. 洪念民 (1997). 氣候變遷對大安溪水資源營運之影響, 生物環境系統工程學研究所碩士論文。
31. 陳奕如 (2011). 地表水與地下水聯合營運優選模式之發展, 生物環境系統工程學研究所碩士論文,2011。
32. 陳亭玉 (2000). 河川流域水土資源承載力與永續力評量模式之發展, 國立中央大學環境工程研究所碩士論文
33. 陳思瑋 (2005). 淡水河流域水資源永續性評估暨管理之研究, 國立台灣大學生物環境系統工程學研究所碩士論文
34. 陳鵬旭 (2002). 新竹地區供水系統動力模式與供水評量系統之建構, 國立台灣海洋大學河海工程學系碩士論文
35. 賴典章 (2003). 台灣地區地下水分區特性, 水文地質調查與應用研討會論文集,p1-24
36. 劉子明 (2010). 氣候變遷對區域水資源衝擊評估整合系統之研究, 國立台灣大學生物環境系統工程學研究所博士論文
37. 童慶斌 (2011). 發展因應氣候變遷之洪旱災害消減技術-以蘭陽溪流域為示範區-總計畫暨子計畫:發展供水系統容忍氣候變化門檻評估技術與調適能力強化策略(Ⅱ), 行政院國家科學委員會
38. 經濟部水資源局 (2000). 台灣地區地下水補注量估算
39. 經濟部水利署 (2007). 96年水文年報
40. 經濟部水利署 (2009). 蘭陽地區地面地下水聯合運用規劃
41. 經濟部水利署 (2008). 區域水資源經理策略擬定之研究
42. 經濟部水利署水利規劃試驗所 (2012). 強化北部水資源分區因應氣候變遷水資源管理調適能力研究
43. 經濟部水利署 (2009). 臺灣地區水資源需求潛勢評估及經理策略檢討
44. 經濟部水利署 (2009). 蘭陽地區地面地下水聯合運用規劃
45. 經濟部水利署 (2002). 地下水資源整體營運規劃與綜合評估(1/2).
46. 顏笠安 (2009). 淨水場混凝污泥質量特性與脫水泥餅再利用初步評估, 國立中央大學環境工程研究所碩士論文
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5950-
dc.description.abstract永續發展之精神在於不造成環境退化的前提下,善用環境資源以支持經濟社會之持續發展。為符合永續之精神,在掌握現有與規劃中之水利設施下,同時考慮供水系統容忍之缺水風險水準,分析能提供之供水能力,並考量未來供水承載力限制下,規劃區域發展之水資源需求。蘭陽溪流域因過去缺水不嚴重,所以尚未興建水庫,又因其地區發展已久,已建置完善之供水系統,此相較台灣其他地區獨特的水資源供水發展,當未來若面臨可能之缺水危機時,正好可以改善台灣過去之水資源系統發展較不考慮環境資源限制與退化等問題,以更符合永續性的概念規劃未來因應缺水之應變機制。本研究分析蘭陽溪水資源系統之供水承載力,並模擬未來需水量可能改變情形。根據未來供水承載力進行敏感度分析,可得到滿足缺水風險下之敏感因子包絡線。此外,以永續利用為願景,在降低缺水與善用環境資源並不造成退化的前提下,探討水資源遇缺水情形之各種應變方法,提出不同缺水情形之供水策略,包括地下水作為備援用水、地下水作為常態用水、與增加蓄水設施進行地表地下水聯合營運。
另外,本研究透過設計案例,根據不同缺水情形之應變機制想法中,提出當缺水程度達到需要增加蓄水設施來增加蓄水,則可結合地下水抽水,將地表水水庫與地下水皆視為常態供水系統進行聯合營運。藉由水庫操作規線之概念,依據地下水累積洩降率加以分區,並透過禁忌演算法優選出同時考慮缺水最少且地下水累積洩降率最小之最佳供水比例,分配地表水與地下水之供水量,建立地表水與地下水之供水規則與聯合營運操作規線。根據研究結果可知,增加地下水累積洩降率分界個數可使目標函數值越來越小,且使用聯合營運優選會得到較只以地表水作為唯一供水來源及使用地表水且將地下水當作備援用水更佳之結果。
zh_TW
dc.description.abstractThe spirit of sustainable development is not only using the environmental resources efficiently for economic and social development but also protecting the environment from degrading. To implement the spirit, analyzing the carrying capacity of water supply due to present and planning facilities and tolerance of water shortage is important. Also, considering the limits of future carrying capacity can scheme the development of future regional water resources. The Lanyang creek watershed is a unique area of water supply development in Taiwan. It rarely has severe water shortage. Therefore, no reservoir is built in the area. However, to support the long-time developments, it has well-built water supply systems. According to the Lanyang creek Watershed’s special development, a different development of water resource system with more environmental considerations can be put into practice when it confronts with possible water shortage risks. This study analyzes the carrying capacity of water supply systems of Lanyang creek watershed and future water demands. According to the results of sensitivity analysis on future carrying capacity, the envelopes of key factors can be determined to make sure not exceeding acceptable risks of water shortage. Moreover, with the vision of sustainable development, this study discusses the measures dealing with water shortage and brings up the water supply strategies for different shortage situations. The measures include using groundwater as backup supply, using groundwater as normal supply, and constructing water-storing facilities to conduct conjunctive operation of surface water and groundwater.
Base on the design case study on the measures of conjunctive use of surface water and groundwater, this study proposes constructing water-storing facilities to increase retaining water and pumping groundwater for normal water supply. This study develops conjunctive operation rule curves, which extends the concept of reservoir operation rule curves to the conjunctive use of surface water and groundwater and allows pumping groundwater during the non-drought periods. The rule curve’s goal is to minimize the total water shortage and groundwater drawdown and the Tabu search and the stepwise method are applied to fine the optimal operational rule curves. According to the results of design case study, the optimized conjunctive operation rule curves can reduced more water shortagethan using surface water only or using groundwater as backup.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:18:40Z (GMT). No. of bitstreams: 1
ntu-102-R00622016-1.pdf: 2824404 bytes, checksum: f6b40ccb53b47c1fa4f3b066b21e14cd (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents摘要 I
Abstract III
圖目錄 IX
表目錄 XI
第一章、緒論 1
1.1 研究動機與目的 1
1.2 研究內容與架構 3
第二章、文獻回顧 7
2.1 供水承載力 7
2.2 不同缺水情形之水資源應變機制 9
2.3 地表地下水聯合營運優選 10
第三章、研究方法 13
3.1 研究架構 13
3.2 氣象資料合成模式 14
3.3 GWLF流量模式 15
3.4供水承載力 21
3.5 系統動力模式- Vensim 22
3.6 地表水地下水聯合營運 23
3.6.1地下水模式- MODFLOW 23
3.6.2 聯合營運操作規則 25
3.6.3 最大可抽水率 28
3.6.4 禁忌演算法 29
3.6.5 逐步法 32
第四章、蘭陽溪流域之供水承載力與不同缺水情形之水資源應變機制 35
4.1 研究區域 35
4.2 蘭陽溪流域供水系統與供水承載力 37
4.2.1 蘭陽溪流域水資源系統之建構 37
4.2.2 水資源系統動力模式設定與資料輸入 44
4.2.3 供水承載力 51
4.3 供水承載力之敏感度分析 52
4.4 不同缺水情形之水資源應變機制 59
4.4.1 地下水-備援用水 60
4.4.2 地下水-常態用水 61
4.4.3 增加蓄水設施-地表地下水聯合營運 61
第五章、地表地下水聯合營運案例設計 63
5.1 研究案例之設計 63
5.2 優選結果討論 65
5.2.1 最大可抽水量 65
5.2.2 地表地下水聯合營運操作規線 66
第六章、結論與建議 75
6.1 結論 75
6.2 建議 77
參考文獻 79
附錄一、供水承載力包絡線對雨量敏感度分析結果 85
附錄二、供水承載力包絡線對不同雨量敏感度分析 87
附錄三、蘭陽水力發電廠發電用水量統計表 91
附錄四、宜蘭水利會灌渠與水源統計表 93
dc.language.isozh-TW
dc.title供水系統承載力評估方法與水資源應變機制之研究zh_TW
dc.titleStudy on Methodology for Carrying Capacity Assessment and Response Mechanism of Water Supply Systemen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明旭,林裕彬,胡明哲
dc.subject.keyword永續發展,供水承載力,禁忌演算法,地表地下水聯合營運,水資源管理,zh_TW
dc.subject.keywordSustainable Development,Carrying Capacity of Water Supply,Tabu Search,Conjunctive Operation of Surface Water and Groundwater,Water Resources Management,en
dc.relation.page103
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf2.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved